

Artificial Intelligence

for Big Data

Complete guide to automating Big Data solutions

using Atrtificial Intelligence techniques

Artificial Intelligence for Big Data
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or
alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Tushar Gupta

Content Development Editor: Tejas Limkar
Technical Editor: Dinesh Chaudhary

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Tania Dutta

Production Coordinator: Aparna Bhagat

First published: May 2018
Production reference: 1170518

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-217-

Table of Contents

Preface 1
Chapter 1: Big Data and Artificial Intelligence Systems 8
Results pyramid 9
What the human brain does best 10
Sensory input 10
Storage 10
Processing power 11
Low energy consumption 11
What the electronic brain does best 11
Speed information storage 11
Processing by brute force 12
Best of both worlds 12
Big Data 13
Evolution from dumb to intelligent machines 15
Intelligence 16
Types of intelligence 16
Intelligence tasks classification 17

Big data frameworks 17
Batch processing 18
Real-time processing 19
Intelligent applications with Big Data 20
Areas of Al 20
Frequently asked questions 20
Summary 22
Chapter 2: Ontology for Big Data 23
Human brain and Ontology 24
Ontology of information science 26
Ontology properties 27
Advantages of Ontologies 28
Components of Ontologies 29
The role Ontology plays in Big Data 30
Ontology alignment 32
Goals of Ontology in big data 32
Challenges with Ontology in Big Data 33
RDF—the universal data format 33
RDF containers 36

RDF classes 37

RDF properties 37

RDF attributes 38

Table of Contents

Using OWL, the Web Ontology Language
SPARQL query language
Generic structure of an SPARQL query
Additional SPARQL features
Building intelligent machines with Ontologies
Ontology learning
Ontology learning process
Frequently asked questions

Summary

Chapter 3: Learning from Big Data

Supervised and unsupervised machine learning
The Spark programming model
The Spark MLIib library
The transformer function
The estimator algorithm
Pipeline
Regression analysis
Linear regression
Least square method
Generalized linear model
Logistic regression classification technique
Logistic regression with Spark
Polynomial regression
Stepwise regression
Forward selection
Backward elimination
Ridge regression
LASSO regression
Data clustering
The K-means algorithm
K-means implementation with Spark ML
Data dimensionality reduction
Singular value decomposition
Matrix theory and linear algebra overview
The important properties of singular value decomposition
SVD with Spark ML
The principal component analysis method
The PCA algorithm using SVD
Implementing SVD with Spark ML
Content-based recommendation systems
Frequently asked questions

Summary

Chapter 4: Neural Network for Big Data

38
40
42
43
44
47
48
50

51
52
53
58
61
61
62
62
63
64
64
68

68
70

70
72
72
72
73
73
73
75
77
78
80
80
84
84
86
87
87
88
93

94
95

[ii]

Table of Contents

Fundamentals of neural networks and artificial neural networks 96
Perceptron and linear models 98
Component notations of the neural network 99
Mathematical representation of the simple perceptron model 100
Activation functions 102

Sigmoid function 103

Tanh function 104

ReLu 104
Nonlinearities model 106
Feed-forward neural networks 106
Gradient descent and backpropagation 108
Gradient descent pseudocode 112
Backpropagation model 113
Overfitting 115
Recurrent neural networks 117
The need for RNNs 117
Structure of an RNN 118
Training an RNN 118
Frequently asked questions 120
Summary 122
Chapter 5: Deep Big Data Analytics 123
Deep learning basics and the building blocks 124
Gradient-based learning 126
Backpropagation 128
Non-linearities 130
Dropout 132
Building data preparation pipelines 133
Practical approach to implementing neural net architectures 140
Hyperparameter tuning 143
Learning rate 144
Number of training iterations 145
Number of hidden units 146
Number of epochs 146
Experimenting with hyperparameters with Deeplearning4j 147
Distributed computing 152
Distributed deep learning 154
DL4J and Spark 155
API overview 155
TensorFlow 157
Keras 158
Frequently asked questions 159
Summary 161
Chapter 6: Natural Language Processing 162

[iii]

Table of Contents

Natural language processing basics
Text preprocessing
Removing stop words
Stemming
Porter stemming
Snowball stemming
Lancaster stemming
Lovins stemming
Dawson stemming
Lemmatization
N-grams
Feature extraction
One hot encoding
TF-IDF
CountVectorizer
Word2Vec
CBOW
Skip-Gram model
Applying NLP techniques
Text classification
Introduction to Naive Bayes' algorithm
Random Forest
Naive Bayes' text classification code example
Implementing sentiment analysis
Frequently asked questions

Summary
Chapter 7: Fuzzy Systems
Fuzzy logic fundamentals
Fuzzy sets and membership functions
Attributes and notations of crisp sets
Operations on crisp sets
Properties of crisp sets
Fuzzification
Defuzzification
Defuzzification methods
Fuzzy inference
ANFIS network
Adaptive network

ANFIS architecture and hybrid learning algorithm

Fuzzy C-means clustering
NEFCLASS
Frequently asked questions

Summary
Chapter 8: Genetic Programming

[iv]

163
165
165
167
167
168
168
169
169
170
170
171
171
172
175
176
176
178
179
180
181
182
183
185

187

188
189
190
191
192

193
194

194

197
197

197
198
198
199
202
206
208

209
210

Table of Contents

Genetic algorithms structure
KEEL framework
Encog machine learning framework
Encog development environment setup
Encog API structure
Introduction to the Weka framework
Weka Explorer features
Preprocess
Classify
Attribute search with genetic algorithms in Weka
Frequently asked questions

Summary
Chapter 9: Swarm Intelligence
Swarm intelligence
Self-organization
Stigmergy
Division of labor
Advantages of collective intelligent systems
Design principles for developing Sl systems
The particle swarm optimization model
PSO implementation considerations
Ant colony optimization model
MASON Library
MASON Layered Architecture
Opt4J library
Applications in big data analytics
Handling dynamical data
Multi-objective optimization
Frequently asked questions

Summary
Chapter 10: Reinforcement Learning
Reinforcement learning algorithms concept
Reinforcement learning techniques
Markov decision processes
Dynamic programming and reinforcement learning
Learning in a deterministic environment with policy iteration
Q-Learning
SARSA learning
Deep reinforcement learning
Frequently asked questions

Summary
Chapter 11: Cyber Security

213
216
221
221
221
225
230

230
233

238
241

241
242
243
244
246
246
247
248
249
252
253
256
257
261
263
266
266
267

268
269
270
274
274
276
277
280
289
291
292

293
294

[v]

Table of Contents

Big Data for critical infrastructure protection 295
Data collection and analysis 296
Anomaly detection 297
Corrective and preventive actions 298
Conceptual Data Flow 299

Components overview 300
Hadoop Distributed File System 300
NoSQL databases 301
MapReduce 301
Apache Pig 302
Hive 302

Understanding stream processing 303
Stream processing semantics 304
Spark Streaming 305
Kafka 306

Cyber security attack types 309
Phishing 309
Lateral movement 309
Injection attacks 310
Al-based defense 310

Understanding SIEM 312
Visualization attributes and features 314

Splunk 315
Splunk Enterprise Security 316
Splunk Light 316

ArcSight ESM 319

Frequently asked questions 319

Summary 321

Chapter 12: Cognitive Computing 322

Cognitive science 323

Cognitive Systems 327
A brief history of Cognitive Systems 328
Goals of Cognitive Systems 330
Cognitive Systems enablers 332

Application in Big Data analytics 333

Cognitive intelligence as a service 335
IBM cognitive toolkit based on Watson 336

Watson-based cognitive apps 337

Developing with Watson 340
Setting up the prerequisites 340
Developing a language translator application in Java 342

Frequently asked questions 345

Summary 346

Other Books You May Enjoy 348

[vil

Table of Contents

Index 351

[vii]

Preface

We are at an interesting juncture in the evolution of the digital age, where there is an
enormous amount of computing power and data in the hands of everyone. There has been
an exponential growth in the amount of data we now have in digital form. While being
associated with data-related technologies for more than 6 years, we have seen a rapid shift
towards enterprises that are willing to leverage data assets initially for insights and
eventually for advanced analytics. What sounded like hype initially has become a reality in
a very short period of time. Most companies have realized that data is the most important
asset needed to stay relevant. As practitioners in the big data analytics industry, we have
seen this shift very closely by working with many clients of various sizes, across regions
and functional domains. There is a common theme evolving toward open distributed open
source computing to store data assets and perform advanced analytics to predict future
trends and risks for businesses.

This book is an attempt to share the knowledge we have acquired over time to help new
entrants in the big data space to learn from our experience. We realize that the field of
artificial intelligence is vast and it is just the beginning of a revolution in the history of
mankind. We are going to see Al becoming mainstream in everyone’s life and
complementing human capabilities to solve some of the problems that have troubled us for
a long time. This book takes a holistic approach into the theory of machine learning and Al,
starting from the very basics to building applications with cognitive intelligence. We have
taken a simple approach to illustrate the core concepts and theory, supplemented by
illustrative diagrams and examples.

It will be encouraging for us for readers to benefit from the book and fast-track their
learning and innovation into one of the most exciting fields of computing so they can
create a truly intelligent system that will augment our abilities to the next level.

Preface

Who this book is for

This book is for anyone with a curious mind who is exploring the fields of machine
learning, artificial intelligence, and big data analytics. This book does not assume that you
have in-depth knowledge of statistics, probability, or mathematics. The concepts are
illustrated with easy-to-follow examples. A basic understanding of the Java programming
language and the concepts of distributed computing frameworks (Hadoop/Spark) will be an
added advantage. This book will be useful for data scientists, members of technical staff in
IT products and service companies, technical project managers, architects, business
analysts, and anyone who deals with data assets.

What this book covers

Chapter 1, Big Data and Artificial Intelligence Systems, will set the context for the convergence of
human intelligence and machine intelligence at the onset of a data revolution. We have the
ability to consume and process volumes of data that were never possible before. We will
understand how our quality of life is the result of our decisive power and actions and how it
translates into the machine world. We will understand the paradigm of big data along with its
core attributes before diving into the basics of Al. We will conceptualize the big data
frameworks and see how they can be leveraged for building intelligence into machines. The
chapter will end with some of the exciting applications of Big Data and Al

Chapter 2, Ontology for Big Data, introduces semantic representation of data into
knowledge assets. A semantic and standardized view of the world is essential if we want
to implement artificial intelligence, which fundamentally derives knowledge from data
and utilizes contextual knowledge for insights and meaningful actions in order to augment
human capabilities. This semantic view of the world is expressed as ontologies.

Chapter 3, Learning from Big Data, shows broad categories of machine learning

as supervised and unsupervised learning, and we understand some of the fundamental
algorithms that are very widely used. In the end, we will have an overview of the
Spark programming model and Spark's Machine Learning library (Spark MLIib).

Chapter 4, Neural Networks for Big Data, explores neural networks and how they have
evolved with the increase in computing power with distributed computing frameworks.
Neural networks get their inspiration from the human brain and help us solve some very
complex problems that are not feasible with traditional mathematical models.

[2]

Preface

Chapter 5, Deep Big Data Analytics, takes our understanding of neural networks to the
next level by exploring deep neural networks and the building blocks of deep learning:
gradient descent and backpropagation. We will review how to build data preparation
pipelines, the implementation of neural network architectures, and hyperparameter
tuning. We will also explore distributed computing for deep neural networks with
examples using the DL4] library.

Chapter 6, Natural Language Processing, introduces some of the fundamentals of Natural
Language Processing (NLP). As we build intelligent machines, it is imperative that the
interface with the machines should be as natural as possible, like day-to-day human
interactions. NLP is one of the important steps towards that. We will be learning about text
preprocessing, techniques for extraction of relevant features from natural language text,
application of NLP techniques, and the implementation of sentiment analysis with NLP.

Chapter 7, Fuzzy Systems, explains that a level of fuzziness is essential if we want to build
intelligent machines. In the real-world scenarios, we cannot depend on exact mathematical
and quantitative inputs for our systems to work with, although our models (deep neural
networks, for example) require actual inputs. The uncertainties are more frequent and, due
to the nature of real-world scenarios, are amplified by incompleteness of contextual
information, characteristic randomness, and ignorance of data. Human reasoning are
capable enough to deal with these attributes of the real world. A similar level of fuzziness is
essential for building intelligent machines that can complement human capabilities in a real
sense. In this chapter, we are going to understand the fundamentals of fuzzy logic, its
mathematical representation, and some practical implementations of fuzzy systems.

Chapter 8, Genetic Programming, big data mining tools need to be empowered by
computationally efficient techniques to increase the degree of efficiency. Genetic
algorithms over data mining create great, robust, computationally efficient, and adaptive
systems. In fact, with the exponential explosion of data, data analytics techniques go on to
take more time and inversely affect the throughput. Also due to their static nature, complex
hidden patterns are often left out. In this chapter, we want to show how to use genes to
mine data with great efficiency. To achieve this objective, we'll introduce the basics of
genetic programming and the fundamental algorithms.

Chapter 9, Swarm Intelligence, analyzes the potential of swarm intelligence for solving
big data analytics problems. Based on the combination of swarm intelligence and data
mining techniques, we can have a better understanding of the big data analytics problems
and design more effective algorithms to solve real-world big data analytics problems. In
this chapter, we’ll show how to use these algorithms in big data applications. The basic
theory and some programming frameworks will be also explained.

[31]

Preface

Chapter 10, Reinforcement Learning, covers reinforcement learning as one of the
categories of machine learning. With reinforcement learning, the intelligent agent learns
the right behavior based on the reward it receives as per the actions it takes within a
specific environmental context. We will understand the fundamentals of reinforcement
learning, along with mathematical theory and some of the commonly used techniques for
reinforcement learning.

Chapter 11, Cyber Security, analyzes the cybersecurity problem for critical infrastructure.
Data centers, data base factories, and information system factories are continuously under
attack. Online analysis can detect potential attacks to ensure infrastructure security. This
chapter also explains Security Information and Event Management (SIEM). It emphasizes
the importance of managing log files and explains how they can bring benefits.
Subsequently, Splunk and ArcSight ESM systems are introduced.

Chapter 12, Cognitive Computing, introduces cognitive computing as the next level in the
development of artificial intelligence. By leveraging the five primary human senses along
with mind as the sixth sense, a new era of cognitive systems can begin. We will see the
stages of Al and the natural progression towards strong Al, along with the key enablers for
achieving strong Al. We will take a look at the history of cognitive systems and see how
that growth is accelerated with the availability of big data, which brings large data volumes
and processing power in a distributed computing framework.

To get the most out of this book

The chapters in this book are sequenced in such a way that the reader can progressively
learn about Artificial Intelligence for Big Data starting from the fundamentals and eventually
move towards cognitive intelligence. Chapter 1, Big Data and Artificial Intelligence Systems,
to chapter 5, Deep Big Data Analytics, cover the basic theory of machine learning and
establish the foundation for practical approaches to Al Starting from Chapter 6, Natural
Language Processing, we conceptualize theory into practical implementations and possible
use cases. To get the most out of this book, it is recommended that the first five chapters are
read in order. From Chapter 6, Natural Language Processing, onward, the reader can choose
any topic of interest and read in whatever sequence they prefer.

[4]

https://cdp.packtpub.com/artificial_intelligence_for_big_data/wp-admin/post.php?post=284&action=edit#post_220

Preface

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www .packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub. com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

W=

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

» WinRAR/7-Zip for Windows
* Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Artificial-Intelligence-for-Big-Data. We also
have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/ArtificialIntelligenceforBigData ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10* . dmg disk image file as
another disk in your system."

[5]

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Artificial-Intelligence-for-Big-Data
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceforBigData_ColorImages.pdf

Preface

A block of code is set as follows:

StopWordsRemover remover = new StopWordsRemover ()
.setInputCol ("raw")
.setOutputCol ("filtered");

Any command-line input or output is written as follows:

$ mkdir css
S cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject
of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

[6]

http://www.packtpub.com/submit-errata

Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[71]

http://authors.packtpub.com/
https://www.packtpub.com/

Big Data and Artificial
Intelligence Systems

The human brain is one of the most sophisticated machines in the universe. It has evolved
for thousands of years to its current state. As a result of continuous evolution, we are able
to make sense of nature's inherent processes and understand cause and effect relationships.
Based on this understanding, we are able to learn from nature and devise similar machines
and mechanisms to constantly evolve and improve our lives. For example, the video
cameras we use derived from the understanding of the human eye.

Fundamentally, human intelligence works on the paradigm of sense, store, process, and act.
Through the sensory organs, we gather information about our surroundings, store the
information (memory), process the information to form our beliefs/patterns/links, and use
the information to act based on the situational context and stimulus.

Currently, we are at a very interesting juncture of evolution where the human race has
found a way to store information in an electronic format. We are also trying to devise
machines that imitate the human brain to be able to sense, store, and process information to
make meaningful decisions and complement human abilities.

This introductory chapter will set the context for the convergence of human intelligence
and machine intelligence at the onset of a data revolution. We have the ability to consume
and process volumes of data that were never possible before. We will understand how our
quality of life is the result of our decisive power and actions and how it translates to the
machine world. We will understand the paradigm of Big Data along with its core attributes
before diving into artificial intelligence (AI) and its basic fundamentals. We will
conceptualize the Big Data frameworks and how those can be leveraged for building
intelligence into machines. The chapter will end with some of the exciting applications of
Big Data and Al

Big Data and Artificial Intelligence Systems Chapter 1

We will cover the following topics in the chapter:

* Results pyramid
» Comparing the human and the electronic brain
» Overview of Big Data

Results pyramid

The quality of human life is a factor of all the decisions we make. According to Partners
in Leadership, the results we get (positive, negative, good, or bad) are a result of our
actions, our actions are a result of the beliefs we hold, and the beliefs we hold are a result
of our experiences. This is represented as a results pyramid as follows:

e

Actions

Beliefs

Experiences

At the core of the results pyramid theory is the fact that it is certain that we cannot achieve
better or different results with the same actions. Take an example of an organization that is
unable to meets its goals and has diverted from its vision for a few quarters. This is a result
of certain actions that the management and employees are taking. If the team continues to
have same beliefs, which translate to similar actions, the company cannot see noticeable
changes in its outcomes. In order to achieve the set goals, there needs to be a fundamental
change in day-to-day actions for the team, which is only possible with a new set of beliefs.
This means a cultural overhaul for the organization.

Similarly, at the core of computing evolution, man-made machines cannot evolve to be
more effective and useful with the same outcomes (actions), models (beliefs), and data
(experiences) that we have access to traditionally. We can evolve for the better if
human intelligence and machine power start complementing each other.

[91]

Big Data and Artificial Intelligence Systems Chapter 1

What the human brain does best

While the machines are catching up fast in the quest for intelligence, nothing can come close
to some of the capabilities that the human brain has.

Sensory input

The human brain has an incredible capability to gather sensory input using all the senses
in parallel. We can see, hear, touch, taste, and smell at the same time, and process the input
in real time. In terms of computer terminology, these are various data sources that stream
information, and the brain has the capacity to process the data and convert it into
information and knowledge. There is a level of sophistication and intelligence within the
human brain to generate different responses to this input based on the situational context.

For example, if the outside temperature is very high and it is sensed by the skin, the brain
generates triggers within the lymphatic system to generate sweat and bring the body
temperature under control. Many of these responses are triggered in real time and without
the need for conscious action.

Storage

The information collected from the sensory organs is stored consciously and
subconsciously. The brain is very efficient at filtering out the information that is non-critical
for survival. Although there is no confirmed value of the storage capacity in the human
brain, it is believed that the storage capacity is similar to terabytes in computers. The brain's
information retrieval mechanism is also highly sophisticated and efficient. The brain can
retrieve relevant and related information based on context. It is understood that the brain
stores information in the form of linked lists, where the objects are linked to each other by a
relationship, which is one of the reasons for the availability of data as information and
knowledge, to be used as and when required.

[10]

Big Data and Artificial Intelligence Systems Chapter 1

Processing power

The human brain can read sensory input, use previously stored information, and make
decisions within a fraction of a millisecond. This is possible due to a network of neurons
and their interconnections. The human brain possesses about 100 billion neurons with
one quadrillion connections known as synapses wiring these cells together. It coordinates
hundreds of thousands of the body's internal and external processes in response to
contextual information.

Low energy consumption

The human brain requires far less energy for sensing, storing, and processing information.
The power requirement in calories (or watts) is insignificant compared to the equivalent
power requirements for electronic machines. With growing amounts of data, along with
the increasing requirement of processing power for artificial machines, we need to consider
modeling energy utilization on the human brain. The computational model needs to
fundamentally change towards quantum computing and eventually to bio-computing.

What the electronic brain does best

As the processing power increases with computers, the electronic brain—or computers—
are much better when compared to the human brain in some aspects, as we will explore in
the following sections.

Speed information storage

The electronic brain (computers) can read and store high volumes of information at
enormous speeds. Storage capacity is exponentially increasing. The information is easily
replicated and transmitted from one place to another. The more information we have at
our disposal for analysis, pattern, and model formation, the more accurate our predictions
will be, and the machines will be much more intelligent. Information storage speed is
consistent across machines when all factors are constant. However, in the case of the
human brain, storage and processing capacities vary based on individuals.

[11]

Big Data and Artificial Intelligence Systems Chapter 1

Processing by brute force

The electronic brain can process information using brute force. A distributed computing
system can scan/sort/calculate and run various types of compute on very large volumes of
data within milliseconds. The human brain cannot match the brute force of computers.

Computers are very easy to network and collaborate with in order to increase collective
storage and processing power. The collective storage can collaborate in real time to produce
intended outcomes. While human brains can collaborate, they cannot match the electronic
brain in this aspect.

Best of both worlds

Al is finding and taking advantage of the best of both worlds in order to augment human
capabilities. The sophistication and efficiency of the human brain and the brute force of
computers combined together can result in intelligent machines that can solve some of the
most challenging problems faced by human beings. At that point, the AI will complement
human capabilities and will be a step closer to social inclusion and equanimity by
facilitating collective intelligence. Examples include epidemic predictions, disease
prevention based on DNA sampling and analysis, self driving cars, robots that work in
hazardous conditions, and machine assistants for differently able people.

Taking a statistical and algorithmic approach to data in machine learning and Al has been
popular for quite some time now. However, the capabilities and use cases were limited until
the availability of large volumes of data along with massive processing speeds, which is called
Big Data. We will understand some of the Big Data basics in the next section. The availability of
Big Data has accelerated the growth and evolution of Al and machine learning applications.
Here is a quick comparison of Al before and with with Big Data:

Availability of limited data sets (MBs) Availability of ever increasing data sets (TBs)

Limited Sample Sizes Massive Sample Sizes resulting in increased
model accuracy

Inability to analyze large data in milliseconds Large data analysis in milliseconds

Batch oriented Real-time

Slow learning curve Accelerated learning curve

Limited Data Sources Heterogeneous and multiple data sources
Based on mostly structured data sets Based on Structured / unstructured and semi-

structured data

[12]

Big Data and Artificial Intelligence Systems Chapter 1

The primary goal of Al is to implement human-like intelligence in machines and to create
systems that gather data, process it to create models (hypothesis), predict or influence
outcomes, and ultimately improve human life. With Big Data at the core of the pyramid, we
have the availability of massive datasets from heterogeneous sources in real time. This
promises to be a great foundation for an Al that really augments human existence:

e

Actionable
Insights
Models

Hypothesis

Big Data

Big Data

"We don't have better algorithms, We just have more data.”

- Peter Norvig, Research Director, Google

Data in dictionary terms is defined as facts and statistics collected together for reference or
analysis. Storage mechanisms have greatly evolved with human evolution—sculptures,
handwritten texts on leaves, punch cards, magnetic tapes, hard drives, floppy disks, CDs,
DVDs, SSDs, human DNA, and more. With each new medium, we are able to store more
and more data in less space; it's a transition in the right direction. With the advent of the
internet and the Internet of Things (IoT), data volumes have been growing exponentially.

Data volumes are exploding; more data has been created in the past two
years than in the entire history of the human race.

[13]

Big Data and Artificial Intelligence Systems Chapter 1

The term Big Data was coined to represent growing volumes of data. Along with volume,
the term also incorporates three more attributes, velocity, variety, and value, as follows:

» Volume: This represents the ever increasing and exponentially growing amount
of data. We are now collecting data through more and more interfaces between
man-made and natural objects. For example, a patient's routine visit to a clinic
now generates electronic data in the tune of megabytes. An average
smartphone user generates a data footprint of at least a few GB per day. A flight
traveling from one point to another generates half a terabyte of data.

* Velocity: This represents the amount of data generated with respect to time and a
need to analyze that data in near-real time for some mission critical operations.
There are sensors that collect data from natural phenomenon, and the data is
then processed to predict hurricanes/earthquakes. Healthcare is a great example
of the velocity of the data generation; analysis and action is mission critical:

2018 (50,000
2013 (28,000 GB / Second)
GB / Second)
2002 (100 GB /
Second)
1997 (100 GB
/ Hour)
1992 (100
GB / Day) Growing Data Volumes and Velocity

» Variety: This represents variety in data formats. Historically, most electronic
datasets were structured and fit into database tables (columns and rows).
However, more than 80% of the electronic data we now generate is not in
structured format, for example, images, video files, and voice data files. With Big
Data, we are in a position to analyze the vast majority of
structured/unstructured and semi-structured datasets.

[14]

Big Data and Artificial Intelligence Systems Chapter 1

¢ Value: This is the most important aspect of Big Data. The data is only as valuable
as its utilization in the generation of actionable insight. Remember the results
pyramid where actions lead to results. There is no disagreement that data holds
the key to actionable insight; however, systems need to evolve quickly to be able
to analyze the data, understand the patterns within the data, and, based on the
contextual details, provide solutions that ultimately create value.

Evolution from dumb to intelligent machines

The machines and mechanisms that store and process these huge amounts of data have
evolved greatly over a period of time. Let us briefly look at the evolution of machines (for
simplicity's sake, computers). For a major portion of their evolution, computers were dumb
machines instead of intelligent machines. The basic building blocks of a computer are the
CPU (Central Processing Unit), the RAM (temporary memory), and the disk (persistent
storage). One of the core components of a CPU is an ALU (Arithmetic and Logic Unit). This
is the component that is capable of performing the basic steps of mathematical calculations
along with logical operations. With these basic capabilities in place, traditional computers
evolved with greater and higher processing power. However, they were still dumb
machines without any inherent intelligence. These computers were extremely good at
following predefined instructions by using brute force and throwing errors or exceptions
for scenarios that were not predefined. These computer programs could only answer specific
questions they were meant to solve.

Although these machines could process lots of data and perform computationally heavy
jobs, they would be always limited to what they were programmed to do. This is
extremely limiting if we take the example of a self driving car. With a computer program
working on predefined instructions, it would be nearly impossible to program the car to
handle all situations, and the programming would take forever if we wanted to drive the
car on ALL roads and in all situations.

This limitation of traditional computers to respond to unknown or non-programmed
situations leads to the question: Can a machine be developed to think and evolve as humans
do? Remember, when we learn to drive a car, we just drive it in a small amount of situations
and on certain roads. Our brain is very quick to learn to react to new situations and trigger
various actions (apply breaks, turn, accelerate, and so on). This curiosity resulted in the
evolution of traditional computers into artificially intelligent machines.

Traditionally, Al systems have evolved based on the goal of creating expert
systems that demonstrate intelligent behavior and learn with every
interaction and outcome, similar to the human brain.

[15]

Big Data and Artificial Intelligence Systems Chapter 1

In the year 1956, the term artificial intelligence was coined. Although there were gradual
steps and milestones on the way, the last decade of the 20th century marked remarkable
advancements in Al techniques. In 1990, there were significant demonstrations of machine
learning algorithms supported by case-based reasoning and natural language
understanding and translations. Machine intelligence reached a major milestone when
then World Chess Champion, Gary Kasparov, was beaten by Deep Blue in 1997. Ever since
that remarkable feat, Al systems have greatly evolved to the extent that some experts have
predicted that Al will beat humans at everything eventually. In this book, we are going to
look at the specifics of building intelligent systems and also understand the core
techniques and available technologies. Together, we are going to be part of one of the
greatest revolutions in human history.

Intelligence

Fundamentally, intelligence in general, and human intelligence in particular, is a constantly
evolving phenomenon. It evolves through four Ps when applied to sensory input or data
assets: Perceive, Process, Persist, and Perform. In order to develop artificial intelligence,
we need to also model our machines with the same cyclical approach:

Perform Perceive

Persist Process

Types of intelligence

Here are some of the broad categories of human intelligence:

e Linguistic intelligence: Ability to associate words to objects and use language
(vocabulary and grammar) to express meaning

* Logical intelligence: Ability to calculate, quantify, and perform mathematical
operations and use basic and complex logic for inference

* Interpersonal and emotional intelligence: Ability to interact with other human
beings and understand feelings and emotions

[16]

Big Data and Artificial Intelligence Systems Chapter 1

Intelligence tasks classification

This is how we classify intelligence tasks:

¢ Basic tasks:
e Perception
¢ Common sense
e Reasoning
» Natural language processing
¢ Intermediate tasks:
¢ Mathematics
e Games
» Expert tasks:
e Financial analysis
e Engineering
» Scientific analysis
» Medical analysis

The fundamental difference between human intelligence and machine intelligence is the
handling of basic and expert tasks. For human intelligence, basic tasks are easy to master
and they are hardwired at birth. However, for machine intelligence, perception,
reasoning, and natural language processing are some of the most computationally
challenging and complex tasks.

Big data frameworks

In order to derive value from data that is high in volume, varies in its form and structure,
and is generated with ever increasing velocity, there are two primary categories of
framework that have emerged over a period of time. These are based on the
consideration of the differential time at which the event occurs (data origin) and the time
at which the data is available for analysis and action.

[17]

Big Data and Artificial Intelligence Systems Chapter 1

Batch processing

Traditionally, the data processing pipeline within data warehousing systems consisted of
Extracting, Transforming, and Loading the data for analysis and actions (ETL). With the
new paradigm of file-based distributed computing, there has been a shift in the ETL
process sequence. Now the data is Extracted, Loaded, and Transformed repetitively for
analysis (ELTTT) a number of times:

(((

< >3
¢ ¢ -
D‘ ‘@ = Transform

\'/ -) \ i'/
o o - - u .
N / AN
Traditional Data Warehousing Modern Data Warehousing

In batch processing, the data is collected from various sources in the staging areas and
loaded and transformed with defined frequencies and schedules. In most use cases with
batch processing, there is no critical need to process the data in real time or in near real
time. As an example, the monthly report on a student's attendance data will be generated
by a process (batch) at the end of a calendar month. This process will extract the data from
source systems, load it, and transform it for various views and reports. One of the most
popular batch processing frameworks is Apache Hadoop. It is a highly scalable,
distributed/parallel processing framework. The primary building block of Hadoop is the
Hadoop Distributed File System.

As the name suggests, this is a wrapper filesystem which stores the data
(structured/unstructured/semi-structured) in a distributed manner on data nodes within
Hadoop. The processing that is applied on the data (instead of the data that is processed) is
sent to the data on various nodes. Once the compute is performed by an individual node,
the results are consolidated by the master process. In this paradigm of data-compute
localization, Hadoop relies heavily on intermediate I/O operations on hard drive disks. As
a result, extremely large volumes of data can be processed by Hadoop in a reliable manner
at the cost of processing time. This framework is very suitable for extracting value from Big
Data in batch mode.

[18]

Big Data and Artificial Intelligence Systems Chapter 1

Real-time processing

While batch processing frameworks are good for most data warehousing use cases, there is
a critical need for processing the data and generating actionable insight as soon as the data
is available. For example, in a credit card fraud detection system, the alert should be
generated as soon as the first instance of logged malicious activity. There is no value if the
actionable insight (denying the transaction) is available as a result of the end-of-month
batch process. The idea of a real-time processing framework is to reduce latency between
event time and processing time. In an ideal system, the expectation would be zero
differential between the event time and the processing time. However, the time difference is
a function of the data source input, execution engine, network bandwidth, and hardware.
Real-time processing frameworks achieve low latency with minimal I/O by relying on in-
memory computing in a distributed manner. Some of the most popular real-time processing
frameworks are:

» Apache Spark: This is a distributed execution engine that relies on in-memory
processing based on fault tolerant data abstractions named RDDs (Resilient
Distributed Datasets).

» Apache Storm: This is a framework for distributed real-time computation. Storm
applications are designed to easily process unbounded streams, which generate
event data at a very high velocity.

» Apache Flink: This is a framework for efficient, distributed, high volume data
processing. The key feature of Flink is automatic program optimization. Flink
provides native support for massively iterative, compute intensive algorithms.

As the ecosystem is evolving, there are many more frameworks available for batch and real-
time processing. Going back to the machine intelligence evolution cycle (Perceive, Process,
Persist, Perform), we are going to leverage these frameworks to create programs that work
on Big Data, take an algorithmic approach to filter relevant data, generate models based on
the patterns within the data, and derive actionable insight and predictions that ultimately
lead to value from the data assets.

[19]

Big Data and Artificial Intelligence Systems Chapter 1

Intelligent applications with Big Data

At this juncture of technological evolution, where we have the availability of systems that
gather large volumes of data from heterogeneous sources, along with systems that store these
large volumes of data at ever reducing costs, we can derive value in the form of insight into the
data and build intelligent machines that can trigger actions resulting in the betterment of
human life. We need to use an algorithmic approach with the massive data and compute assets
we have at our disposal. Leveraging a combination of human intelligence, large volumes of
data, and distributed computing power, we can create expert systems which can be used as an
advantage to lead the human race to a better future.

Areas of Al

While we are in the infancy of developments in Al, here are some of the basic areas in
which significant research and breakthroughs are happening:

» Natural language processing: Facilitates interactions between computers and
human languages.

e Fuzzy logic systems: These are based on the degrees of truth instead of
programming for all situations with IF/ELSE logic. These systems can control
machines and consumer products based on acceptable reasoning.

e Intelligent robotics: These are mechanical devices that can perform mundane or
hazardous repetitive tasks.

» Expert systems: These are systems or applications that solve complex problems
in a specific domain. They are capable of advising, diagnosing, and predicting
results based on the knowledge base and models.

Frequently asked questions

Here is a small recap of what we covered in the chapter:

Q: What is a results pyramid?

A: The results we get (man or machine) are an outcome of our experiences (data),
beliefs (models), and actions. If we need to change the results, we need different (better)
sets of data, models, and actions.

[20]

Big Data and Artificial Intelligence Systems Chapter 1

Q: How is this paradigm applicable to Al and Big Data?

A: In order to improve our lives, we need intelligent systems. With the advent of Big
Data, there has been a boost to the theory of machine learning and Al due to the
availability of huge volumes of data and increasing processing power. We are on the
verge of getting better results for humanity as a result of the convergence of machine
intelligence and Big Data.

Q: What are the basic categories of Big Data frameworks?

A: Based on the differentials between the event time and processing time, there are two
types of framework: batch processing and real-time processing.

Q: What is the goal of AI?
A: The fundamental goal of Al is to augment and complement human life.
Q: What is the difference between machine learning and AI?

A: Machine learning is a core concept which is integral to Al. In machine learning, the
conceptual models are trained based on data and the models can predict outcomes for the
new datasets. Al systems try to emulate human cognitive abilities and are context
sensitive. Depending on the context, Al systems can change their behaviors and outcomes
to best suit the decisions and actions the human brain would take.

Have alook at the following diagram for a better understanding;:

Artificial
Intelligence

/ Deep

Learning

Machine

Learning

[21]

Big Data and Artificial Intelligence Systems Chapter 1

Summary

In this chapter, we understood the concept of the results pyramid, which is a model for the
continuous improvement of human life and striving to get better results with an improved
understanding of the world based on data (experiences), which shape our models (beliefs).
With the convergence of the evolving human brain and computers, we know that the best of
both worlds can really improve our lives. We have seen how computers have evolved from
dumb to intelligent machines and we provided a high-level overview of intelligence and
Big Data, along with types of processing frameworks.

With this introduction and context, in subsequent chapters in this book, we are going to
take a deep dive into the core concepts of taking an algorithmic approach to data and the
basics of machine learning with illustrative algorithms. We will implement these algorithms
with available frameworks and illustrate this with code samples.

[22]

Ontology for Big Data

In the introductory chapter, we learned that big data has fueled rapid advances in the field
of artificial intelligence. This is primarily because of the availability of extremely large
datasets from heterogeneous sources and exponential growth in processing power due to
distributed computing. It is extremely difficult to derive value from large data volumes if
there is no standardization or a common language for interpreting data into information
and converting information into knowledge. For example, two people who speak two
different languages, and do not understand each other's languages, cannot get into a verbal
conversation unless there is some translation mechanism in between. Translations and
interpretations are possible only when there is a semantic meaning associated with a
keyword and when grammatical rules are applied as conjunctions. As an example, here is a
sentence in the English and Spanish languages:

English John eats three bananas every day

Spanish John come tres platanos todos los dias

Broadly, we can break a sentence down in the form of objects, subjects, verbs, and
attributes. In this case, John and bananas are subjects. They are connected by an activity,
in this case eating, and there are also attributes and contextual data—information in
conjunction with the subjects and activities. Knowledge translators can be implemented in
two ways:

¢ All-inclusive mapping: Maintaining a mapping between all sentences in one
language and translations in the other language. As you can imagine, this is
impossible to achieve since there are countless ways something (object,
event, attributes, context) can be expressed in a language.

» Semantic view of the world: If we associate semantic meaning with every entity
that we encounter in linguistic expression, a standardized semantic view of the
world can act as a centralized dictionary for all the languages.

Ontology for Big Data Chapter 2

A semantic and standardized view of the world is essential if we want to implement
artificial intelligence which fundamentally derives knowledge from data and utilizes the
contextual knowledge for insight and meaningful actions in order to augment human
capabilities. This semantic view of the world is expressed as Ontologies. In the context
of this book, Ontology is defined as: a set of concepts and categories in a subject area or
domain, showing their properties and the relationships between them.

In this chapter, we are going to look at the following;:

* How the human brain links objects in its interpretation of the world

» The role Ontology plays in the world of Big Data

» Goals and challenges with Ontology in Big Data

® The Resource Description Framework

» The Web Ontology Language

* SPARQL, the semantic query language for the RDF

¢ Building Ontologies and using Ontologies to build intelligent machines
¢ Ontology learning

Human brain and Ontology

While there are advances in our understanding of how the human brain functions, the
storage and processing mechanism of the brain is far from fully understood. We receive
hundreds and thousands of sensory inputs throughout a day, and if we process and store
every bit of this information, the human brain will be overwhelmed and will be unable to
understand the context and respond in a meaningful way. The human brain applies filters
to the sensory input it receives continuously. It is understood that there are three
compartments to human memory:

» Sensory memory: This is the first-level memory, and the majority of the
information is flushed within milliseconds. Consider, for example, when we
are driving a car. We encounter thousands of objects and sounds on the way,
and most of this input is utilized for the function of driving. Beyond the frame
of reference in time, most of the input is forgotten and never stored in memory.

[24]

Ontology for Big Data Chapter 2

¢ Short-term memory: This is used for the information that is essential for serving a
temporary purpose. Consider, for example, that you receive a call from your co-
worker to remind you about an urgent meeting in room number D-1482. When
you start walking from your desk to the room, the number is significant and the
human brain keeps the information in short-term memory. This information may
or may not be stored beyond the context time. These memories can potentially
convert to long-term memory if encountered within an extreme situation.

» Long-term memory: This is the memory that will last for days or a lifetime. For
example, we remember our name, date of birth, relatives, home location, and so
many other things. The long-term memory functions on the basis of patterns and
links between objects. The non-survival skills we learn and master over a period
of time, for example playing a musical instrument, require the storage of
connecting patterns and the coordination of reflexes within long-term memory.

Irrespective of the memory compartment, the information is stored in the form of patterns
and links within the human brain. In a memory game that requires players to momentarily
look at a group of 50-odd objects for a minute and write down the names on paper, the
player who writes the most object names wins the game. One of the tricks of playing this
game is to establish links between two objects and form a storyline. The players who try to
independently memorize the objects cannot win against the players who create a linked
list in their mind.

When the brain receives input from sensory organs and the information needs to be stored
in the long-term memory, it is stored in the form of patterns and links to related objects or
entities, resulting in mind maps. This is shown in the following figure:

Experiences

Demographics Friend

)

@ s

Apprarance

[25]

Ontology for Big Data Chapter 2

When we see a person with our eyes, the brain creates a map for the image and retrieves all
the context-based information related to the person.

This forms the basis of the Ontology of information science.

Ontology of information science

Formally, the Ontology of information sciences is defined as: A formal naming and
definition of types, properties, and interrelationships of the entities that fundamentally exist for a
particular domain.

There is a fundamental difference between people and computers when it comes to dealing
with information. For computers, information is available in the form of strings whereas
for humans, the information is available in the form of things. Let's understand the
difference between strings and things. When we add metadata to a string, it becomes a
thing. Metadata is data about data (the string in this case) or contextual information about
data. The idea is to convert the data into knowledge. The following illustration gives us a
good idea about how to convert data into knowledge:

Information Knowledge

New York, NY, USA

Monday 8:00 PM

66 T 686"

[26]

Ontology for Big Data Chapter 2

The text or the number 66 is Data; in itself, 66 does not convey any meaning. When we
say 66° F, 66 becomes a measure of temperature and at this point it represents some
Information. When we say 66° F in New York on 3rd October 2017 at 8:00 PM, it becomes
Knowledge. When contextual information is added to Data and Information, it becomes
Knowledge.

In the quest to derive knowledge from data and information, Ontologies play a major role
in standardizing the worldview by precisely defined terms that can be communicated
between people and software applications. They create a shared understanding of objects
and their relationships within and across domains. Typically, there are schematic,
structural, and semantic differences, and hence conflict arises between knowledge
representations. Well-defined and governed Ontologies bridge the gaps between the
representations.

Ontology properties

At a high level, Ontologies should have the following properties to create a consistent view
of the universe of data, information, and knowledge assets:

* The Ontologies should be complete so that all aspects of the entities are covered.

* The Ontologies should be unambiguous in order to avoid misinterpretation by
people and software applications.

» The Ontologies should be consistent with the domain knowledge to which they
are applicable. For example, Ontologies for medical science should adhere to
the formally established terminologies and relationships in medical science.

» The Ontologies should be generic in order to be reused in different contexts.

* The Ontologies should be extensible in order to add new concepts and facilitate
adherence to the new concepts, that emerge with growing knowledge in the
domain.

* The Ontologies should be machine-readable and interoperable.

[27]

Ontology for Big Data

Chapter 2

Here is an illustration to better explain properties of Ontologies:

VRN
rff \
| Complete)
\ ,
_‘ B d
T — T
/7 ™ N / AN
/ \ . - / \
(: \ 7 ~ ; \
| Extensible |/ N\ \ Unambiguous |
\ /) / _‘ \ ,-"
\\ Py \ N S
—~——" | Ontologies | p—
\ J
‘\ /’"
N
~__ B
b ™~ /- ~
\ /
{) [Domain |
| Generic | [i |
\ /,' \ Specific)
\\\\ /_/’ ANy _‘/’

The most important advantage of Ontological representation for real-world concepts and
entities is that it facilitates the study of concepts independently of programming language,
platforms, and communication protocols. This enables loose coupling, and at the same
time, tight integration between the concepts, which enables the software development
process to reuse the software and knowledge base as modular concepts.

Advantages of Ontologies

The following are the advantages of Ontologies:

* Increased quality of entity analysis

* Increased use, reuse, and maintainability of the information systems

» Facilitation of domain knowledge sharing, with common vocabulary across
independent software applications

Those who are familiar with the object-oriented programming paradigm or database design
can easily relate the Ontological representation of the domain entities to classes or database
schemas. The classes are generic representations of the entities that encapsulate properties
and behaviors. One class can inherit behavior and properties from another class (is-a
relationship). For example, a cat is an animal.

[28]

Ontology for Big Data Chapter 2

In this case, Animal is an abstract superclass of Cat. The Cat class inherits properties from
the Animal class and adds/overrides some of the attributes and behaviors specific to a cat.
This paradigm is applicable in Ontologies. Similarly, relational databases have schematic
representations of the domain entities within an organization.

There are some fundamental differences between databases and Ontologies, as follows:

* Ontologies are semantically richer than the concepts represented by databases

¢ Information representation in an Ontology is based on semi-structured, natural
language text and it is not represented in a tabular format

* The basic premise of Ontological representation is globally consistent
terminology to be used for information exchange across domains
and organizational boundaries

* More than defining a confined data container, Ontologies focus on generic
domain knowledge representation

Components of Ontologies

The following are the components of Ontologies:

* Concepts: These are the general things or entities similar to classes in object-
oriented programming, for example, a person, an employee, and so on.

» Slots: These are the properties or attributes of the entities, for example, gender,
date of birth, location, and so on.

» Relationships: These represent interactions between concepts, or is-a, has-a
relationships, for example, an employee is a person.

» Axioms: These are statements which are always true in regards to concepts, slots
and relationships, for example, a person is an employee if he is employed by an
employer.

» Instances: These are the objects of a class in object-oriented terms. For example,
John is an instance of the Employee class. It is a specific representation of a
concept. Ontology, along with instances, fully represents knowledge.

* Operations: These are the functions and rules that govern the various
components of the Ontologies. In an object-oriented context, these
represent methods of a class.

[29]

Ontology for Big Data Chapter 2

The following diagram explains the components of Ontologies:

Wren |
FirstName
LastName
Slots
Concepts
.
M o Employee John (Employee)
i EmployeelD . 00 w

JoiningDate John
ProjectlD WorkLocation Smith
P Nar 01-01-2017
rojectName ¢ _

4 NY
r v
L 4
Works On-
e Instance
i Relationships
Axioms P
Operation

The development of Ontologies begins with defining classes in the Ontology. These
classes represent real-world entities. Once the entities are clearly identified and defined,
they are arranged in a taxonomic hierarchy. Once the hierarchy is defined, the Slots and
Relationships are defined. Filling in the values for slots and instances completes the
development of a domain-specific Ontology.

The role Ontology plays in Big Data

As we saw in the introductory chapter, data volumes are growing at a phenomenal rate
and in order to derive value from the data, it is impossible to model the entire data in a
traditional Extract, Transform, and Load (ETL) way. Traditionally, data sources generate
the datasets in structured and unstructured formats. In order to store these data assets, we
need to manually model the data based on various entities. Taking an example of Person as
an entity in the relational database world, we need to create a table that represents Person.
This table is linked to various entities with foreign key relationships. However, these
entities are predefined and have a fixed structure. There is manual effort involved in
modeling the entities and it is difficult to modify them.

In the big data world, the schema is defined at read time instead of write time. This gives us
a higher degree of flexibility with the entity structure and data modeling. Even with
flexibility and extensible modeling capabilities, it is very difficult to manage the data assets
on an internet scale if the entities are not standardized across domains.

[30]

Ontology for Big Data Chapter 2

In order to facilitate web search, Google introduced the knowledge graph which changed the
search from keyword statistics based on representation to knowledge modeling.

This was the introduction of the searching by things and not strings paradigm. The
knowledge graph is a very large Ontology which formally describes objects in the real
world. With increased data assets generated from heterogeneous sources at an accelerating
pace, we are constantly headed towards increased complexity. The big data paradigm
describes large and complex datasets that are not manageable with traditional applications.
At a minimum, we need a way to avoid false interpretations of complex data entities. The
data integration and processing frameworks can possibly be improved with methods from
the field of semantic technology. With use of things instead of text, we can improve
information systems and their interoperability by identifying the context in which they
exist. Ontologies provide the semantic richness of domain-specific knowledge and its
representation.

With big data assets, it is imperative that we reduce the manual effort of modeling the data
into information and knowledge. This is possible if we can create a means to find the
correspondence between raw entities, derive the generic schema with taxonomical
representation, and map the concepts to topics in specific knowledge domains with
terminological similarities and structural mappings. This implementation will facilitate
automatic support for the management of big data assets and the integration of different
data sources, resulting in fewer errors and speed of knowledge derivation.

We need an automated progression from Glossary to Ontologies in the following manner:

Alphabetical list

of words
relating to
specific subject,
text with
explanations

2 <A
& A -

Big Data Sources

A scheme of
classification

]

Lists of words in
groups of
synonyms and
related
concepts

e ——

Topic Maps

representation
and interchange
of ‘knowledge’

Standard for

A set of
concepts and
categories in a
subject area or
domain that
shows their
properties and
the
relationships

[31]

Ontology for Big Data Chapter 2

Ontology alignment

Ontology alignment or matching is a process of determining one-to-one mapping between
entities from heterogeneous sources. Using this mapping, we can infer the entity types and
derive meaning from the raw data sources in a consistent and semantic manner:

/" Source System Ontology \ { Big Data System Ontology

rdfs:subClassOf

rdf:type

rdf:type

&

Goals of Ontology in big data

The following are the goals of Ontology in big data:

» Share a common understanding of information structures across software
applications

¢ Make ETL faster, easier, and more accurate

* Eliminate the need for customized, situation-specific ETL pipelines

* The automatic incorporation of new data sources

» Enhance information extraction from text and convert it into knowledge assets

* Enrich existing data with structural and semantic information

» Translate business knowledge into machine-usable software

e Build once, use many times

[32]

Ontology for Big Data Chapter 2

Challenges with Ontology in Big Data

We face the following challenges when using Ontology in big data:

» Generating entities (converting strings to things)
* Managing relationships

» Handling context

* Query efficiency

e Data quality

RDF—the universal data format

With the background of Ontologies and their significance in the big data world, let us look
at a universal data format that defines the schematic representations of the Ontologies. One
of the most adopted and popular frameworks is the Resource Description Framework
(RDF). RDF has been a W3C recommendation since 2004. RDF provides a structure for
describing identified things, entities, or concepts designed to be read and interpreted by
computers. There is a critical need to uniquely identify an entity or concept universally. One
of the most popular ways in the information science field is the use of Universal Resource
Identifiers (URIs). We are familiar with website addresses, which are represented

as Universal Resource Locators (URLs). These map to a unique IP address and hence a web
domain on the internet. A URI is very similar to a URL, with the difference that the URIs
may or may not represent an actual web domain. Given this distinction, the URIs that
represent the real-world objects must be unambiguous. Any URI should be exclusive to
either a web resource or a real-world object and should never be used to represent both at
the same time, in order to avoid confusion and ambiguity:

URI
o
&
9
&/ Iz‘%
/X 2.
/8 4%
RE %,
&/ % %
£/ AN
&/ 8 Content Types %,
£/ & 2
/&
RDF URI HTML
URL

[33]

Ontology for Big Data Chapter 2

Here is a basic example that describes the https://www.w3schools.com/rdf resource:

<?xml version="1.0"?2>
<RDF>
<Description about="https://www.w3schools.com/rdf">
<homepage>https: //www.w3schools. com</homepage>
</Description>
</RDF>

When defining RDFs, there are the following considerations:

¢ Define a simple data model

* Define formal semantics

» Use extensible URI-based vocabulary
¢ Preferably use an XML-based syntax

The basic building block of the RDF is a triple that consists of a Subject, Predicate, and an
Object. The set of triples constitutes an RDF graph:

Predicate
Subject / Object

John(works as a Project Manager} at [a Logistics CompanyJ

Let us look at an example of a database of books and represent it with RDF XML:

Book Name Author Company Year
Hit Refresh Satya Nadella Microsoft 2017
Shoe Dog Phil Knight Nike 2016

[34]

Ontology for Big Data Chapter 2

<?xml version="1.0"?2>

<rdf:RDF
smlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:book="http://www.artificial-intelligence.big-data/boock#">

<rdf:Description

rdf:about="http://www.artificial-intelligence.big-data/book/Hit-Refresh">
<book:author>Satya Nadella</book:author>
<book:company>Microsoft</book: company>
<book:year>2017</book:year>

</rdf :Description>

<rdf:Description

rdf:about="http://www.artificial-intelligence.big-data/book/Shoe-Dog">
<book:author>Phil Knight</book:author:>
<book:company>Nike</book: company>
<book:year>2016</book:year>

</rdf:Description>

</rdf :RDF>

The first line of the RDF document is the XML declaration. The XML declaration is followed
by the root element of the RDF documents, <rdf : RDF>.

The xmlns: rdf namespace specifies that the elements with the rdf prefix are from
the http://www.w3.0rg/1999/02/22-rdf-syntax-ns# namespace. The XML
namespaces are used to provide uniquely named elements and attributes in an XML
document.

The xmlns:book namespace specifies that the elements with the book prefix are from the -
http://www.artificial-intelligence.big-data/book# namespace.

The <rdf:Description> element contains the description of the resource identified by
the rdf : about attribute.

The elements <book:author>, <book:company>, <book:year>, and so on are
properties of the resource.

[35]

Ontology for Big Data Chapter 2

W3C provides an online validator service (https://www.w3.org/RDF/Validator/),
which validates the RDF in terms of its syntax and generates tabular and graphical views
of the RDF document:

€ > C @ Secure | hittps//wwww3.org/RDF/Validator/rdfval#messages @ ¥ (# | []

Validation Results

Your RDF document validated successfully.

Triples of the Data Model

[Number[Subject [Predicate object

1 http://www.artificial-intelligence.big- http://www.artificial-intelligence.big- "Satya
data/book/Hit-Refresh data/bookfauthor Nadella"

o http://www.artificigl-intelligence.big- http://www.artificial-intelligence.big- "Microsoft"
data/book/Hit-Refresh bookf#compan

3 http://waw.artificial-intelligence.big- http: w.artificial-intelligence.big- w3017m
data/book/Hit-Refresh data/bookf#vear

4 http://wew. artificial-intelligence. big- http://www. artificial-intelligence.big= ("Phil
data k/Shoe-Dog [Knight"

5 http://www.artificial-intellidence.big- http://www.artificial-intellidence.big- " ke
data/book/Shoe-Dog data/book#compan

6 http www.artificial-intelligence.big- v.artificial-intelligence.big- "2016"

Shoe-Dog

RDF containers

RDF containers are used to describe groups of things. Here is an example:

<rdf:Description
rdf:about="http://www.artificial-intelligence.big-data/book/Hit-Refresh">
<book:author>Satya Nadella</book:author>
<book:company>Microsoft</book:company>
<book:year>2017</book:year>
<book:chapters>
<rdf:Bag>
<rdf:1i>1. From Hyderabad to Redmond</rdf:1i>
<rdf:1i>2. Learning to Lead</rdf:1i>
<rdf:1i>3. New Mission, New Momentum</rdf:1i>

</rdf:Bag>
</book:chapters>
</rdf:Description>

The <rdf :Bag> element is used to describe a list of values that do not have to be in
a specific order.

[36]

https://www.w3.org/RDF/Validator/

Ontology for Big Data

Chapter 2

<rdf:Seqg> issimilar to <rdf:Bag>. However, the elements represent an ordered list.

<rdf:Alt> is used to represent a list of alternate values for the element.

RDF classes

The RDF classes are listed in the following images:

Element Class of Subdass of
rdfs:Class All classes

rdfs:Datatype Data types Class
rdfs:Resource All resources Class
rdfs:Container Containers Resource
rdfs:Literal Literal values (text and numbers) |Resource
rdf:List Lists Resource
rdf:Property Properties Resource
rdf:Statement Statements Resource
rdf: Alt Containers of alternatives Container
rdf:Bag Unordered containers Container
rdf:Seq Ordered containers Container
rdfs:ContainerMembershipProperty |[Container membership properties |Property
rdf: XMLLiteral XML literal values Literal

RDF properties

The RDF properties are listed as follows:

Element

Domain

Range

Description

rdfs:domain Property |[Class The domain of the resource

rdfs:range Property |[Class The range of the resource

rdfs:subPropertyOf |Property |Property |The property is a sub property of a property
rdfs:subClassOf Class Class The resource is a subclass of a class
rdfs:comment Resource |Literal The human readable description of the resource
rdfs:label Resource |Literal The human readable label (name) of the resource
rdfs:isDefinedBy Resource |Resource |The definition of the resource

rdfs:seeAlso Resource [Resource |The additional information about the resource
rdfs:member Resource |Resource |[The member of the resource

rdf:first List Resource

rdf:rest List List

rdf:subject Statement |Resource | The subject of the resource in an RDF Statement
rdf:predicate Statement |Resource | The predicate of the resource in an RDF Statement
rdf:object Statement |Resource | The object of the resource in an RDF Statement
rdf:value Resource |Resource |The property used for values

rdf:type Resource |Class The resource is an instance of a class

[37]

Ontology for Big Data Chapter 2

RDF attributes

The various RDF attributes are listed as follows:

| Attribute Description |

rdf:about Defines the resource being described
rdf:Description Container for the description of a resource
rdf:resource Defines a resource to identify a property
rdf:datatype Defines the data type of an element
rdf:1ID Defines the ID of an element

rdf:h Defines a list

rdf:_n Defines a node

rdf:nodelID Defines the ID of an element node
rdf:parseType Defines how an element should be parsed
rdf:RDF The root of an RDF document

xml:base Defines the XML base

xml:lang Defines the language of the element content

Using OWL, the Web Ontology Language

While the RDF and corresponding schema definitions (RDFS) provide a structure for the
semantic view of the information assets, there are some limitations with RDFS. RDFES cannot
describe the entities in sufficient detail. There is no way to define localized ranges for the
entity attributes, and the domain-specific constraints cannot be explicitly expressed. The
existence or non-existence of a related entity, along with cardinality constraints (one-to-one,
one-to-many, and so on), cannot be represented with RDFS. It is difficult to represent
transitive, inverse, and symmetrical relationships. One of the important aspects of real-
world entity relationships is logical reasoning and inferences, without explicit mention of
the relationship. RDFS cannot provide reasoning support for the related entities.

The Web Ontology Language (OWL) extends and builds on top of RDF/RDFS. OWL is a
family of knowledge representation languages for authoring Ontologies.

Actually, OWL is not a real acronym. The language started out as WOL.
However, the working group disliked the acronym WOL. Based on
conversations within the working group, OWL had just one obvious
pronunciation that was easy on the ear, and it opened up great
opportunities for a logo—owls are associated with wisdom!

[38]

Ontology for Big Data Chapter 2

For building intelligent systems that can communicate across domains, there is a need to
overcome the limitations of RDFS and equip the machines with access to structured
collections of knowledge assets and sets of inference rules that can be used for automated
reasoning. OWL provides formal semantics for knowledge representation and attempts
to describe the meaning of the entities and their relationships and reasoning precisely.

There are three species of OWL:

* OWL DL: This is used for supporting description logic. This supports maximum
expressiveness and logical reasoning capabilities. This is characterized by:
» Well-defined semantics
» Well-understood formal properties for the entities
* The ease of implementation of known reasoning algorithms

* OWL Full: This is based on RDFS-compatible semantics. It complements the
predefined RDF and OWL vocabulary. However, with OWL Full, the
software cannot completely reason and inference.

* OWL Lite: This is used for expressing taxonomy and simple constraints such as
zero-to-one cardinality.

OWL represents entities as classes. For example, let's define an entity of PlayGround with
OWL:

<owl:Class rdf:ID="PlayGround">
Now, define FootballGround and state that FootballGroundis a type of PlayGround:

<owl:Class rdf:ID="FootballGround">
<rdf:subClassOf rdf:resource="#PlayGround"/>

</owl:Class>

[39]

Ontology for Big Data Chapter 2

OWL provides several other mechanisms for defining classes:

* equivalentClass: Represents that the two classes (across Ontologies
and domains) are synonymous.

* disjointWith: Represents that an instance of a class cannot be an instance
of another class. For example, FootballGround and HockyGround are
stated as disjointed classes.

* Boolean combinations:

» unionOf: Represents that a class contains things that are
from more than one class

e intersectionOf: Represents that a class contains things
that are in both one and the other

e complementOf: Represents that a class contains things that are
not other things

SPARQL gquery language

With a generic understanding of Ontologies, the RDF, and OWL, we are able to
fundamentally understand how intelligent systems can communicate with each other
seamlessly with a semantic view of the world. With a semantic worldview, the entities come
to life by translating data assets into information and information assets into knowledge. It
is imperative that there is a common language to leverage a semantic worldview so that
heterogeneous systems can communicate with each other. SPARQL is a W3C standard that
is attempting to be the global query language with the primary goal of interoperability.
SPARQL is a recurring acronym and stands for SPARQL Protocol and RDF Query
Language. As the name indicates, it is a query language for querying knowledge (as triples)
stored in RDF format. Traditionally, we stored the information in relational databases in
tabular format. The relational database view of the entities can easily be represented as
triples. For example, let us once again consider the BOOK table:

Book ID Title Author Company Year
1 Hit Refresh Satya Nadella Microsoft 2017
2 Shoe Dog Phil Knight Nike 2016

[40]

Ontology for Big Data Chapter 2

Here, the row identifier (Book IDand Title) is the subject, the column name is
the predicate, and the column value is the object. For example:

A Triple:
{1: Hit Refresh} {Author} {Satya Nadella}
Subject (Entity Name) Predicate (Attribute Name) Object (Attribute Value)

The subjects and predicates are represented using URIs which universally identify
specific subjects and predicates as resources:

http://www.artificial-intelligence.big-data/book# http://www.artificial-
intelligence.big-data/book#author "Satya Nadella"

Turtle syntax allows an RDF graph to be completely written in a compact
and natural text form. It provides abbreviations for common usage
patterns and datatypes. This format is compatible with the triple pattern
syntax of SPARQL.

Let us use the turtle syntax to represent the book table in RDF format:

@prefix book: <http://www.artificial-intelligence.big-data/book#>

book:1 book:Title "Hit Refresh"
book:1 book:Author "Satya Nadella"
book:1 book:Company "Microsoft"
book:1 book:Year "2017"

book:2 book:Title "Shoe Dog"
book:2 book:Author "Phil Knight"
book:2 book:Company "Nike"

book:2 book:Year "2016"

Let us use a simple SPARQL query for getting a list of books published in the year 2017:

PREFIX book: <http://www.artificial-intelligence.big-data/book#>

SELECT ?books
WHERE
{
?books book:year "2017"
}

[41]

Ontology for Big Data Chapter 2

We have the following result:

?books
book:1

Here is another SELECT query, which fetches more data elements from the dataset:

PREFIX book: <http://www.artificial-intelligence.big-data/book#>

SELECT ?books ?bookName ?company
WHERE

{
?books book:year "2017" .
?books book:title ?bookName .
?books book:company ?company .

}

The result is as follows:

?books ?bookName ?company
book:1 Hit Refresh Microsoft

While we are discussing role of Ontologies in the context of Artificial Intelligence for Big Data,
a complete reference to OWL and SPARQL is outside of the scope of this book. In the
following subsections, we will introduce a generic SPARQL language reference, which will
help us leverage Ontologies to build artificial intelligence.

Generic structure of an SPARQL query

The generic structure of SPARQL is as follows:

* PREFIX: Similar to the declaration of namespaces in the context of XML, and
package in the context of Java, or any similar programming languages, PREFIX is
the SPARQL equivalent, which ensures uniqueness among entity representations
and eliminates the need for typing long URI patterns within SPARQL code.

* SELECT / ASK / DESCRIBE / CONSTRUCT:

e SELECT: This is an equivalent of SQL's SELECT clause. It
defines the attributes that are required to be fetched from the
RDF triples that fulfill the selection criteria.

e ASK: This returns a Boolean value of true or false depending on
the availability of the RDF triples, and based on the selection
criteria within the RDF knowledge base.

[42]

Ontology for Big Data Chapter 2

¢ DESCRIBE: This query construct returns a graph containing all
the available triples from the RDF knowledge base which match
the selection criteria.

* CONSTRUCT: This is very handy when creating a new RDF
graph from an existing RDF based on selection criteria and
filter conditions. This is the equivalent of XSLT in the context of
XML. XSLT transforms XML in the intended format.

» FROM: Defines the data source of the RDF endpoint, against which the query
will be run. This is the SQL equivalent of the FROM <TABLE NAME> clause. The
endpoint can be a resource on the internet or a local data store accessible to the
query engine.

e WHERE: Defines the part of the RDF graph we are interested in. This is the
equivalent of the WHERE SQL clause which defines filter conditions to fetch
specific data from the entire dataset.

Additional SPARQL features

The additional SPARQL features are as follows:

e Optional matching: Unlike traditional relational data stores, where the
database schemas and constraints are predefined for the structured
representation of data, in the big data word we deal with unstructured datasets.
The attributes of the two resources of the same type may be different. Optional
matching comes in handy when handling heterogeneous representations of the
entities. The OPTIONAL block is used to select the data elements if they exist.

* Alternative matching: Once again, considering the unstructured nature
of knowledge assets, alternating matching provides a mechanism to return
whichever properties are available.

» UNION: This is in contrast to the OPTIONAL pattern. In the case of UNION, at
least one of the datasets must find a match given the query criteria.

* DISTINCT: This is the equivalent of the DISTINCT SQL clause, which
excludes multiple occurrences of the same triple within the result.

[43]

Ontology for Big Data Chapter 2

* ORDER BY: Instructs the query to sequence results by a specific variable either
in ascending or descending order. This is also equivalent to ORDER BY clause
in SQL.

e FILTERS and regular expressions: SPARQL provides features to restrict the
result set triples by using expressions. Along with mathematical and logical
expressions, SPARQL allows for the use of regular expressions to apply filters on
datasets based on textual patterns.

» GROUP BY: This allows the grouping of the resulting RDF triples based on one
or more variables.

» HAVING: This facilitates a selection of the query results at the group level.

e SUM, COUNT, AVG, MIN, MAX, and so on are the functions available to be
applied at the group level.

Building intelligent machines with Ontologies

In this chapter, we have looked at the role of Ontology in the management of big data assets
as knowledge repositories, and understood the need for computational systems to perceive
the data as things instead of strings. Although some of the big systems and web search
engines use a semantic world view, the adoption of Ontology as a basis for systems is slow.
The custodians of data assets (governments and everyone else) need to model knowledge
assets in a consistent and standardized manner in order for us to evolve current
computational systems into intelligent systems.

Let us consider a use case that leverages Ontology-based knowledge graphs in order to
simplify the flight boarding process. We have all experienced a hugely manual and time-
consuming process when boarding a flight. From the time we enter the airport to the time
we board the flight, we go through a number of security checks and experience document
verification. In a connected world where all the knowledge assets are standardized and
defined as domain-specific Ontologies, it is possible to develop intelligent agents to make
the flight boarding process hassle free and seamless.

[44]

Ontology for Big Data Chapter 2

Let us define the generic characteristics of an intelligent agent:

l
=T |

A little expansion on the characteristics is as follows:

* Goals: Every intelligent system should have a well defined set of goals. These
goals govern the rational decisions taken by the intelligent system and drive
actions and hence results. For example, in the case of an intelligent agent that is
responsible for the flight boarding process, one of the goals is to restrict access to
anyone who does not pass all security checks, even if the person has a valid air
ticket. In defining the goals for intelligent agents, one of the prime considerations
should be that the Al agent or systems should complement and augment human
capabilities.

» Environment: The intelligent agent should operate within the context of the
environment. Its decisions and actions cannot be independent of the context. In
our example use case, the environment is the airport, the passenger gates, flight
schedules, and so on. The agents perceive the environment with various
sensors, for example video cameras.

» Data Assets: The intelligent agent needs access to historical data in terms of the
domain and the context in which it operates. The data assets can be available
locally and globally (internet endpoints). These data assets ideally should be
defined as RDF schema structures with standardized representations and
protocols. These data assets should be queryable with standard languages and
protocols (SPARQL) in order to ensure maximum interoperability.

[45]

Ontology for Big Data Chapter 2

* Model: This is where the real intelligence of the agent is available as algorithms
and learning systems. These models evolve continuously based on the context,
historical decisions, actions, and results. As a general rule, the model should
perform better (more accurately) over a period of time for similar contextual
inputs.

» Effectors: These are the tangible aspects of the agent which facilitate actions. In
the example of an airline passenger boarding agent, the effector can be an
automated gate opening system which opens a gate once all the passengers are
fully validated (having a valid ticket, identity, and no security check failures).
The external world perceives the intelligent agent through effectors.

¢ Actions and Results: Based on the environmental context, the data assets, and the
trained models, the intelligent agent makes decisions that trigger actions through
the effectors. These actions provide results based on the rationality of the decision
and accuracy of the trained model. The results are once again fed into model
training in order to improve accuracy over a period of time.

At a high level, the method of the intelligent agent, which facilitates the flight
boarding process, can be depicted as follows:

1. When a passenger walks into the airport, a video camera reads the image and
matches it to the data assets available to the agent. These data assets are
Ontology objects which are loosely coupled and have flexibility of structure and
attributes. Some of the inferences are made at the first level of matching to
correctly identify the person who has entered the airport.

2. If the person cannot be identified with the video stream, the first airport gate does
not open automatically and requires a fingerprint scan from the passenger. The
fingerprint scan is validated against the dataset, which is once again an Ontology
object representation of the person entity. If the person is not identified at this
stage, they are flagged for further manual security procedures.

3. Once the person is correctly identified, the agent scans the global active ticket
directory in order to ensure that the person has a valid ticket for a flight that
departs from the airport in a reasonable time window. The global ticket
directory and the flight database is also available as Ontology objects for the
agent to refer to in real time.

4. Once ticket validity is ensured, a boarding pass is generated and delivered to the
passenger's smartphone, once again by referring to the person Ontology to derive
personal details in a secure manner. The real-time instructions for directions to
the gate are also sent to the device.

[46]

Ontology for Big Data Chapter 2

The agent can seamlessly guide the passenger to the appropriate boarding gate. The
system can be built easily once all the heterogeneous data sources are standardized and
have Ontological representation, which facilitates maximum interoperability and
eliminates a need to code diverse knowledge representations. This results in an overall
reduction of complexity in the agent software and an increase in efficiency.

Ontology learning

With the basic concepts on Ontologies covered in this chapter, along with their significance in
building intelligent systems, it is imperative that for a seamlessly connected world, the
knowledge assets are consistently represented as domain Ontologies. However, the process of
manually creating domain-specific Ontologies requires lots of manual effort, validation, and
approval. Ontology learning is an attempt to automate the process of the generation of
Ontologies, using an algorithmic approach on the natural language text, which is available at
the internet scale. There are various approaches to Ontology learning, as follows:

* Ontology learning from text: In this approach, the textual data is extracted from
various sources in an automated manner, and keywords are extracted and
classified based on their occurrence, word sequencing, and patterns.

* Linked data mining: In this processes, the links are identified in the published
RDF graphs in order to derive Ontologies based on implicit reasoning.

» Concept learning from OWL: In this approach, existing domain-specific
Ontologies are leveraged for expand the new domains using an
algorithmic approach.

» Crowdsourcing: This approach combines automated Ontology extraction and
discovery based on textual analysis and collaboration with domain experts to
define new Ontologies. This approach works great since it combines the
processing power and algorithmic approaches of machines and the domain
expertise of people. This results in improved speed and accuracy.

Here are some of the challenges of Ontology learning:

» Dealing with heterogeneous data sources: The data sources on the internet, and
within application stores, differ in their forms and representations. Ontology
learning faces the challenge of knowledge extraction and consistent meaning
extraction due to the heterogeneous nature of the data sources.

[47]

Ontology for Big Data Chapter 2

» Uncertainty and lack of accuracy: Due the the inconsistent data sources, when
Ontology learning attempts to define Ontology structures, there is a level of
uncertainty in terms of the intent and representation of entities and attributes.
This results in a lower level of accuracy and requires human intervention from
domain experts for realignment.

* Scalability: One of the primary sources for Ontology learning is the internet,
which is an ever growing knowledge repository. The internet is also an
unstructured data source for the most part and this makes it difficult to scale
the Ontology learning process to cover the width of the domain from large text
extracts. One of the ways to address scalability is to leverage new, open source,
distributed computing frameworks (such as Hadoop).

* Need for post-processing: While Ontology learning is intended to be an
automated process, in order to overcome quality issues, we require a level of
post-processing. This process need to be planned and governed in detail in
order to optimize the speed and accuracy of new Ontology definitions.

Ontology learning process

The Ontology learning process consists of six Rs:

Retrieve

Release

Represent

Re-align

[48]

Ontology for Big Data Chapter 2

They are explained as followed:

* Retrieve: The knowledge assets are retrieved from the web and application
sources from the domain specific stores using web crawls and protocol-based
application access. The domain specific terms and axioms are extracted with a
calculation of TF/IDF values and by the application of the C-Value / NC Value
methods. Commonly used clustering techniques are utilized and the
statistical similarity measures are applied on the extracted textual
representations of the knowledge assets.

* Refine: The assets are cleansed and pruned to improve signal to noise ratio. Here,
an algorithmic approach is taken for refinement. In the refinement step, the terms
are grouped corresponding to concepts within the knowledge assets.

* Represent: In this step, the Ontology learning system arranges the concepts in a
hierarchical structure using the unsupervised clustering method (at this point,
understand this as a machine learning approach for the segmentation of the
data; we will cover the details of unsupervised learning algorithms in the next
chapter).

* Re-align: This is a type of post-processing step that involves collaboration with
the domain experts. At this point, the hierarchies are realigned for accuracy. The
Ontologies are aligned with instances of concepts and corresponding attributes
along with cardinality constraints (one-to-one, one-to-many, and so on). The
rules for defining the syntactic structure are defined in this step.

* Reuse: In this step, similar domain-specific Ontologies with connection endpoints
are reused, and synonyms are defined in order to avoid parallel representations
of the same concepts, which are finalized across other Ontology definitions.

» Release: In this step, the Ontologies are released for generic use and further
evolution.

[49]

Ontology for Big Data Chapter 2

Frequently asked questions

Let's have a small recap of the chapter:
Q: What are Ontologies and what is their significance in intelligent systems?

A: Ontology as a generic term means the knowledge of everything that exists in this
universe. As applicable to information systems, Ontologies represent a semantic and
standardized view of the world's knowledge assets. They are domain-specific
representations of knowledge and models related to real world entity representations. The
intelligent systems that link heterogeneous knowledge domains need to have access to
consistent representations of knowledge in order to interoperate and understand contextual
events to make inferences and decisions, which trigger actions and hence results, in order to
complement human capabilities.

Q: What are the generic properties of Ontologies?
A: Ontologies should be complete, unambiguous, domain-specific, generic, and extensible.
Q: What are the various components of Ontologies?

A: Various Ontology components are Concepts, Slots, Relationships, Axioms, Instances,
and Operations.

Q: What is the significance of a universal data format in knowledge management systems?

A: The Resource Description Format (RDF) intends to be the universal format for
knowledge representation, allowing heterogeneous systems to interact and integrate in
a consistent and reliable manner. This forms the basis of the semantic view of the world.

Q: How is it possible to model the worldview with Ontologies? Is it possible to automate
the Ontology definition process considering vast and ever-increasing knowledge stores
in the universe?

A: Knowledge assets are growing exponentially in size with time. In order to create an
Ontological representation of these assets, we need an automated approach, without which
it will be difficult to catch up with the volume. Ontology learning takes an algorithmic
approach by leveraging distributed computing frameworks to create a baseline model of the
worldview. The Ontology learning process retrieves textual, unstructured data from
heterogeneous sources, refines it, and represents it in a hierarchical manner. This is
realigned with post-processing by reusing existing domain-specific knowledge assets, and
finally released for generic consumption by intelligent agents.

[50]

Ontology for Big Data Chapter 2

Summary

In this chapter, we have explored the need for a standardized and consistent
representation of the world's knowledge for the evolution of intelligent systems, and how
these systems are modeled against the human brain. Ontologies, as applied to information
systems, is a W3C standard that defines the generic rules for knowledge representation.

This chapter introduced the basic concepts of the RDF, OWL, and a query language to
extract the knowledge representations within Ontology instances through SPARQL.

In this chapter, we have explored how to use Ontologies to build intelligent agents by
looking at the generic characteristics of the intelligent agents. In the end, we learned how
Ontology learning facilitates the speedy adoption of Ontologies for the worldview, with
consistent knowledge assets and representations.

In the next chapter, we will get introduced to fundamental concepts of Machine Learning
and how Big Data facilitates the learning process.

[51]

Learning from Big Data

In the first two chapters, we set the context for intelligent machines with the big data
revolution and how big data is fueling rapid advances in artificial intelligence. We also
emphasized the need for a global vocabulary for universal knowledge representation. We
have also seen how that need is fulfilled with the use of ontologies and how ontologies
help construct a semantic view of the world.

The quest is for the knowledge, which is derived from information, which is in turn
derived from the vast amounts of data that we are generating. Knowledge facilitates a
rational decision-making process for machines that complements and augments human
capabilities. We have seen how the Resource Description Framework (RDF) provides the
schematic backbone for the knowledge assets along with Web Ontology Language (OWL)
fundamentals and the query language for RDFs (SPARQL).

In this chapter, we are going to look at some of the basic concepts of machine learning and
take a deep dive into some of the algorithms. We will use Spark's machine learning
libraries. Spark is one of the most popular computer frameworks for the implementation of
algorithms and as a generic computation engine on big data. Spark fits into the big data
ecosystem well, with a simple programming interface, and very effectively leverages the
power of distributed and resilient computing frameworks. Although this chapter does not
assume any background with statistics and mathematics, it will greatly help if the reader
has some programming background, in order to understand the code snippets and to try
and experiment with the examples.

In this chapter, we will see broad categories of machine learning in supervised
and unsupervised learning, before taking a deep dive, with examples, into:

» Regression analysis
* Data clustering
* K-means

Learning from Big Data Chapter 3

» Data dimensionality reduction
» Singular value decomposition
» Principal component analysis (PCA)

In the end, we will have an overview of the Spark programming model and Spark's
Machine Learning library (Spark MLIib). With all this background knowledge at
our disposal, we will implement a recommendation system to conclude this chapter.

Supervised and unsupervised
machine learning

Machine learning at a broad level is categorized into two types: supervised and
unsupervised learning. As the name indicates, this categorization is based on the
availability of the historical data or the lack thereof. In simple terms, a supervised machine
learning algorithm depends on the trending data, or version of truth. This version of truth
is used for generalizing the model to make predictions on the new data points.

Let's understand this concept with the following example:

Independent Variable
//, Dependent Variable
~

X y
100 320
125 340
Input Values 150 380 Target Values
175 400
200 410

Figure 3.1 Simple training data: input (independent) and target (dependent) variables

Consider that the value of the y variable is dependent on the value of x. Based on a change
in the value of x, there is a proportionate change in the value of y (think about any examples
where the increase or decrease in the value of one factor proportionally changes the other).

[53]

Learning from Big Data Chapter 3

Based on the data presented in the preceding table, it is clear that the value of y increases
with an increase in the value of x. That means there is a direct relationship between x and
y. In this case, x is called an independent, or input, variable and y is called a dependent, or
target, variable. In this example, what will be the value of y when x is 220? At this point,
let's understand a fundamental difference between traditional computer programming and
machine learning when it comes to predicting the value of the y variable for a specific
value of x=220. The following diagram shows the traditional programming process:

x =220 y=x*255 y =562

Data

Program

Output

Traditional Computer Programming

Figure 3.2 Traditional computer programming process

The traditional computer program has a predefined function that is applied on the input
data to produce the output. In this example, a traditional computer program calculates
the value of the (y) output variable as 562.

[54]

Learning from Big Data

Chapter 3

Have alook at the following diagram:

100

125

150

175

320

340

380

400

Output

Machine Learning

410

y=1(x)

Program

Figure 3.3 Machine learning process

In the case of supervised machine learning, the input and output data (training data) are
used to create the program or the function. This is also termed the predictor function. A
predictor function is used to predict the outcome of the dependent variable. In its simplest
form, the process of defining the predictor function is called model training. Once a
generalized predictor function is defined, we can predict the value of the target variable (y)
corresponding to an input value (x). The goal of supervised machine learning is to develop
a finely-tuned predictor function, h(x), called hypothesis. Hypothesis is a certain function
that we believe (or hope) is similar to the true function, the target function that we want to
model. Let's add some more data points and plot those on a two-dimensional chart, like

the following diagram:

[55]

Learning from Big Data Chapter 3

Training Data

o 50 180
i Prediction Error o 75 200
v : * 100 320
— _.[125 340
Q - ot *
e . 150 380
m 300
& Predicted Value 175 400
= 200 410
L J
[el 210 423
[sTh] 200 . -
o o Predictor Function h(x) 240 470
ok * — - 110 330
> | e Prediction Point 115 340
40 160
35 145
A 80 215
50 100 150 200 250 300 85 235
X (Input Variable) >

Figure 3.4 Supervised learning (linear regression)

We have plotted the input variable on the x axis and the target variable on the y axis. This
is a general convention used and hence the input variable is termed x and the output
variable is termed y. Once we plot the data points from the training data, we can visualize
the correlation between the data points. In this case, there seems to a direct proportion
between x and y. In order for us to predict the value of y when x = 220, we can draw a
straight line that tries to characterize, or model, the truth (training data). The straight line
represents the predictor function, which is also termed as a hypothesis.

Based on the hypothesis, in this case our model predicts that the value of y when x =220
will be ~430. While this hypothesis predicts the value of y for a certain value of x, the line
that defines the predictor function does not cover all the values of the input variable. For
example, based on the training data, the value of y =380 at x = 150. However, as per the
hypothesis, the value comes out to be ~325. This differential is called prediction error (~55
units in this case). Any input variable (x) value that does not fall on the predictor function
has some prediction error based on the derived hypothesis. The sum of errors for across all
the training data is a good measure of the model's accuracy. The primary goal of any
supervised learning algorithm is to minimize the error while defining a hypothesis based on
the training data.

[56]

Learning from Big Data Chapter 3

A straight-line hypothesis function is as good as an illustration. However, in reality, we will
always have multiple input variables that control the output variable, and a good predictor
function with minimal error will never be a straight line. When we predict the value of an
output variable at a certain value of the input variable it is called regression. In certain
cases, the historical data, or version of truth, is also used to separate data points into
discrete sets (class, type, category). This is termed classification. For example, an email can
be flagged as spam or not based on the training data. In the case of classification, the classes
are known and predefined. The following image shows the classification with the Decision
Boundary:

1.2
m A
1
[A A A
L m | Decision Boundary
0.8 -
O
0.6
m Bg
0.4
0.2
[
|
0
0 0.2 0.4 0.6 0.8 1 1.2

Figure 3.5 Classification with Decision Boundary

Here is a two-dimensional training dataset, where the output variables are separated by
a Decision Boundary. Classification is a supervised learning technique that defines the
Decision Boundary so that there is a clear separation of the output variables.

[57]

Learning from Big Data Chapter 3

Regression and classification, as discussed in this section, require historical data to make
predictions about the new data points. These represent supervised learning techniques. The
generic process of supervised machine learning can be represented as follows:

Model

Training Set Training

Model Tuning

Model

Validation Set Validation

Prediction

Figure 3.6 Generic supervised learning process

The labeled data, or the version of truth, is split into training and validation sets with
random sampling. Typically, an 80-20 rule is followed with the split percentage of the
training and validation sets. The training set is used for training the model (curve fitting) to
reduce overall error of the prediction. The model is checked for accuracy with the validation
set. The model is further tuned for the accuracy threshold and then utilized for the
prediction of the dependent variables for the new data.

With this background in machine learning, let's take a deep dive into various techniques of
supervised and unsupervised machine learning.

The Spark programming model

Before we deep dive into the Spark programming model, we should first arrive at an
acceptable definition of what Spark is. We believe that it is important to understand what
Spark is, and having a clear definition will help you to choose appropriate use cases
where Spark is going to be useful as a technological choice.

[58]

Learning from Big Data

There is no one silver bullet for all your enterprise problems. You must pick and choose the
right technology from a plethora of options presented to you. With that, Spark can be

defined as:

Spark is a distributed in-memory processing engine and framework that provides you

with abstract APIs to process big volumes of data using an immutable distributed

collection of objects called Resilient Distributed Datasets. It comes with a rich set of
libraries, components, and tools, which let you write-in memory-processed distributed code

in an efficient and fault-tolerant manner.

Now that you are clear on what Spark is, let's understand how the Spark

programming model works. The following diagram represents a high-level component

of the Spark programming model:

p

g,

k User Code

\
> ©
Session

Schedular Tdsk

LI |
£ 2

-

Task

Task

5 3

Task

4

|

Cluster Manager

|

Figure 3.7 Spark programming model

[59]

Learning from Big Data Chapter 3

As shown, all Spark applications are Java Virtual Machine (JVM)-based components
comprising three processes: driver, executor, and cluster manager. The driver program
runs as a separate process on a logically- or physically-segregated node and is responsible
for launching the Spark application, maintaining all relevant information and
configurations about launched Spark applications, executing application DAG as per user
code and schedules, and distributing tasks across different available executors.
Programmatically, the main () method of your Spark code runs as a driver. The driver
program uses a SparkContext or SparkSession object created by user code to coordinate
all Spark cluster activity. SparkContext or SparkSession is an entry point for executing any
code using a Spark-distributed engine. To schedule any task, the driver program converts
logical DAG to a physical plan and divides user code into a set of tasks. Each of those tasks
are then scheduled by schedulers, running in Spark driver code, to run on executors. The
driver is a central piece of any Spark application and it runs throughout the lifetime of the
Spark application. If the driver fails, the entire application will fail. In that way, the driver
becomes a single point of failure for the Spark application.

Spark executor processes are responsible for running the tasks assigned to it by the driver
processes, storing data in in-memory data structures called RDDs, and reporting its code-
execution state back to the driver processes. The key point to remember here is that, by
default, executor processes are not terminated by the driver even if they are not being used
or executing any tasks. This behavior can be explained with the fact that the RDDs follow a
lazy evaluation design pattern. However, even if executors are killed accidentally, the
Spark application does not stop and those executors can be relaunched by driver processes.

Cluster managers are processes that are responsible for physical machines and resource
allocation to any Spark application. Even driver code is launched by the cluster manager
processes. The cluster manager is a pluggable component and is cynical to the Spark user
code, which is responsible for data processing. There are three types of cluster managers
supported by the Spark processing engine: standalone, YARN, and Mesos.

Further reference to about Spark RDDs and cluster managers can be found
at the following links:

® https://spark.apache.org/docs/latest/cluster-overview.
html

® https://spark.apache.org/docs/2.2.0/rdd-
programming-guide.html#resilient-distributed-
datasets-rdds

[60]

https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#resilient-distributed-datasets-rdds

Learning from Big Data Chapter 3

The Spark MLIib library

The Spark MLIlib is a library of machine learning algorithms and utilities designed to make
machine learning easy and run in parallel. This includes regression, collaborative filtering,
classification, and clustering. Spark MLIlib provides two types of API included in the
packages, namely spark.mllib and spark.ml, where spark.mllib is built on top of
RDDs and spark.ml is built on top of the DataFrame. The primary machine learning API for
Spark is now the DataFrame-based API in the spark.ml package. Using spark.ml with
the DataFrame API is more versatile and flexible, and we can have the benefits provided by
DataFrame, such as catalyst optimizer and spark.mllib, which is an RDD-based API that
is expected to be removed in the future.

Machine learning is applicable to various data types, including text, images, structured
data, and vectors. To support these data types under a unified dataset concept, Spark ML
includes the Spark SQL DataFrame. It is easy to combine various algorithms in a single
workflow or pipeline.

The following sections will give you a detailed view of a few key concepts in the Spark
ML APL

The transformer function

This is something that can transform one DataFrame into another. For instance, an ML
model can transform a DataFrame with features into a DataFrame with predictions. A
transformer contains feature transformer and learned model. This uses the transform ()
method to transform one DataFrame into another. The code for this is given for your
reference:

import org.apache.spark.ml.feature.Tokenizer

val df = spark.createDataFrame (Seg(("This is the Transformer", 1.0),
("Transformer is pipeline component", 0.0))).toDF("text", "label") val
tokenizer = new Tokenizer().setInputCol ("text") .setOutputCol ("words")

val tokenizedDF = tokenizer.transform(df)

[61]

Learning from Big Data Chapter 3

The estimator algorithm

An estimator is another algorithm that can produce a transformer by fitting on a
DataFrame. For instance, a learning algorithm can train on a dataset and produce a model.
This produces a transformer by learning an algorithm. It uses the it () method to produce
a transformer. For instance, the Naive Bayes learning algorithm is an estimator that calls
the fit () method and trains a Naive Bayes model, which is a transformer. We will use the
following code to train the model:

import org.apache.spark.ml.classification.NaiveBayes
val nb = new NaiveBayes () .setModelType ("multinomial")

val model = nb.fit (Training DataDF)

Pipeline
Pipeline represents a sequence of stages, where every stage is a transformer or an
estimator. All these stages run in an order and the dataset that is input is altered as it passes

through every stage. For the stages of transformers, the transform () method is used,
while for the stages of estimators, the fit () method is used to create a transformer.

Every DataFrame that is output from one stage is input for the next stage. The pipeline

is also an estimator. Therefore, it produces PipelineModel once the fit () method is

run. PipelineModel is a transformer. PipelineModel contains the same number of
stages as in the original pipeline. PipelineModel and pipelines make sure that the test and
training data pass through similar feature-processing steps. For instance, consider a
pipeline with three stages: Tokenizer, which will tokenize the sentence and convert it into a
word with the use of Tokenizer.transform(); HashingTF, which is used to represent a
string in a vector form as all ML algorithms understand only vectors and not strings and
this uses the HashingTF.transform () method; and NaiveBayes, an estimator that is
used for prediction.

We can save the model at HDFSlocation using the save () method, so in future we can
load it using the 1oad method and use it for prediction on the new dataset. This loaded
model will work on the feature column of newDataset, and return the predicted
column with this newDataset will also pass through all the stages of the pipeline:

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.classification.NaiveBayes

[62]

Learning from Big Data Chapter 3

val df = spark.createDataFrame (Seq(("This
is the Transformer", 1.0), ("Transformer
is pipeline component”, 0.0)

)) .toDF ("text", "label")
val tokenizer = new Tokenizer().setInputCol ("text") .setOutputCol ("words")

val
HashingTF=newHashingTF () .setNumFeatures (1000) .setInputCol (tokenizer.getOut
p utCol) .setOutputCol (“features”)

val nb = new NaiveBayes () .setModelType ("multinomial™)

val pipeline = new Pipeline().setStages (Array(tokenizer, hashingTF, nb))
val model = pipeline.fit (df)

model.save ("/HDFSlocation/Path/")

val loadModel = PipelineModel.load(("/HDFSlocation/Path/")

val PredictedData = loadModel.transform(newDataset)

Regression analysis

Regression analysis is a statistical modeling technique that is used for predicting or
forecasting the occurrence of an event or the value of a continuous variable (dependent
variable), based on the value of one or many independent variables. For example, when we
want to drive from one place to another, there are numerous factors that affect the amount
of time it will take to reach the destination, for example, the start time, distance, real-time
traffic conditions, construction activities on the road, and weather conditions. All these
factors impact the actual time it will take to reach the destination. As you can imagine,
some factors have more impact than the others on the value of the dependent variable. In
regression analysis, we mathematically sort out which variables impact the outcome,
leading us to understand which factors matter most, which ones do not impact the outcome
in a meaningful way, how these factors relate to each other, and mathematically, the
quantified impact of variable factors on the outcome.

Various regression techniques that are used depend on the number and distribution of
values of independent variables. These variables also derive the shape of the curve that
represents predictor function. There are various regression techniques, and we will
learn about them in detail in the following sections.

[63]

Learning from Big Data Chapter 3

Linear regression

With linear regression, we model the relationship between the dependent variable, y, and
an explanatory variable or independent variable, x. When there is one independent variable,
it is called simple linear regression, and in the case of multiple independent variables, the
regression is called multiple linear regression. The predictor function in the case of linear
regression is a straight line (refer to figure 4 for an illustration). The regression line defines
the relationship between x and y. When the value of y increases when x increases, there is a
positive relationship between x and y. Similarly, when x and y are inversely proportional,
there is a negative relationship between x and y. The line should be plotted on x and y
dimensions to minimize the difference between the predicted value and the actual value,
called prediction error.

In its simplest form, the linear regression equation is:
y=a-+bz

This is the equation of a straight line, where y is the value of dependent variable, a is the y
intercept (the value of y where the regression line meets the y axis), and b is the slope of
the line. Let's consider the least square method in which we can derive the regression line
with minimum prediction error.

Least square method

Let's consider the same training data we referred to earlier in this chapter. We have values
for the independent variable, x, and corresponding values for the dependent variable, y.
These values are plotted on a two-dimensional scatter plot. The goal is to draw a regression
line through the training data so as to minimize the error of our predictions. The linear
regression line with minimum error always passes the mean intercept for x and y values.

[64]

Learning from Big Data

Chapter 3

The following figure shows the least square method:

x y i vy | ew? ‘[x-i” = 60000
s0.00] 180.00] -69.33 -123.20 4807.11 854187
75.00] 200.00] -44.33] -103.20] 1965.44] 457520 sp000 e =)

40.00[160.00 -79.33| -143.20| 6293.78) 11360.53 |
35.00] 145.00 -84.33) -158.20(711211 1334153
80.00] 215.00 -39.33 -88.20| 1547.11 3469.20
85.00] 235.00 -34.33 -68.20| 1178.78 2341,53 000
119.33| 303.20 56743.33| 90452.00 oo

00.00
\ y intercept (a) = 112.98

100.00 150.00 200.00

x v

10000, 32000 -19.33) 16.80| 373.78] -324.80 T e
125.00 340.00 567 36.80 3211 208.53 3. T —
150.00, 380.00| 30.67| 76.80| 940.44| 235520 “00U .« A
175.00] 400.00| 5567 96.80| 3098.78] 5388.53 o Yx—-0 -V
200.00, 410.00| 80.67| 106.80| 6507.11) 861520 . . s a= W
o - xX—Xx
210.00 423.00| 90.67| 119.80| 8220.44 10861.87 ~
- (x:119.33,y:303.2)
240.00 470.00| 120.67| 166.80| 14560.44 20127.20 ¢
110.00, 330.00| -9.33| 26.80| 87.11] -250.13 20000 %t
115.00, 340.00| -4.33| 36.80| 1878 -159.47 et

Figure 3.8 Least square method
The formula for calculating the y intercept is as follows:

2.(z—2)(y—y)
3 (e-2)

a =

The least square method calculates the y intercept and the slope of the line with
the following steps:

Calculate the mean of all the x values (119.33).

Calculate the mean of all the y values (303.20).

Calculate difference from the mean for all the x and y values.
Calculate the square of mean difference for all the x values.
Multiply the mean difference of x by the mean difference of y for all
the combinations of x and y.

Ol W=

N

Calculate the sum squares of all the mean differences of the x values (56743.33).
Calculate the sum of mean difference products of the x and y values (90452.00).

8. The slope of the regression line is obtained by dividing the sum of the mean

difference products of x and y by the sum of the squares of all the mean

differences of the x values (90452.00 / 56743.33 = 1.594). In this training data,
since there is direct proportion between the x and y values, the slope is positive.

This is the value for b in our equation.

[65]

Learning from Big Data

Chapter 3

9. We need to calculate the value of the y intercept (a) by solving the
following equation, y=a + 1.594 * x.

Remember, the regression line always passes through the mean intercept
of the x and y values.

10. Therefore, 303.2 =a+ (1.594 * 119.33).
11. Solving this, we get a =112.98 as the y intercept for the regression line.

At this point, we have created our regression line with which we can predict the value of
the dependent variable, y, for a value of x. We need to see how close our regression line
mathematically is to the actual data points. We will use one of the most popular statistical
techniques, R-squared, for this purpose. It is also called the coefficient of determination. R-
squared calculates the % of response variable variation for the linear regression model we
have developed. R-squared values will always be between 0% and 100%. A higher value of
R-squared indicates that the model fits the training data well; generally termed the
goodness of fit. The following diagram shows the calculation of R-squared with some
sample data points:

x v Lyl ol § 105 @9y [

50.00] 180.00| -123.20] 15178.24]192.68-110.52| 12214.67] 12.68] 160.78] ,c000 -

75.00] 200.00| -103.20] 10650.24|232.53] -70.67| 4994.25] 32.53 1058.20 y distance

100.00] 32000 16.80] 282.24|272.38| -30.82] 949.87] -47.62| 2267.66 ‘000 ~ frommean

125.00] 340.00] 36.80] 1354.24(312.23] 9.03 8154 2777 77117 1000

150.00] 380.00] 76.80] 5898.24|352.08| 48.88) 238025 27.92] 779.53

175.00] 400.00] 96.80] 9370.24{391.93 88.73| 7873.01 8.07 65.12) 20000

200.00] 410.00] 106.80] 11406.24]431.78] 128.58| 16532.82] 21.78] 474.37 - gl

210.00] 423.00] 119.80] 14352.04[447.72] 144.52| 20886.03] 24.72] e11.08 e

240.00] 470.00| 166.80| 27822.24(495.54) 192.34| 36004.68] 25.54] 652.29 P — oz
110.00] 330.00| 26.80 718.24|288.32| -14.88] 221.41] -41.68) 1737.22 A Z(J’_y)
115.00] 340.00] 36.80] 1354.24|296.29] -6.91] 47.75| -43.71] 1910.56 g R Squared ﬁ
40.00] 160.00| -143.20] 20506.24]176.74-126.46] 15992.13] 16.74] 280.23 y=y
35.00[145.00] -158.20[25027.24]168.77[134.43] 18071.42] 23.77| ses.01] ., .

80.00| 215.00] -88.200 7779.24|240.50] -62.70| 3931.29] 25.50 650.25

85.00) 235.00| -68.20 4651.24|248.47| -54.73| 2995.37 13.47| 181.44 00

119.33) 303.20 156350.40) 144175.50 12164.93 0.000 50000 100.00 150.00 200.00 250.00 300.00

Figure 3.9 Calculation of R-squared

[66]

Learning from Big Data Chapter 3

Let's use our training data to calculate R-squared based on the formula in the preceding

image. Please refer to the diagram we just saw, in this case, R-squared = 144175.50 /

156350.40 = 0.9221. This value is an indication that the model is fitting the training data very
well. There is another parameter we can derive, called standard error, from the estimate.
This is calculated as:

In this formula, 7 is the sample size or the number of observations. With our dataset,
the standard error of the estimate comes out to be 30.59.

Let's calculate the R-squared for our training dataset with the Spark machine
learning library:

import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.regression.LinearRegression

val linearRegrsssionSampleData =
sc.textFile("aibd/linear regression sample.txt")

val labeledData = linearRegrsssionSampleData.map { line

=> val parts = line.split(',"'")

LabeledPoint (parts (0) .toDouble, Vectors.dense (parts(l).toDouble))
}.cache () .toDF

val lr = new LinearRegression()

val model = lr.fit (labeledData)

val summary = model.summary
println("R-squared = "+ summary.r2)

This program produces the following output. Note the same value for R-squared:

[67]

Learning from Big Data Chapter 3

Generalized linear model

While we have tried to understand the concept of linear regression with one dependent and
one independent variable, in the real world, we are always going to have multiple
dependent variables that affect the output variable, termed multiple regression. In that case,
our y = a + bx linear equation is going to take the following form:

Yy =ao+ bix1+bax2 + ...+ bkxk

Once again, a is the y intercept, x1, x2, ...xk are the independent variables or factors, and b1,
b2,.., br are the weights of the variables. They define how much the effect of a particular
variable has on the outcome. With multiple regression, we can create a model for
predicting a single dependent variable. This limitation is overcome by the generalized
linear model. It deals with multiple dependent/response variables, along with the
correlation within the predictor variables.

Logistic regression classification technique

Logistic regression is a method in which we analyze the input variables that result in the
binary classification of the output variables. Even though the name suggests regression, it is
a popular method to solve classification problems, for example, to detect whether an email
is spam or not, or whether a transaction is a fraudulent or not. The goal of logistic
regression is to find a best-fitting model that defines the class of the output variable as 0
(negative class) or 1 (positive class). As a specialized case of linear regression, logistic
regression generates the coefficients of a formula to predict probability of occurrence of the
dependent variable. Based on the probability, the parameters that maximize the probability
of occurrence or nonoccurrence of a dependent event are selected. The probability of an
event is bound between 0 and 1. However, the linear regression model cannot guarantee
the probability range of 0 to 1.

[68]

Learning from Big Data Chapter 3

The following diagram shows the difference between the linear regression and
logistic regression models:

Linear Regression Model Logistic Regression Model
) —_
o 3
s 2
s 15 S 15
F 2
3 S)
c 3 Function Break P(y) = 1 when P(y >=1)
g 10 g 10 a
=) 8 N
py =}
=] Q
c Q
g o0s § os
3 o .
s ‘ | ‘ | ‘ S Function Break P(y) = 0 when P(y <= 0)
> 0 F——L— ° | | |
£ ' N . z o=
E { P(y)<0) Independent Variable E Independent Variable
[e 2
= ~—— ——]
a -05 — & 05

Figure 3.10 Difference between linear and logistic Regression models

There are two conditions we need to meet with regards to the probability of the intended
binary outcome of the independent variable:

s It should be positive (p >= 0): We can use an exponential function in order to
ensure positivity:

p =exp(B0+ Blz) = e +5)

s It should be less than 1 (p <=1): We can divide the probability exponential term
with the same value, + 1, in order to ensure that the outcome probability is less
than:

_ exp(B0 + Blz) B (80 + Bla)
~exp(B0+Blz) +1 B0+ Bla)tl

[69]

Learning from Big Data Chapter 3

Logistic regression with Spark
We progress with logistic regression with Spark as follows:

import org.apache.spark.ml.classification.LogisticRegression

// Load training
data val training =
spark.read.format ("libsvm") .load ("data/mllib/sample libsvm data.txt")

val lr = new LogisticRegression ()
.setMaxIter (10)
.setRegParam(0.3)
.setElasticNetParam(0.8)

// Fit the model
val 1lrModel = lr.fit(training)

// Print the coefficients and intercept for logistic
regression println(s"Coefficients: ${lrModel.coefficients}
Intercept: ${lrModel.intercept}")

// We can also use the multinomial family for binary classification
val mlr = new LogisticRegression ()

.setMaxIter (10)

.setRegParam(0.3)

.setElasticNetParam(0.8)

.setFamily ("multinomial")

val mlrModel = mlr.fit (training)

// Print the coefficients and intercepts for logistic regression with
multinomial family

println(s"Multinomial coefficients: ${mlrModel.coefficientMatrix}")
println(s"Multinomial intercepts: ${mlrModel.interceptVector}")

Polynomial regression

While in linear regression, the correlation between the independent and the dependent
variables is best represented with a straight line, the real-life datasets are more complex and
do not represent a linear relationship between cause and effect. The straight line equation
does not fit the data points and hence cannot create an effective predictive model.

[70]

Learning from Big Data Chapter 3

In such cases, we can consider using a higher-order quadratic equation for the predictor
function. Given x as an independent variable and y as a dependent variable, the
polynomial function takes the following forms:

y= 0B+ fx+ Bax? Second Order Polynomial
V= fo+fix+ ,sz?‘ + B3x3 Third Order Polynomial

These can be visualized with a small set of sample data as follows:

y=-1.8674x7+422.214x-14.283 o @ Second Order

R?=0.93 e - Prediction Function
50 —

y ' ; . — |

20 * 4 . Fourth Order Prediction Functions

@
¥ = 0.0619x* - 1.4043x* + 8.7968x* - 8.237x + 10.583
R* =0.9608

o
0 2 4 6 8 10 12) 2 a

Figure 3.11 Polynomial prediction function

Note that the straight line cannot accurately represent the relationship
between x and y. As we model the prediction function with higher-order
functions, R? is improved. This means the model is able to be more
accurate.

We may think that it will be best to use the highest possible order equation for the
prediction function in order to get the best fitting model. However, that is not right
because as we create the regression line that goes through all the data points, the model
fails to accurately predict the outcomes for any data outside of the training sample (test
data). This problem is called overfitting. On the other end, we may also encounter the
problem of underfitting. This is when the model does not fit the training data well and
hence performs poorly with the test data.

[71]

Learning from Big Data Chapter 3

Stepwise regression

The examples we have seen so far all had one independent and one dependent variable.
This is used to illustrate the basic concepts of regression analysis. However, real-world
scenarios are more complex and there are multiple factors that affect the outcome. As an
example, the salary of an employee depends on multiple factors, such as skill sets, the
ability to learn new tools and technologies, years of experience, past projects worked on,
ability to play multiple roles, and location. As you can imagine, some of the factors
contribute more than others in defining the outcome (salary, in this case).

When we do regression analysis on a dataset that contains lots of factors, the model can
be accurately built if we select the factors that are more significant than others. Stepwise
regression is a method by which the choice or selection of independent variables is
automated.

Consider the following regression function:

y= Bo+ Bax1+ B2X2 + Bax3 + + BnXn

There are n number of input variables, along with their weights or coefficients. The goal
for stepwise regression is to shortlist the variables that are most important for building an
accurate model. Stepwise regression can be done with two approaches, which will be
covered in the following sections.

Forward selection

With forward selection, we start with zero or no variables in the model. One variable is
added at a time, based on the chosen threshold or criteria. When adding a new variable, the
improvement in the model's fit should be significant. At the point when the inclusion of a
new variable does not improve the model, the process is complete.

Backward elimination

With backward elimination, we start with all the variables. Iteratively, we need to test the
elimination of each of the variables. The variable, once again, is deleted with the predefined
threshold or criteria. The variables that have the least significant impact on the model's
accuracy are eliminated one by one in this method.

It is also possible to utilize both methods together for faster parameter tuning.

[72]

Learning from Big Data Chapter 3

Ridge regression

With stepwise regression, we now have a set of independent variables that contribute well
to the value of the dependent variable. If two or more predictors are related to each other
with a near-linear relationship, we come across a problem called multicollinearity, for
example, if we are modeling the weather data where the input data contains the altitude of
the location and the average rainfall as predictor variables. These two variables are linearly
related. The amount of rainfall increases with the increase in altitude. This
multicollinearity leads to inaccurate estimates for the regression coefficients, leading to an
increase in the standard errors, and hence degrades the model's predictability.

Multicollinearity can be corrected by gathering more data points for the related factors and
ensuring that the linear relationship does not exist between the extended data points. The
correction is also possible by eliminating one of the factors with lower weightage. If
multicollinearity cannot be addressed with these two methods, we can use ridge regression.

LASSO regression

The term LASSO stands for Least Absolute Shrinkage Selection Operator. The
coefficients that tend to zero in ridge regression are set to zero in LASSO regression, and
such factors can easily be eliminated from the predictor function equation. LASSO
regression is generally used when there is a very large number of variables, since LASSO
automatically does the variables selection.

Data clustering

So far, we have primarily explored supervised learning methods where we have a historical
trail of data that is used for training the machine learning models. However, there is a very
common scenario where the machine needs to classify objects or entities into various groups
based on predefined or runtime categories. For example, in the dataset that contains
information about employees, we need to categorize the employees based on one or more
attributes combined. With this, the goal is to group similar objects and partition the data
based on similarities.

[73]

Learning from Big Data Chapter 3

The general idea is to have a consistent attribute map within a group and distinct behaviors
across the groups. Unlike the supervised learning methods, there are no dependent
variables in the case of data clustering. A cluster represents various groups of entities that
demonstrate similarities in attributes. At a broader level, clustering has two types:

» Fixed clustering: In this type of clustering, each of the data points belongs to
exactly one group or cluster. The boundaries are clearly defined and clearly
separate the data points.

» Probabilistic clustering: In this case, for each data point, the probability that the
object (instance of an entity) belongs to a particular cluster. As a general rule,
the cluster to which the object belongs with the highest probability takes
precedence over the others.

Unlike supervised learning algorithms, the process and methods for clustering cannot be
fully standardized. The outcomes differ based on the dataset and specific use cases. There
are various models considered for data clustering. Based on these models, various
algorithms are developed. Some of the most commonly used models are as follows:

¢ Connectivity models: These models are based on the data distance between
various objects. These models take two approaches for generalization. In the first
approach, all the independent data points are treated as separate clusters and as
per the relative distance, the clusters are created. In the second approach, the
data points are distributed in clusters and as the relative distance between the
data points decreases, they are distributed into other clusters. The hierarchical
clustering algorithm implements connectivity model.

¢ Centroid models: In these models, the clusters are formulated around a focal
point. The number of focal points is predefined and the data points with
similarities to the focal point are grouped into a cluster. In this method, the
number of clusters is predefined. K-means clustering is one of the most popular
implementations of the centroid model.

¢ Distribution models: In these models, the data points are categorized based on
the applicability of statistical data distribution, for example, normal or Gaussian
distributions. These are iterative models that calculate the maximum likelihood of
entity parameters being part of the standard distribution.

* Density models: These are iterative models that scan the data points into
multiple dimensions and create boundaries based on data point density within
the data space. The regions are isolated based on the density of the data points
and the isolated regions formulate the clusters.

[74]

Learning from Big Data Chapter 3

The K-means algorithm

K-means is one of the most popular unsupervised algorithms for data clustering, which is
used when we have unlabeled data without defined categories or groups. The number of
clusters is represented by the k variable. This is an iterative algorithm that assigns the data
points to a specific cluster based on the distance from the arbitrary centroid. During the first
iteration, the centroids are randomly defined and the data points are assigned to the cluster
based on the least vicinity from the centroid. Once the data points are allocated, within the
subsequent iterations, the centroids are realigned to the mean of the data points and the
data points are once again added to the clusters based on the least vicinity from the
centroids. These steps are iterated to the point where the centroids do not change more than
the set threshold. Let's illustrate the K-means algorithm with three iterations on a sample
two dimensional (x1, x2) dataset:

Iteration 1:

1. During the first iteration, select two centroids for the two clusters: (C1 -
150:120) and (C2 - 110:100)

2. For each data point (x1:x2), calculate the ordinary straight line distance from C1
and C2

3. Put the data points into C1 or C2 based on the minimum distance from the
centroid

4. For the data points in C1, calculate the new CI as the mathematical mean of
all the points (162.50:151.67)

5. For the data points in C2, calculate the new C2 as the mathematical mean of
all the points (110:93.33):

[75]

Learning from Big Data Chapter 3
[x1 x2 Distance from C1 |Distance from C2 |Cluster Cis C2s
1 150 120[c1 0.00 44.72|C1 150 120 0 0
2 165 180 61.85 97.08[C1 165 180 0 0
3 140 100 22.36 30.00/C1 140 100 0 0
4 200 200 94 .34 134.54|C1 200 200] 0
5 120 90 42.43 14.14]c2 0 0 120 90
8 110 100[c2 44.72 0.00/C2 0 0 110 100
7 180 200 85.44 122.07|C1 180 200 0 0
8 100 90 58.31 14.14]c2 0 0 100 90
9 140 110 14.14 31.62|C1 140 110 0 0
| [newci1[162.50] 151.67 [newcz | 110] _ 93.33]
c1 250
c2[110] 100] —
200 .
*
150 c2 / N
100 >.<‘_.\ (e A oy)
5 k2 \ \ 4
S~ — ______-—-_/
0 - -
0 50 100 150 200 250

Iteration 2:

Figure 3.12 Mathematical mean calculation for cluster points

For the new centroids calculated in iteration 1, realign the data points into K1 and
K2 once again, based on the minimum distance from the new centroids, and
repeat the process to calculate new centroids:

|x1 x2 Distance from C1 |Distance from C2 [Cluster Cis C2s
1 150 120 34.04 48.07|C1 150 120 0 0
2 165 180 28.44 102.65|C1 165/ 180 0 0
3 140 100 56.35 30.73|C2 0 0 140 100
4 200 200 61.17 139.56/C1 200 200 0 0
5 120 90 74.89 10.54|C2 0 0 120 90
6 110 100 73.66 6.67|C2 0 0 110 100
7 180 200 51.40 127.58|C1 180 200 0 0
8 100 90 87.80 10.54|C2 0 0 100 90
9 140 110 47.35 34.32/C2 0 0 140 110
[new C1] 173.75[175.00] [new €2] 122] 98.00
c1 162.5| 151.67| 250
c2 110 93.33
| 200 - -
: h
150 \ A
2~ Ty </
100 \n‘ * -
50
0
0 50 100 150 200 250

Figure 3.13 K-means algorithm: iteration-2

[76]

Learning from Big Data Chapter 3
Iteration3: The centroids for iteration 3 is as follows:
|x1 x2 Dist: from C1 |Dist: from C2 [Cluster Cis C2s
1 150] 120 50.91 35.61/C2 0 0 150 120
2| 165 180 10.08 92.59[C1 165, 180 0 0
3| 140[100 82.24 18.11|c2 0 0 140 100
4| 200 200 36.25 128.41|C1 200 200 0 0
5 120 90 100.57 8.25|c2 0 0 120 20
6] 110 100 98.43 12.17|c2 0 0 110 100
7] 180 200 25.77 117.34|C1 180 200 0 0
8 100 90 11253 23.41|c2 0 0 100 20
o 140 110 73.24 21.63/c2 0 0 140 110
[new C1] 181.67] 193.33] [new C2] 126.6666667] 101.67
250
200 & . .
. ‘,)
- 150 B
Y c1

Jaill s
100 (3 3
50 —’/

c2

0 50 100 150 200

250

Figure 3.14 K-means algorithm: iteration-3

K-means implementation with Spark ML

We will proceed with the implementation of K-means with Spark ML as follows:

import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.clustering.KMeans
val kmeansSampleData = sc.textFile ("aibd/k-means-sample.txt")
val labeledData = kmeansSampleData.map { line
=> val parts = line.split(',"')
LabeledPoint (parts (0) .toDouble,
parts (2) .toDouble))
} .cache () .toDF

Vectors.dense (parts(l) .toDouble,

val kmeans = new KMeans ()

.setK(2) // Setting the number of clusters
.setFeaturesCol ("features")

.setMaxIter(3) // default Max Iteration is 20
.setPredictionCol ("prediction")

.setSeed (1L)

[771

Learning from Big Data Chapter 3

val model = kmeans.fit (labeledData)

summary.predictions. show
model.clusterCenters.foreach (println)

The output of the code will look like the following:

Data dimensionality reduction

So far in this chapter, we have looked at the basic concepts of supervised and unsupervised
learning with the simplest possible examples. In these examples, we have considered a
limited number of factors that contribute to the outcome. However, in the real world, we
have a very large number of data points that are available for analysis and model
generation. Every additional factor adds one dimension within the space, and beyond the
third dimension, it becomes difficult to effectively visualize the data in a conceivable form.
With each new dimension, there is a performance impact on the model generation exercise.

In the world of big data, where we now have the capability to bring in data from
heterogeneous data sources, which was not possible earlier, we are constantly adding more
dimensions to our datasets. While it is great to have additional data points and attributes
to better understand a problem, more is not always better if we consider the computational
overhead due to additional dimensions in the dataset.

[78]

Learning from Big Data Chapter 3

If we consider our datasets as rows and columns, where one row represents one instance
of an entity and the columns represent the dimensions, most machine learning algorithms
are implemented column-wise. These algorithms perform more and more slowly as we
add more columns. Once again referring to the human brain analogy we considered in
Chapter 1, Big Data and Artificial Intelligence Systems, when we drive a car, the human
brain constantly receives a large number of inputs (data dimensions). Our brain can
effectively consider the dimensions that are most significant, ignore some of the input, and
merge other input to form a singular perception point.

We need to apply similar techniques to considering the most important dimensions that
can accurately model the scenario, based on a reduced number of factors within the dataset.
This process of reduction of factors is termed Data Dimensionality Reduction (DDR). One
of the imperatives while considering dimensionality reduction is that the model should
convey the same information without any loss of insight or intelligence. Let's consider some
basic techniques that can be used for DDR, before taking a deeper dive into advanced
techniques such as singular value decomposition (SVD) and principal component
analysis (PCA):

* Dimensions with missing values: As we gather data from various sensors and
data sources, it is possible that for some of the factors, there is a large number of
missing observations. In such cases, we use a default value or the mean of the
other observations to replace the missing values. However, if the number of
missing values crosses a threshold (percentage of observations with missing
values of the total number of observations), it makes sense to drop the dimension
from the model since it does not contribute to the accuracy of the model.

¢ Dimensions with low variance: Within the dataset, if we have some dimensions
for which the observations do not vary, or vary with a very low differential, such
dimensions do not contribute to the model effectiveness. Factors with low
variance across observations can be eliminated.

* Dimensions with high correlation: Within the dataset, if we have two or more
dimensions that relate to each other, or they represent the same information in
different measurement units, the factors can be ignored without any impact on
the model's accuracy.

[79]

Learning from Big Data Chapter 3

Now, let's look at the following dataset:

High Correlation
V' x1 X2 x3 x4 X5 X6
100 2l 1 75 18 1 2
g

110 % g 1 21 28 2 4
1200 W@ | E 1 32 61 5 10
115) W® > 1 56 39 2 4
125 11 8 1 73 81 3 6
121 1 97 59 7 14

Figure 3.15 Sample dataset

In this example dataset, x1 has a lot of missing values, x1 has a lot of missing values, x2 has
no variance among values, and x5 and x6 are highly correlated, hence one of the factors
can be eliminated without affecting the model's accuracy.

Singular value decomposition

As we have seen in the previous section, reducing the dimensions of the datasets
increases the efficiency of the model generation, without sacrificing the amount of
knowledge contained in the data. As a result, the data is compressed and easy to visualize
in fewer dimensions. SVD is a fundamental mathematical tool that can be easily
leveraged for dimensionality reduction.

Matrix theory and linear algebra overview

Before we try to understand SVD, here is a quick overview of linear algebra and matrix
theory concepts. Although a comprehensive discussion on these topics is outside the scope
of this book, a brief discussion is definitely in order:

* Scalar: A single number is termed a scalar. A scalar represents the magnitude of
an entity. For example, the speed of a car is 60 miles/hour. Here, the number 60 is
a scalar.

» Vectors: An array of multiple scalars arranged in an order is called a vector.
Typically, vectors define magnitude as well as direction, and are
considered points in space.

[80]

Learning from Big Data Chapter 3

» Matrix: This is a two-dimensional array of scalars. Each element of a matrix is
represented by a coordinate index. A matrix is denoted by a capital letter, for

example A, and individual elements are denoted with subscripts, as Amn. A
matrix can be defined as follows:

Here, Aiis the i row of A and A} is the j» column of A. Matrix A has a shape
of height, m, and a width of n.

» Transpose of a matrix: When we transpose a matrix, it results in a mirror image

of the matrix structure, where the rows of the resultant matrix are the columns of
the base matrix:

Al,l 12 13 Al.l AZ.I 31 1 2 3 1 4 7

A=| 4, 4, A, |= A= A, 4, 4, A= 5 6 —=AT=—2 5 8
{

AIU 32 33 Au 23 33 8 # d . ?

Vectors are matrices with one column often represented as a transpose of a
row matrix:

X = [X1, X2, X3, ... Xn]

* Matrix addition: If matrices A and B have the same shape (dimensions),
with m height and n width, they can be added to form a C matrix, as follows:

C=A+B=>Cjj=Ai+ Bij

A scalar can be added to or multiplied by a matrix, as follows:

D=aB+c=>Djj=aBijj+cC

[81]

Learning from Big Data Chapter 3

» Matrix multiplication: In order to multiply matrix Amn» with matrix B, matrix
B needs to have n number of rows. In that case, if A is of the shape mx» and B is
of the shape nxp, then C is of the shape mxp:

C=AB=>Ci,j=) Aix Bkj
(A B)X(E F)_(AE+BG AF+BH)
C D G H) \CE+DG CF+DH

The standard product of two matrices is not just the product of individual
elements with positional correspondence.

» The properties of a matrix product are:
¢ Distributability: A(B+ C) = AB + AC
¢ Associativity: A (BC)=(AB) C
* Not commutative: AB is not always equal to BA
¢ (AB)T=BT AT

¢ Identity and inverse matrices: The identity matrix is a square matrix with all the
diagonals as 1 and non-diagonal elements as 0. The identity matrix does not
change the value of a matrix when we multiply the matrix with the identity
matrix. An n-dimensional identity matrix is denoted as I». The inverse of a
square matrix is a matrix that, when multiplied with the original matrix, results
in an identity matrix:

AlA=In

» Diagonal matrix: This is similar to an identity matrix. All the diagonal elements
are nonzero and the non-diagonal elements are zero.

» Symmetric matrix: This is a square matrix that is equal to the transpose of a
matrix.

[82]

Learning from Big Data Chapter 3

o Linear regression in matrix form: Let's consider the simple linear regression
model equation: Yi= o + Bixi + & {i=1, ..., n}:

-Y; :lBO +181X1 +&]
Y, =ﬂo +:H1X2 té,

Yn = IBO +IB1XH +gn
Let's represent these equations in matrix form with individual matrices, as follows:

1 & &
Y= L X= L A B:[ﬁo} g=|

Y 1 X £

n n n

With these definitions of the matrices, the linear regression can be expressed as:
Y=XB+¢€

Note the simple nature of computation of the equation when represented in matrix form.

With this background in matrix theory, it will now be easy to understand SVD as applicable to
dimensionality reduction. Let's first understand how real-world entities are represented in
matrix form. The columns of a matrix represent various dimensions for the individual instances,
which are represented by a row. The SVD theorem says that for any m x m matrix A, there exists
an m x r orthogonal matrix U, an n x r orthogonal matrix Y, and an r x r diagonal

matrix D with nonnegative values on the diagonal so that A= U V. This can be

represented diagrammatically as follows:

[83]

Learning from Big Data Chapter 3

Data Matrix Left Singular Vectors Singular Values Right Singular Vectors
A u z v’
Co— ‘ : ,
r n

A[m:tn] = l"[rrn(r]z [rxr] (V[nxr])T

Figure 3.16 lllustration of singular value decomposition

The important properties of singular
value decomposition

Now, let's take a look at some of the important properties of SVD:

» It is always possible to decompose a real matrix A into
A=UY VTq 1]y, and V are unique
e U and V are orthonormal matrices:
» UTU =1 and VTV = (I represents an identity matrix)
e) is a diagonal matrix where the nonzero diagonal entries are positive and sorted
in descending order (01 2 02 2 05....20n....>0)

SVD with Spark ML

Let's implement SVD code using the SparkML library:

import org.apache.spark.mllib.linalg.Matrix

import org.apache.spark.mllib.linalg.Vectors

import org.apache.spark.mllib.linalg.Vector

import org.apache.spark.mllib.linalg.distributed.RowMatrix import
org.apache.spark.mllib.linalg.SingularValueDecomposition

[84]

Learning from Big Data Chapter 3

val data = Array (Vectors.dense (2.0, 1.0, 75.0, 18.0,

1.0,2), Vectors.dense(0.0, 1.0, 21.0, 28.0, 2.0,4),

Vectors.dense (0. 1.0, 32.0, 61.0, 5.0,10),

Vectors.dense (0. .0, 56.0, 39.0, 2.0,4),

Vectors.dense (1. .0, 73.0, 81.0, 3.0,0),
(0 .0 7

de
0,
0,
0,
Vectors.dense 0, , 97.0, 59.0, .0,14))

1
1
1
val rows = sc.parallelize(data)

val mat: RowMatrix = new RowMatrix (rows)

val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD (3,
computeU = true)

val U: RowMatrix = svd.U // The U factor is stored as a row matrix

val s: Vector = svd.s // The sigma factor is stored as a singular vector
val V: Matrix = svd.V // The V factor is stored as a local dense matrix

The output of the code will look like the following;:

[85]

Learning from Big Data Chapter 3

The principal component analysis method

PCA is one of the most popular methods used for dimensionality reduction. In a real-
world scenario, we have thousands of dimensions in which a data point is explained.
However, it is possible to reduce the number of dimensions without the loss of significant
information. For example, a video camera captures the scene in three-dimensional space
and it is projected onto a two-dimensional space (TV screens); despite the elimination of
one dimension, we are able to perceive the scene without any problems. The data points in
multidimensional space have convergence in fewer dimensions. As a technique, PCA
focuses on getting a direction with the largest variance between the data points while
getting to the best reconstruction of the dataset, without losing information. Let's illustrate
this with a two-dimensional dataset:

SN2
iXe) e .
.;\"‘}\ e
o -
0"5@\ /"'/ 0.0’ ¢
_\((\\\“:\ P . . Principal
x2 R L Component
T e %y e
,/'/ .. . *
(\ .
P
— x>

Figure 3.17 lllustration of Principal Component

This is a two-dimensional dataset where a data point is uniquely defined by xI and x2
values. As we can see, the data is scattered linearly as a function of xI and x2. A regression
line maps all the data points and is a line that captures the maximum data variation. If we
consider a new axis, which is represented by z, we can represent the dataset with a single
dimension without much loss. On the new z axis, we get the minimum error while moving
from two dimensions to one dimension. There is a fundamental difference between linear
regression and PCA. In linear regression, we try to minimize the vertical distance between
the data point and the point in the regression line. However, in PCA, we try to minimize
the distance between the data point and the regression line in an orthogonal direction, and
in PCA, there is no dependent variable to calculate.

[86]

Learning from Big Data Chapter 3

The PCA algorithm using SVD

Now, let's look at the steps to implement the PCA algorithm using SVD. Consider the
training set, 2(1):(2)ss ensit (m), with m data samples. For this dataset, we will
progress with the steps as follows:

1. Mean normalization: Deduct the mean value of all the data points from the
individual data point. With this, we increase the efficiency of model training and

1 N
By = Z z]
get a better error surface shape, i=1 Replace each x(j) with (x¢) -).
2. Feature scaling: If the different features have different scales, if x1 is the size of a
house and x2 is the number of bedrooms, they have different measurement
scales. In that case, x2 will not play any role since it is orders smaller than x1.
With normalization, we will reduce the impact of large-value features extracted
on a different scale and allow small-value features to contribute to the equation.

L Z(m(i))(:v(i) i

3. Calculate the covariance matrix sigma = W= ‘

4. Apply SVD to the sigma to calculate U, 2, and V.

5. Get the reduced matrix (UReduce) from U based on the number of dimensions
to which we want to model our data. In our example, it is from two dimensions
to one dimension. This is simply done by first obtaining k (number of intended
dimensions) columns of the U matrix.

6. Get the z axis as z = UReduce’ (x).

Implementing SVD with Spark ML

It is very easy to implement the SVD algorithm explained earlier with Spark ML. The code
for it is given for your reference:

import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.distributed.RowMatrix

val data = Array(Vectors.dense (2.0, 1.0, 75.0, 18.0,
1.0,2), Vectors.dense(0.0, 1.0, 21.0, 28.0, 2.0,4),
Vectors.dense (0.0, 1.0, 32.0, 61.0, 5.0,10),
Vectors.dense (0.0, 1.0, 56.0, 39.0, 2.0,4),
Vectors.dense(1.0, 1.0, 73.0, 81.0, 3.0,6),
Vectors.dense (0.0, 1.0, 97.0, 59.0, 7.0,14))

[87]

Learning from Big Data Chapter 3

>
val rows = sc.parallelize(data)

val mat: RowMatrix = new RowMatrix (rows)

// Principal components are stored in a local dense matrix.
val pc: Matrix = mat.computePrincipalComponents (2)

// Project the rows to the linear space spanned by the top 2
principal components.
val projected: RowMatrix = mat.multiply(pc)

projected.rows.foreach (println)

Here is the program output with two principal components out of a six-dimensional
dataset:

Content-based recommendation systems

With the advancement of rich, performant technology and more focus on data-driven
analytics, recommendation systems are gaining popularity. Recommendation systems
are components that provide the most relevant information to end users based on their
behavior in the past. The behavior can be defined as a user's browsing history, purchase
history, recent searches, and so on. There are many different types of recommendation
systems. In this section, we will keep our focus on two categories of recommendation
engines: collaborative filtering and content-based recommendation.

Content-based recommendation systems are the type of recommendation engines that
recommend items that are similar to items the user has liked in the past. The similarity of
items is measured using features associated with an item. Similarity is basically a
mathematical function that can be defined by a variety of algorithms. These types of
recommendation systems match user profile attributes, such as user preferences, likes, and
purchases, with attributes of an item using algorithmic functions. The best matches are
presented to the user.

[88]

Learning from Big Data Chapter 3

The following picture depicts a high-level approach to a content-based
recommendation engine:

©+0=0
f(x)

Figure 3.18 Content based recommendation

Let's now go through an example of content-based filtering. We have used movie data with
this example. We will eventually use users' rating data as well. The following screenshot
shows how the datasets look:

Movie Genres User Movie Ratings

Movie 1 Action,Romance Userl Moviel 1
Movie 2 Adventure User2 Moviel 1
Movie 3 Action, Adventure, Thriller Userl Movied 2
Movie 4 Romance Userl Movie5 2
Movie 5 Romance, Thriller Userl Movieb 2
Movie 6 Action,Romance, Thriller User2 Movieb 2

In the movies dataset, we have the Movie column, which represents the movie name,
and the Genres column, which represents the genres the movie belongs to. In the user
rating dataset, we have user likes, represented by the number 1, and dislikes, represented
by the number 2. No ratings have NULL or blank values.

The following Spark code can be used to load the data:

import org.apache.spark.ml.feature.{CountVectorizer,HashingTF, IDF,

Tokenizer}
val movieData = spark.createDataFrame (Seq(("Moviel",
Array ("Action","Romance")), ("Movie2",

Array ("Adventure")),

("Movie3", Array("Action","Adventure","Thriller")),
("Movied", Array("Romance")),

("Movie5", Array("Romance","Thriller")),

(

"Movie6", Array("Action","Romance","Thriller"))
)) .toDF ("Movie", "Genres")

val usersData = spark.createDataFrame (Seq(

[89]

Learning from Big Data Chapter 3

("Userl", "Moviel", 1),
("User2", "Moviel", 1),
("Userl", "Movied", 2),
("User2", "Movie5", 2),
("Userl", "Movie6", 2),
("User2","Movieb6", 2)
)) .toDF ("Usexr", "Movie", "Ratings")

Now, we need to calculate the TF-IDF score for each of the movie's records. TF (Term
Frequency) is the frequency of terms in a data row or document. In our example, terms
would be the genres to which a movie belongs. So, for example, the TF for the Action genre
for the row belonging to Moviel would be 1. We have chosen a simple raw count for
calculating TF. The following is an example of how TF calculation would look in our data
sheet:

Movie Matrix (TF) Simple Count

Movie Action Adventure Romance Thriller

Movie 1 1 1

Movie 2 1

Movie 3 1 1 1
Movie 4 1

Movie 5 1 1
Movie 6 1 o 1 1

There are many variants of TF calculations available. You have to choose
which TF variant you want to use in your application, depending on
multiple factors, such as type of data and number of records. Further
details about it can be found at the following links:

® https://nlp.stanford.edu/IR-book/html/htmledition/
tf-idf-weighting-1.html

® https://en.wikipedia.org/wiki/Tf%E2%80%93idf

The following Spark code can be used for calculating TF. We have used the hashingTF
library for the process:

val hashingTF = new

HashingTF () .setInputCol ("Genres") .setOutputCol ("rawFeatures")
val featurizedData = hashingTF.transform (movieData)
featurizedData.show (truncate=false)

[90]

https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Learning from Big Data Chapter 3

The following is the output of the previous code:

tion, Adventure, Thriller]
Romance]
ance, Thriller]
mance, Thriller]

Next, we calculate the inverse document frequency (IDF). IDF finds out whether a term is
common or rare across all documents in the given corpus. It's a log-based mathematical
function of the total number of documents, divided by the total number of documents in
which the term has appeared. So, IDF can be calculated using the following formula
(taken from Wikipedia):

idf(, D) = log ——
idf(t, D) =l T i @)

with

« N total number of documents in the corpus N = |D)|
« {d € D : t € d}| : number of documents where the term £ appears (i.e., tf(t, d) # 0). If the term is not in the corpus, this
will lead to a division-by-zero. It is therefore common to adjust the denominatorto 1+ |{d € D : ¢ € d}|.

In our Excel sheet, we calculated IDF based on an earlier formula. Please see the following
screenshot to understand how it looks in our example:

B26 - fe || =LN{(B27+1)/(B25+1))

A B C D E
13
14
€] Movie Matrix (TF) Simple Count|
16 |Movie Action Adventure Romance Thriller
17
18 [Movie 1 1 1
19 Movie 2 1
20 Movie 3 1 1 1
21 \Movie d 1
22 |Movie 5 1 1
23 |Movie 6 1] 1 1
24
25 |DF B 2 4 3
26 |IDF D.559615?88| 0.8472979 0.336472237 0.559615788
27 |N= 4] G G G

[91]

Learning from Big Data Chapter 3

After you have calculated the IDF, to get complete usage you need to multiply the TF
number by the IDF number. Here is how the TF*IDF output would look in our sheet:

Movie Matrix (TF*IDF)

Movie Action Adventure Romance Thriller

Movie 1 0.559615788 0.336472237

Movie 2 0.8472979

Movie 3 0.539613788 0.8472979 0.5339613788
Movie 4 0.336472237

Movie 5 0.336472237 0.559615738
Movie 6 0.559615788 0.336472237 0.559615738

The following Spark code will calculate the TF*IDF score for you:

val idf = new IDF().setInputCol ("rawFeatures") .setOutputCol ("features")
val idfModel = idf.fit (featurizedData)

val rescaledData = idfModel.transform(featurizedData)
rescaledData.select ("Movie", "rawFeatures", "features") .show ()

The output of the preceding code looks as follows:

37,0.559615787935

1)

g 79

Now, you need to determine the user vector from user ratings. The user profile vector is
calculated based on each movie genre. It is the vector dot product of all user ratings for
a given genre and user ratings for all movies.

[92]

Learning from Big Data Chapter 3

Frequently asked questions

Q: What are the two basic categories of machine learning and how do they differ from each
other?

A: Machine learning can be broadly categorized into supervised and unsupervised learning.
In the case of supervised learning, the model is trained based on the historical data, which
is treated as the version of truth, termed training data. In the case of unsupervised learning,
the algorithm derives inferences based on the input data, without labeled training data. The
hidden patterns within the datasets are derived on the fly.

Q: Why is the Spark programming model suitable for machine learning with big datasets?

A: Spark is a general-purpose computation engine based on the fundamentals of
distributed resilient computing. The large datasets are seamlessly distributed across cluster
nodes for faster model generation and execution. Most of the underlying details are hidden
from the data science engineer and hence there is a very limited learning curve involved in
implementing machine learning with Spark. Spark is inherently fault-tolerant and very
effectively leverages resource managers (Yarn, Mesos, and so on). It is one of the most
popular Apache projects with a lot of community interest.

Q: What is the difference between regression and classification?

A: Regression is a technique that is used for predicting or forecasting the occurrence of an
event or value of a continuous variable (dependent variable), based on the value of one
or many independent variables. Classification is used as a grouping mechanism where
the data points are tagged under a discrete category or cluster.

Q: What is dimensionality reduction and what is the basic purpose of it?

A: With the evolution of big data techniques, we are generating data from lots of
heterogeneous sources. While it is true that more data is better data, modeling all the
independent variables that are available requires great computational power. There are
some dimensions that are redundant and some of the dimensions do not have a significant
impact on the outcome. Dimensionality reduction techniques help us to reduce the number
of dimensions without any loss of information by eliminating insignificant and redundant
variables. This results in lowering the computational requirement, as well as easy
visualization of the data within limited dimensions.

[93]

Learning from Big Data Chapter 3

Summary

In this chapter, we were introduced to the basic concepts of machine learning
algorithms and saw how the Spark programming model is an effective tool in
leveraging big data assets for machine learning.

We have taken a deep dive into some of the supervised and unsupervised algorithms, and
implemented those with Spark machine learning libraries. We will build on top of these
fundamentals in the subsequent chapters and understand how neural networks act as the
basic building blocks for creating intelligent machines.

[94]

Neural Network for Big Data

In the previous chapter, we established a basic foundation for our journey toward building
intelligent systems. We differentiated the machine learning algorithms in two primary
groups of supervised and unsupervised algorithms, and explored how the Spark
programming model is a handy tool for us to implement these algorithms with a simple
programming interface, along with a brief overview of the machine learning libraries
available in Spark. We have also covered the fundamentals of regression analysis with a
simple example and supporting code in Spark ML. The chapter showed how to cluster the
data using the K-means algorithm and a deep dive into the realm of dimensionality
reduction, which primarily helps us in representing the same information with fewer
dimensions without any loss of information. We have formed the basis for the
implementation of the recommendation engines with an understanding of principal
component analysis, content-based filtering, and collaborative filtering techniques. On the
way, we have also tried to understand some of the basics of matrix algebra.

In this chapter, we are going to explore the neural networks and how they have evolved
with the increase in computing power with distributed computing frameworks. The neural
networks take inspiration from the human brain and help us to solve some very complex
problems that are not feasible with traditional mathematical models. In this chapter, we
are going to cover:

¢ Fundamentals of neural networks and artificial neural networks
* Perceptron and linear models

¢ Nonlinearities model

¢ Feed-forward neural networks

* Gradient descent, backpropagation, and overfitting

¢ Recurrent neural networks

We will explain these concepts with easy-to-understand scenarios and corresponding
code samples with Spark ML.

Neural Network for Big Data Chapter 4

Fundamentals of neural networks
and artificial neural networks

The basic algorithms and mathematical modeling concepts we covered in the last chapter
are great when it comes to solving some of the structured and simpler problems. They are
simpler compared to what the human brain is easily capable of doing. For instance, when
a baby starts to identify objects through various senses (sight, sound, touch, and so on), it
learns about those objects based on some fundamental building blocks within the human
brain. There is a similar mechanism in all living beings with a difference in the level of
sophistication based on the evolution cycle.

A neurological study of the brains of various animals and human beings reveals that the
basic building blocks of the brain are neurons. These biological neurons are interconnected
with each other and are capable of transmitting signals simultaneously to thousands of
connected neurons. It is observed that in the more complex species, such as human beings,
the brain contains more neurons than less-complex species. For instance, it is believed that
the human brain contains 100 billion interconnected neurons. The researchers found a
direct correlation between the quantity and level of interconnection between the neurons
and the intelligence in various species. This has led to the development of artificial neural
networks (ANN), which can solve more complex problems, such as image recognition.

ANN:s offer an alternate approach to computing and the understanding of the human brain.
While our understanding of the exact functioning of the human brain is limited, the
application of ANNSs for solving complex problems has so far shown encouraging results
for primarily developing a machine that learns on its own based on the contextual inputs,
unlike the traditional computing and algorithmic approach.

In our quest to developing cognitive intelligence for machines, we need to keep in mind
that neural networks and algorithmic computing do not compete with each other, instead,
they complement each other. There are tasks more suited to an algorithmic approach than a
neural network. We need to carefully leverage both to solve specific problems. There are a
lot of systems where we require a combination of both approaches.

[96]

Neural Network for Big Data Chapter 4

Similar to the biological neurons, the ANNSs have input and output units. A simple ANN
is represented as follows:

Hidden

4
Ou
-~
-~
B
-
P v
-
-
\¢
v
O

Figure 4.1 Structure of a simple ANN

An ANN consists of one input layer, which provides the input data to the network, one
output layer, which represents the finished computation of the ANN, and one or more
(depending on complexity) hidden layers, which is where actual computation and
logic implementation happens.

The theory of neural networks is not new. However, at the time of its origin, the
computational resources as well as datasets were limited in order to leverage the full
potential of the ANNs. However, with the advent of big data technologies and massively
parallel distributed computing frameworks, we are able to explore the power of ANNs for
some of the innovative use cases and solving some of the most challenging problems, such
as image recognition and natural language processing.

In the subsequent sections of this chapter, we will take a deep dive into the ANNs with
some simple-to-understand examples.

[97]

Neural Network for Big Data Chapter 4

Perceptron and linear models

Let's consider the example of a regression problem where we have two input variables and
one output or dependent variable and illustrate the use of ANN for creating a model that
can predict the value of the output variable for a set of input variables:

x1 X2 y
5 7 10
3 1 7
8 9 12
4 6 9
2 3 5
6 10 ?

Figure 4.2 Sample training data

In this example, we have x1 and x2 as input variables and y as the output variable. The
training data consists of five data points and the corresponding values of the dependent
variable, y. The goal is to predict the value of y when x1 =6 and x2 =10. Any given
continuous function can be implemented exactly by a three-layer neural network with n
neurons in the input layer, 2n + 1 neurons in the hidden layer and m neurons in the
hidden layer. Let's represent this with a simple neural network:

Input Layer Hidden Layer Output Layer
2)
QQ\\\\\ A 1
2
> Xl 4
4, ¢
a | x| —
5 7 / o
3 | 1 A AR, | AB), > he(x)
8 9 SV
4 6 av W
2 3 \ =
TN % o
3 N
XZ h//l/
23 /
-
>

Figure 4.3 ANN notations

[98]

Neural Network for Big Data Chapter 4

Component notations of the neural network

There is a standardized way in which the neural networks are denoted, as follows:

» x1 and x2 are inputs (It is also possible to call the activation function on the input
layer)

* There are three layers in this network: the input layer, output layer, and hidden
layer.

 There are two neurons in the input layer corresponding to the input variables.
Remember, two neurons are used for illustration. However, in reality we are
going to have hundreds of thousands of dimensions and hence input variables.
The core concepts of ANN are theoretically applicable to any number of input
variables.

* There are three neurons in the hidden layer (layer 2): (a%1, a%, a?3).

» The neuron in the final layer produces output A3:.

¢ a®i: represents activation (the value that is computed and output by a node) of
unit i in layer j. The activation function of a node defines the output of the node
for a set of input. The simplest and most common activation function is a
binary function representing two states of a neuron output, whether the neuron
is activated (firing) or not:
» For example, a1 is the activation of the first unit in the second
layer.

» W®jj represents the weight on a connector, [is the layer from which a signal
is moving, i represents the neuron number from which we are moving, and j
represents the neuron number in the next layer to which the signal is
moving. Weights are used for reducing the difference between the actual and
desired output of the ANN:
» For example, W12 represents the weight for the connection
between two neurons from layer 1 to layer 2 for the first neuron
in the layer 1 and toward the second neuron in layer 2.

[99]

Neural Network for Big Data Chapter 4

Mathematical representation of the
simple perceptron model

The output of the neural network depends on the input values, activation functions on each
of the neurons, and weights on the connections. The goal is to find appropriate weights on
each of the connections to accurately predict the output value. A correlation between
inputs, weights, transfer, and activation functions can be visualized as follows:

E
@
>
tr

Activation

20N
X, & function
2N

w
'é_ X3 @ @ activation
=
Transfer
function
X, W,

Figure 4.4 ANN components correlation

In summary, within an ANN, we do the sum of products of input (X) to their weights (W)

and apply the activation function f(x) to get the output of a layer that is passed as input to
another layer. If there is no activation function, the correlation between the input and

output values will be a linear function.

The perceptron is the simplest form of an ANN used for the classification
of datasets that are linearly separable. It consists of a single neuron with
varying weights and bias units.

We can represent the simple perceptron model as a dot product:

Qﬁ(ji::r.lu)

[100]

Neural Network for Big Data Chapter 4

Since we have multiple values of x1 and x2 in our example, the computation is best done
with a matrix multiplication so that all the transfer and activation functions can be parallely
computed. The mathematical model APIs are greatly tuned to utilize the power of
distributed parallel computation frameworks in order to perform the matrix
multiplications. Let's now consider our example and represent it with matrix notations. The
input dataset can be represented as x. In our example, this is a (5:2) matrix. The weights can
be represented as W'ex3). The resultant matrix, (Z?), is a 5 by 3 matrix which is the activity of
the second (hidden) layer. Each row corresponds to a set of input values and each column
represents the transfer function or activity on each of the nodes in the hidden layer. This
can be illustrated in the following diagram:

[swol 7w, swi, 7w, switl s 7w,]
xsl "72 Wi, wi, wi, I 2 s
R ; SWOIL + Wi, BWI,+oWil,, BWI,+ Wi,
: g WLy wit, wit, AW+ BWI,, AW, W, AW+ BW,,
X) W) | DWW 3W0 AW 3W, W, WO,

ZZ(SxB}

Number of nodes in Hidden Layer (3)

Figure 4.5: Each row corresponds to set of input values

With this, we have our first formula for the neural network. Matrix notation is really
handy in this case since it allows us to perform complex computation in a single step:

Zo= XWo

With this formula, we are summing up the products of input and the corresponding
synapse weights for each set of input. The output of a layer is obtained by applying an
activation function over all the individual values for a node.

The main purpose of an activation function is to convert the input signal of a node to
an output signal. As a parallel to the biological neuron, the output after application of
an activation function indicates whether a neuron is fired or not. Let's quickly
understand some of the most popular activation functions used within neural networks
before proceeding with the next steps in our linear perceptron model.

[101]

Neural Network for Big Data Chapter 4

Activation functions

Without an activation function, the output will be a linear function of the input values. A
linear function is a straight line equation or a polynomial equation of the first degree. A
linear equation represents the simplest form of a mathematical model and is not
representative of real-world scenarios. It cannot map the correlations within complex
datasets. Without an activation function, a neural network will have very limited capability
to learn and model unstructured datasets such as images and videos. The difference
between a linear and nonlinear function is illustrated in the following diagram:

600.00

500.00 Linear Function (Firs
Degree Polynomial)

400.00 Non-linear Function (Sixth

Degree Polynomial)

300.00
200.00
Data Points
100.00
0.00
0.00 50.00 100.00 150.00 200.00 250.00 300.00

Figure 4.6: Linear versus nonlinear functions

As we can see, the linear model that we get without use of the activation function
cannot accurately model the training data, whereas the multi-degree polynomial
equation can accurately model the training data.

Using a nonlinear activation function, we can generate nonlinear mapping between the
input and output variables and model complex real-world scenarios. There are three
primary activation functions used at each neuron in the neural network:

¢ Sigmoid function
¢ Tanh function
¢ Rectified linear unit

[102]

Neural Network for Big Data Chapter 4

Sigmoid function

The sigmoid function is one of the most popular nonlinear functions; it outputs 0 or 1 for
any x input value between -« and +. The function can be mathematically and graphically
expressed as follows:

Diminishing Gradient Zone

. —

A: ; 0.5

Active Gradient Zone

Figure 4.7: Sigmoid function

The function curve takes an S shape and hence the name sigmoid. As we can see in this
example, for the values of x between -2 and +2, the Y output values are very steep. A small
change in the value of X in this region contributes significantly to the value of the output.
This can be termed as an active gradient zone. For the purpose of simplicity, let's
understand this as a region on the curve with the highest slope. As the X values tends to be
between -~ and +=, the curve enters into a diminishing gradient zone. In this region, a
significant change in the value of X does not have a proportionate impact on the output
value. This results in a vanishing gradient problem when the model is trying to converge.
At this point, the network does not learn further or becomes extremely slow and
computationally impossible to converge. The best part with the sigmoid activation function
is that it always outputs 0 or 1, regardless of the input value X. This makes it an ideal choice
as an activation function for binary classification problems. For example, it is great for
identifying a transaction as fraudulent or not. Another problem with the sigmoid function is
that it is not zero-centered (0 < Output <1). It is difficult to optimize the neural network
computation. This drawback is overcome by the tanh function.

[103]

Neural Network for Big Data Chapter 4

Tanh function
The hyperbolic tangent (tanh) function is a slight variation of the sigmoid function that is 0
centered. The function can be mathematically and graphically represented as follows:

Zero Centered Diminishing Gradient Zone

1.00

0.50 {
s ™
2 0.00 {)

f(x) = tanh(x) = = -1 ' ﬁ

-1.00

-4.00 -2.00 0.00 2.00 4.00 X

Active Gradient Zone

Figure 4.8: Tanh function

The range of the tanh function is between -1 and 1 and it is zero-centered; -1 < Output < 1.
In this case, the optimization is easy and this activation function is preferred over the
sigmoid function. However, the tanh function also suffers from a vanishing gradient
problem similar to the sigmoid function. In order to overcome this limitation, the Rectified
Linear units activation function, ReLu, is used.

Relu
The ReLu function is mathematically and graphically represented as follows:

10}

8 \,,'\‘, ;

6 QQ‘\-*'

A(x) = max(0,x) b
{\‘ /
Ifx<0,R(x)=0 |/
T - 5 10

Figure 4.9 ReLu function

[104]

Neural Network for Big Data Chapter 4

The mathematical form of this activation function is very simple compared to the sigmoid
or tanh functions and it looks like a linear function. However, this is a nonlinear function
that is computationally simple and efficient, hence it is deployed in deep neural networks
(the neural networks with multiple hidden layers). This activation function eliminates the
vanishing gradient problem. The limitation of using ReLu is that we can only use it for the
hidden layers. The output layer needs to use different functions for regression and
classification problems. The ReLu function simplifies and optimizes neural network
computation and convergence compared to the sigmoid and tanh functions. In the case of
the sigmoid and tanh functions, all the neurons within the hidden units fire during model
convergence. However, in the case of ReLu, some of the neurons will be inactive (for the
negative input values) and hence the activations are sparse and efficient. While the
efficiency due to the horizontal activation line is desirable, it introduces a problem of
dying ReLu. The neurons that go into the state due to negative x values do not respond to
variations in error or input values that makes the major part of the neural network passive.
This undesirable side effect of ReLu is eliminated by a slight variation of ReLu, called
leaky ReLu. In the case of leaky ReLu, the horizontal line is converted into a slight sloped
non-horizontal line (0.001x for x <0), ensuring that the updates to the input values on the
negative side of the spectrum are alive. The leaky ReLu is graphically represented as
follows:

10}
8 5
Q\
4F _\:{/
$
- 10 -5 5 10
Z0.3%
0’9\\)(\
\R

Figure 4.10: Leaky ReLu

[105]

Neural Network for Big Data Chapter 4

Nonlinearities model

With the background information about the activation functions, we now understand why
we need nonlinearities within the neural network. The nonlinearity is essential in order to
model complex data patterns that solve regression and classification problems with
accuracy. Let's once again go back to our initial example problem where we have
established the activity of the hidden layer. Let's apply the sigmoid activation function to
the activity for each of the nodes in the hidden layer. This gives our second formula in the
perceptron model:

. Z(2)= XW(I)
o a? = f(z?)

Once we apply the activation function, f, the resultant matrix will be the same size as z®.
That is, 5 x 3. The next step is to multiply the activities of the hidden layer by the weights on
the synapse on the output layer. Refer to the diagram on ANN notations. Note that we have
three weights, one for each link from the nodes in the hidden layer to the output layer. Let's
call these weights W®. With this, the activity for the output layer can be expressed with our
third function as:

o Zo=a0Wo

As we know, a®@ is a 5 x 3 matrix and W@ is a 3 x 1 matrix. Hence, Z® will be a 5 x 1 matrix.
Each row representing an activity value corresponds to each individual entry in the training
dataset.

Finally, we apply the sigmoid activation function to Z(3) in order to get the output
value estimate based on the training dataset:

y/\ = f(z(3))

The application of activation functions at the hidden and output layers ensures nonlinearity
in the model and we can model the nonlinear training dataset into the ANN.

Feed-forward neural networks

The ANN we have referred to so far is called a feed-forward neural network since the
connections between the units and layers do not form a cycle and move only in one
direction (from the input layer to the output layer).

[106]

Neural Network for Big Data Chapter 4

Let's implement the feed-forward neural network example with simple Spark ML code:

object FeedForwardNetworkWithSpark {
def main(args:Array[String]): Unit ={
val recordReader:RecordReader = new CSVRecordReader (0,",")
val conf = new SparkConf ()
.setMaster ("spark://master:7077")
.setAppName ("FeedForwardNetwork-Iris")
val sc = new SparkContext (conf)
val numInputs:Int = 4
val outputNum = 3
val iterations =1
val multiLayerConfig:MultilLayerConfiguration =
new NeuralNetConfiguration.Builder ()
.seed (12345)
.lterations (iterations)
.optimizationAlgo (OptimizationAlgorithm
. STOCHASTIC_GRADIENT_DESCENT)
.learningRate (le-1)
.11(0.01) .regularization(true) .12 (1le-3)
.1list (3)
.layer (0, new Denselayer.Builder () .nIn (numInputs) .nOut (3)
.activation ("tanh")
.weightInit (WeightInit.XAVIER)
.build())
.layer (1, new Denselayer.Builder () .nIn(3) .n0Out (2)
.activation ("tanh")
.weightInit (WeightInit.XAVIER)
.build())
.layer (2, new
OutputLayer.Builder (LossFunctions.LossFunction.MCXENT)
.weightInit (WeightInit.XAVIER)
.activation ("softmax")
.nIn(2) .nOut (outputNum) .build())
.backprop (true) .pretrain (false)
.build
val network:MultilayerNetwork = new
MultilLayerNetwork (multilLayerConfigqg)
network.init
network.setUpdater (null)
val sparkNetwork:SparkDl4jMultilayer = new
SparkDl4jMultilayer (sc,network) wval
nEpochs:Int = 6
val listBuffer = new ListBuffer[Array[Float]] ()
(0 until nEpochs) .foreach{i =>
val net:MultilayerNetwork =
sparkNetwork.fit ("file:///<path>/
iris shuffled normalized csv.txt",4,recordReader)

[107]

Neural Network for Big Data

Chapter 4

listBuffer +=(net.params.data.asFloat().clone())

}

println("Parameters vs. iteration Output:
(0 until listBuffer.size).foreach{i =>
println (i+"\t"+listBuffer (i) .mkString) }

}

")

As we can see, the output value predicted by our model is not accurate. This is because we
have initialized the weights randomly and only forward propagated once. We need our

neural network to optimize the weights on each of the links between the input layer to the
hidden layer to the final output layer. This is achieved with a technique called

backpropagation, which we will discuss in the next section.

Gradient descent and backpropagation

Let's consider the following linear regression example where we have a set of training data.
Based on the training data, we use forward propagation to model a straight line prediction

function, h(x), as in the following diagram:

Prediction Error

<

Predictor Function h(x)

y (Target Variable)

Predicted Value

Prediction Point

X (Input Variable)

Figure 4.11: Forward propagation to model a straight line function

[108]

Neural Network for Big Data Chapter 4

The difference between the actual and predicted value for an individual training sample
contributes to the overall error for the prediction function. The goodness of fit for a neural
network is defined with a cost function. It measures how well a neural network
performed with respect to the training dataset when it modeled the training data.

As you can imagine, the cost function value in the case of the neural network is
dependent on the weights on each neuron and the biases on each of the nodes. The cost
function is a single value and it is representative of the overall neural network. The cost
function takes the following form in a neural network:

C (W, X", Y)

» W represents weights for the neural network
» X" represents the input values of a single training sample
* Y" represents the output corresponding X"

As we saw in Chapter 3, Learning from Big Data, the cost for all the training data points
can be expressed as a sum of squared error. With this, we get our fifth equation for the
neural network which represents the cost:

e C(W, X, Y)=]=5 1/2 (y - ya)

Since the input training data is contextual and something that we cannot control, the goal of
a neural network is to derive the weights and biases so as to minimize the value of the cost
function. As we minimize the cost, our model is more accurate in predicting values for the
unknown data input. There is a combination of weights, W, that gets us the minimum cost.
Refer to figure 4.3, we have nine individual weights in our neural network. Essentially,
there is a combination of these nine weights that gets us the minimum cost for our neural
network. Let's further simplify our example and assume that we just have one weight that
we want to optimize in order to minimize the cost of the neural network hypothesis. We can
initialize the weight to a random value and test a high number of arbitrary values and plot
the corresponding cost on a simple two-dimensional graph, as follows:

Minimum Cost

Cost

Weight

Figure 4.12: Weight-to-cost graph

[109]

Neural Network for Big Data Chapter 4

It may be computationally easy and feasible to calculate the minimum cost for a large
number of input weights selected at random. However, as the number of weights
increases (nine in our case) along with the number of input dimensions (just two in our
example), it becomes computationally impossible to get to the minimum cost in a
reasonable amount of time. In real-world scenarios, we are going to have hundreds or
thousands of dimensions and highly complex neural networks with a large number of
hidden layers and hence a large number of independent weight values.

As we can see, the brute-force optimization method for optimizing the weights will not
work for a large number of dimensions. Instead, we can use a simple and widely used
gradient descent algorithm in order to significantly reduce the computational requirement
in training the neural network. In order to understand gradient descent, let's combine our
five equations into a single equation, as follows:

J= 5172 (y -f(f(X WD) W))2

In this case, we are interested in finding the rate of change in | with respect to W, which
can be represented as a partial derivative, as follows:

oJ
T aw
If the derivative equation evaluates to a positive value, we are going up the hill and not in
the direction of minimum cost, and if the derivative equation evaluates to a negative
value, we are descending in the right direction:

aJ
“aw=t

Cria 3

Positive Slope

_ 9
= =

J J

I Negative Slope

w W

Figure 4.13: Positive slope versus Negative

[110]

Neural Network for Big Data Chapter 4

Since we know the direction of negative slope, or the descent in the direction of reduced
cost for the neural network, we can save the cost of computation while going in the wrong
direction for the combinations of the weight values. We can iteratively go down the hill
and stop at a point where the cost gets to a minimum and does not change significantly
with a change in weight.

The neural network is trained when we get the combination of weights that results in the
minimum value for the cost function. With the increase in the number of dimensions and
the number of hidden layers, the optimization level due to the application of gradient
descent increases and it is possible to train the neural network. However, the gradient
descent works well only for a convex function relationship between weights and the cost. If
the relationship is non-convex, the gradient descent algorithm my get stuck in a local
minima instead of global minima. This is illustrated in the following diagram:

N - |
@ Local Minima Global Minima /
\ ‘ {

. |
5\ |‘ yd f
N / \, |
. 7 \ | /
<> S \ | f
o - N\

Cost

— Weight ———

Figure 4.14: Graph of local minima and global minima

Depending on how we use our input data in conjunction with the weights matrix, it may
not matter whether the cost function graph is non-convex in nature if we use the training
examples and the corresponding weights one at a time in order to test multiple values in the
direction of negative slope or gradient descent. This technique is called stochastic gradient
descent. As the number of features increase, the gradient descent becomes computationally
intensive and unreasonable for very complex problems and neural networks.

[111]

Neural Network for Big Data Chapter 4

Stochastic gradient descent is an iterative technique that can distribute the work units
and get us to the global minima in a computationally optimal way. In order to
understand the difference between gradient descent and the stochastic gradient descent,
let's look at the pseudocode for each:

Gradient Descent

for (iin all_training_examples)
gradient_descent_params = evaluate_gradient(loss_function, data, parameters)
parameters = parameters — learning_rate * gradient_descent_params

Stochastic Gradient Descent

for (i in all training_examples)
random_shuffle(training data)
for (single_example in training_data)
gradient_descent_params = evaluate_gradient(loss_function, single_example, parameters)
parameters = parameters — learning_rate * gradient_descent_parameters

Figure 4.15: Difference between gradient and stochastic descent

Gradient descent pseudocode

We proceed with the gradient descent pseudocode:

1. Let w be some initial value that can be chosen randomly.
2. Compute the 9J/0W gradient.

3. If 9J/oW < t, where t is some predefined threshold value, EXIT. We found
the weight vector that gets the minimum error for the predicted output.

4. Update W. W= W -5 (9]/0W) [s is called the learning rate. It needs to be
chosen carefully, if it is too large, the gradient will overshoot and we will miss
the minimum. If it is too large, it will take too many iterations to converge].

So far, we have traversed the ANN in one direction, which is termed as forward
propagation. The ultimate goal in training the ANN is to derive the weights on each of the
connections between the nodes so as to minimize the prediction error. One of the most
popular technique is termed backpropagation. The fundamental idea is that once we know
the difference between the actual value of the predictor variable based on the training
example, the error is calculated.

[112]

Neural Network for Big Data Chapter 4

The error in the final output layer is a function of the activation values of the nodes on the
previous hidden layer. Each node in the hidden layer contributes with a different degree for
the output error. The idea is to fine-tune the weights on the connectors so as to minimize
the final output error. This will essentially help us to define how the hidden units should
look based on the input and how the output is intended to look. This is an online algorithm
that receives training input, one at a time. We feed forward to get predictions for a class by
multiplying weights and the application of the activation function, get prediction errors
based on the true label, and push the error back into the network in the reverse direction.

Backpropagation model

The backpropagation model can be conceptually represented as follows:

T

Forward
Propagation

1l
..]
N\ 7

Backward Node Error
Propagation

Prediction
Input
Features

Parameter

Training Data
Optimization

Accumulated Error

Figure 4.16: Backpropagation model

[113]

Neural Network for Big Data Chapter 4

The backpropagation algorithm can easily be implemented in a staged manner. This
is computationally less demanding compared to the gradient descent:

» Initialize the model: In this step, the model is randomly initialized to a point
where the weights are selected with mathematical approximation and
randomness. This is the first step in the feed-forward network.

» Propagate forward: In this step, all the input units, hidden units, and the output
units are activated after adding the sum of the products of the neuron units and
weights starting from the input units with the training dataset. The output is
calculated by the application of the activation to the final output unit.
Understandably, the output at this stage is going to be far from the ideal expected
output.

* Cost calculation: At this point, we have the expected output (based on the
training dataset) and the actual output from an untrained neural network. The
cost function is typically a sum of squared errors for each of the training data
points. This is a performance matrix of how well the neural network fits the
training dataset as well as an indication of how well it is able to generalize the
unknown input values that the model is expected to receive once trained. Once
the loss function is established, the goal of the model training is to reduce the
error in subsequent runs and for the majority of the possible input that the
model will encounter in the real scenario.

» Mathematical derivation of the loss function: The loss function is optimized
using the derivative of the error with respect to the weights on each of the
connections within the neural network. For each of the connections in the neural
network at this point, we calculate how much effect the change in value of a
single weight (across the entire network) has on the loss function. Here are some
of the possible scenarios when we calculate the cost derivative with respect to
the weights:

» At a particular weight value we have a loss of 0, the model
accurately fits the input training dataset.

» We can have a positive value for the loss function but the
derivative is negative. In this situation, an increase in weight will
decrease the loss function.

» We can have a positive value for the loss function and the
derivative is also positive. In this situation, a decrease in weight
will decrease the loss function.

[114]

Neural Network for Big Data Chapter 4

» Backpropagation: At this stage, the error in the output layer is back-propagated
to the previous hidden layer and subsequently back to the input layer. On the
way, we calculate the derivative and adjust the weights in a similar manner as in
the previous step. The technique is called auto-differentiation in the reverse
direction of the forward propagation. At each node, we calculate the derivative of
the loss and adjust the weight on the previous connector.

» Update the weights: In the previous step, we calculated the derivatives on each
of the nodes in all the layers by propagating the overall error backward. In a
simplified manner, New Weight = Old weight - (Derivative Rate * Learning Rate).
The learning rate needs to be carefully selected with multiple experiments. If the
value is too high, we may miss the minima and if the value is too low the model
will converge extremely slowly. The weight on each connection is updated with
following guidelines:

» When the derivative of the error with respect to the weight is
positive, the increase in weight will proportionally increase
the error and the new weight should be smaller.

» When the derivative of the error with respect to the weight is
negative, the increase in weight will proportionally decrease
the error and the new weight should be larger.

e If the derivative of the error with respect to the weight is 0, no
further updates to the weights are required and the neural
network model has converged.

Overfitting

As we have seen in the previous sections, gradient descent and backpropagation are
iterative algorithms. One forward and corresponding backward pass through all the
training data is called an epoch. With each epoch, the model is trained and the weights
are adjusted for minimizing error. In order to test the accuracy of the model, as a common
practice, we split the training data into the training set and the validation set.

The training set is used for generating the model that represents a hypothesis based on the
historical data that contains the target variable value with respect to the independent or
input variables. The validation set is used to test the efficiency of the hypothesis function
or the trained model for the new training samples.

[115]

Neural Network for Big Data Chapter 4

Across multiple epochs we typically observe the following pattern:

—_

Validation Set

/ ,\’océ’-'
&
Peak g\{‘\
&
> o

Training Set 7

— Error — Loss Function

—— #of Epochs ———

Figure 4.17: Graph of overfitting model

As we train our neural network through a number of epochs, the loss function error is
optimized with every epoch and the cumulative model error tends to 0. At this point, the
model has trained itself with respect to the training data. When we validate the hypothesis
with the validation set, the loss function error reduces until a peak. After the peak, the
error again starts to increase, as illustrated in the preceding figure.

At this point, the model has memorized the training data and it is unable to generalize itself
for a new set of data. Each epoch after this point comes under an overfitting zone. The
model has stopped learning after this point and it will produce incorrect results or
outcomes. One of the easiest ways to prevent overfitting and create a model that
generalizes well is to increase the amount of training data. With an increase in training
data, the neural network is tuned for more and more real-world scenarios and hence
generalizes well. However, with every increase in the training dataset, the computational
cost of each epoch proportionately increases.

The machine has a finite capacity for modeling the data. The capacity of the ANN for
modeling can be controlled by changing the number of hidden units, modifications, and
optimizations of the number of training iterations, or changing the degree of nonlinearity
for the activation functions. Overfitting can be controlled by reducing the number of
features. Some features have insignificant contribution to the overall model behavior and
hence the outcome. Such features need to be algorithmically identified with multiple
experiments and iterations and eliminated from the final model generation. We can also
use regularization techniques wherein all the features are used but with a varying degree of
weightage based on the significance of the feature on the overall outcome.

[116]

Neural Network for Big Data Chapter 4

Another popular regularization technique for preventing overfitting is dropout. With
this technique, the nodes in the ANN are ignored (dropped) during the training phase.
The neurons that are ignored are selected in a random manner.

Recurrent neural networks

So far, we have seen the ANNs where the input signals are propagated to the output layer in
the forward pass and the weights are optimized in a recursive manner in order to train the
model for generalizing the new input data based on the training set provided as input.

A special case real-life problem is optimizing the ANN for training sequences of data, for
example, text, speech, or any other form of audio input. In simple terms, when the output
of one forward propagation is fed as input for the next iteration of training, the network
topology is called a recurrent neural network (RNN).

The need for RNNs

In the case of the feed-forward networks, we consider independent sets of inputs. In the case of
image recognition problems, we have input images that are independent of each other in terms
of the input dataset. In this case, we consider the pixel matrix for the input image. The input
data for one image does not influence the input for the next image that the ANN is trying to
recognize. However, if the image is part of a sequence or a frame within a video input, there is a
correlation or dependence between one frame to the next frame.

This is also the case in audio or speech input to the ANN. Another limitation of the ANNs
we have seen so far is that the length of the input layer needs to be constant. For example, a
network that recognizes an image of 27 x 27 pixels as input will consistently be able to take
input of the same size for training and generalization loops. An RNN can accommodate
input of variable lengths and hence is more susceptible to the changes in input signals.

In summary, the RNNs are good at dependent input and input with variable lengths.

[117]

Neural Network for Big Data Chapter 4

Structure of an RNN

A simple representation of an RNN is when we consider the output of one iteration as
the input to the next forward propagation iteration. This can be illustrated as follows:

yt
Wv[Y = g, (W,h)
/hthR
w, h(t) = g, (WX + W, hitD)
xt

Figure 4.18: Output of one iteration as input to the next propagation iteration

A liner unit that receives input, x:, applies a weight, Wi, and generates a hypothesis with an
activation function metamorphosis into an RNN when we feed a weight matrix, Wg, back
to the hypothesis function output in time with the introduction of a recurrent connection.

In the preceding example, t represents the activation in ¢ time space. Now the activity of the
network not only depends on the input signal, weights, and the activation function, but also
on the activity of the previous timestamp. In the equation format, everything is the same
except for the introduction of an additional parameter that represents output from the
previous activation in time (¢-1).

Training an RNN

The RNN can be trained by unrolling the recurring unit in time into a series of feed-forward
networks:

Y Yiit Yira
w oo |
ht/ W /Hr+1 W, H Hm,
£
Xt Xer1)

Figure 4.19: Unrolling the recurring unit into a series of feed-forward networks

[118]

Neural Network for Big Data Chapter 4

The leftmost unit is the activity of the network in time, t, which is a typical feed-forward
network with x: as input at time, t. This is multiplied by the weight matrix, Wi. With the
application of the activation function, we get the output, y:, at time, . This output is fed as input
to the next unit along with the contextual and time input for the next unit in time, #+1. If you
notice, there is a fundamental difference in the feed-forward network and the RNN.

The weights within various input, hidden, and output layers in a feed-forward network are
different from each other and represent the significance of a dependent variable and the
connections on the overall output. In the case of the RNN, the weights across the units (Wk)
that are unrolled in time are the same. Since we are going to have an output at each of the
units, we are going to have a cost associated with each of the units. Let's assume the cost of
the first unit at timestamp t is Cr and subsequent units as C+1 and Ct+2. The RNN training
can be mathematically represented as:

ac aC, aC, 0C, dy, dh, dg da

Wy — OWp D AWR Ay, dh, dg da dWR

Figure 4.20: RNN training mathematical expression

In this case, we are combining the gradients across units to calculate the overall cost of the
network. Since the weights are shared across the units, the cost function is a derivative with
respect to the weights and we can derive this with the same backpropagation and gradient
descent methods.

Once the RNN is trained, it can be used primarily for the scenarios where the input are
dependent on each other. In the case of language translation, we can use the
connections between two keywords to predict the next word in the sequence in order to
increase the accuracy of the language translation model.

[119]

Neural Network for Big Data Chapter 4

Frequently asked questions

Q: Are ANNSs exactly the same as the biological neurons in terms of information
storage and processing?

A: Although it cannot be stated with 100% certainty that the ANNSs are an exact replica in
terms of memory and processing logic, there is evidence in medical science that the basic
building block of a brain is a neuron, and neurons are interconnected. When the external
stimulus is obtained or when is is generated by the involuntary processes, the neurons react
by communicating with each other by the transmission of neurosignals. Although the
functioning of the brain is very complex and far from fully understood, the theory of ANNs
has been evolving and we are seeing a great deal of success in modeling some of the very
complex problems that were not possible with traditional programming models. In order to
make modern machines that possess the cognitive abilities of the human brain, there needs
to be more research and a much better understanding of the biological neural networks.

Q: What are the basic building blocks of an ANN?

A: The ANN consists of various layers. The layer that receives input from the environment
(independent variables) is consumed by the input layer. There is a final layer that emits
output of the model based on the generalization of the training data. This layer is called
the output layer. In between the input and output layers there can be one or many layers
that process the signals. These layers are called hidden layers. The nodes within each of the
layers are connected by synopse or connectors. Each of the connectors has an optimum
weight so as to reduce the value of the cost function that represents the accuracy of the
neural network.

Q: What is the need for nonlinearity within an ANN?

A: The neural networks are mathematical models where the input are multiplied by the
synopse weights and the sum of all the node connection products constitutes the value on a
node. However, if we do not include nonlinearity with an activation function, multi-layer
neural networks will not exist. In that case, the model can be represented with a single
hidden layer. We will be able to model very simple problems with linear modeling. In order
to model more complex, real-world problems, we need multiple layers and hence
nonlinearity within the activation functions.

[120]

Neural Network for Big Data Chapter 4

Q: Which activation functions are most commonly used in building the ANNSs?
A: Commonly used activation functions within the ANNSs are:

» Sigmoid function: The output value is between 0 and 1. This function takes a
geometrical shape of S and hence the name sigmoid.

» Tanh function: The hyperbolic tangent function (tanh) is a slight variation of the
sigmoid function that is 0-centered.

* Rectified Linear Unit (ReLu): This is the simplest, computationally optimized,
and hence most popularly used activation function for the ANNs. The output
value is 0 for all negative input and the same as the value of input for positive
input.

Q: What is a feed-forward ANN and how are the initial values of weights selected?

A: A single pass through the network from the input layer to the output layer via the
hidden layers is called a forward pass. During this, the nodes are activated as sum
products of the node values and the connection weights. The initial values of the weights
are selected randomly and as a result, the first pass output may deviate from the expected
output based on the training data. This delta is called the network cost and is represented
with a cost function. The intuition and goal for the ANN is to ultimately reduce the cost to
a minimum. This is achieved with multiple forward and backward passes through the
network. One round trip is called an epoch.

Q: What is the meaning of model overfitting?

A: Model overfitting occurs when the model is learning the input and cannot generalize on
the new input data. Once this happens, the model is virtually not usable for real-world
problems. The overfitting can be identified by the variation in model accuracy between the
runs on training and validation datasets.

Q: What are RNNs and where are they used?

A: RNNs are the recurrent neural networks that utilize the output of one forward pass
through the network as an input for the next iteration. RNNs are used when the input are
not independent of each other. As an example, a language translation model needs to
predict the next possible word based on the previous sequence of words. ANNs have great
significance in the field of natural language processing and audio/video processing
systems.

[121]

Neural Network for Big Data Chapter 4

Summary

In this chapter, we introduced the most important concept in realizing intelligent machines,
which is artificial neural networks. The ANNs are modeled against the biological brain.
While the theory of ANN existed for decades, the advent of distributed computing power
along with access to unprecedented volumes of data has enabled development in this
exciting field of research.

In this chapter, we introduced the basic building blocks of the ANNSs and simple
techniques to train the models in order to generalize the model for producing outcomes for
the new datasets.

This introduction is a building block for the next chapter, which will dive deeper into the
implementation aspects of the neural networks.

[122]

Deep Big Data Analytics

In the previous chapter, we established the fundamental theory of artificial neural
networks (ANNs) and how they emulate human brain structure for generating output
based on a set of inputs with the help of interconnected nodes. The nodes are arranged in
three types of layers: input, hidden, and output. We understood the basic and
mathematical concepts of how the input signal is carried through to the output layer and
the iterative approach that ANNSs take for training weights on neuron connections. Simple
neural networks with one or two hidden layers can solve very rudimentary problems.
However, in order to meaningfully utilize ANNSs for real-world problems, which involve
hundreds or thousands of input variables, involve more complex models, and require the
models to store more information, we need more complex structures that are realized with
large numbers of hidden layers. These types of networks are called Deep Neural Networks
and utilizing these Deep Neural Networks for modeling the real data is termed deep
learning. With the addition of nodes and their interconnections, the Deep Neural Networks
can model unstructured input, such as audio, video, and images.

In this chapter, we will explore how deep learning can be utilized for addressing some
important problems in big data analytics, including extracting complex patterns from
massive volumes of data, semantic indexing, data tagging, fast information retrieval,
and simplifying discriminative tasks such as classification. We are going to cover:

*» The building blocks of deep learning:
* Gradient descent
» Backpropagation
» Non-linearities
* Dropout
e Specialized neural net architectures for structured data
» Building data preparation pipelines
* Hyperparameter tuning
* Leveraging distributed computing for deep learning

Deep Big Data Analytics Chapter 5

The proposed examples will be implemented using the Deeplearning4j (DL4]) Java
framework.

Deep learning basics and the
building blocks

In the previous chapters, we established the fact that the machine learning algorithms
generalize the input data into a hypothesis that fits the data so that the output, based on the
new values, can be predicted accurately by the model. The accuracy of the model is a
function of the amount of the input data along with variation in the values of the
independent variables. The more data and variety, the more computation power we require
to generate and execute the models. The distributed computing frameworks (Hadoop,
Spark, and so on) work very well with the large volumes of data with variety. The same
principles apply to ANNS.

The more input data we have along with variations, the more accurate the models can be
generated, which requires more storage and computation power. Since the computation
power and storage is available with the development of the big data analytics platforms
(in-premise as well as on the cloud), it is possible to experiment with large neural networks
with hundreds or thousands of nodes in the input layer, and hundreds or thousands of
hidden layers. These types of ANNs are called Deep Neural Networks.

While these models are computationally heavy, they produce accurate results and get better
with more data, unlike the traditional algorithms that plateau in terms of performance at
some point. After the plateau point, even after adding more data, the model accuracy for
traditional mathematical models does not increase by a great margin. The Deep

Neural Networks perform better in terms of accuracy and reliability with increasing
amount of data. The use of these multi-layered neural networks for hypothesis generation
is generally termed deep learning. The difference between a Simple Neural Network and a
Deep Neural Network can be depicted as follows:

[124]

Deep Big Data Analytics Chapter 5

Simple Neural Network Deep Neural Network
Input Layer Hidden Layer Output Layer Q Q Q
4 AR,) Q \ Q
| [oI
O (2 QN+ @ :
B | « Y) X L j
1 @ I\ SO 3
X c ¥ XA ‘5
Al - O O X ‘ C ‘ @ Q o
O
: o BORO
< o o
b R O @ O
Q oe | |
Q o J
& % s]
= .) Hidden Layers
5_ Learning algorithms
o
o
Data Volume

Simple ANN versus Deep Neural Network

For supervised learning problems, the Deep Neural Networks have proven to provide
encouraging results, especially when it comes to mapping some of the functions with high
complexity levels. With sufficiently large datasets with labeled training examples, the Deep
Neural Networks are able to train the connection weights so that there is no loss of
intelligence and the model accurately represents the historical facts based on data, and at
the same time has a level of generalization that suits most of the mission critical
applications. Remember, the generic and common objective of all the learning methods is to
minimize the cost function. The cost function value is inversely proportional to the model's
accuracy.

[125]

Deep Big Data Analytics Chapter 5

Let us mathematically define the cost function for a Deep Neural Network. This is also
termed the mean squared error function. This function will always be positive since it takes
the square of the difference:

w: collection of all the weights in the network

b: all the biases

Clw,b) =1/2n)_[ly(x) = al[* | . training data size (number of samples)

’ a: vector of outputs from the network corresponding to x as
input value

Let's look at some of the methods of Deep Neural Networks learning.

Gradient-based learning

In the previous chapter, we primarily discussed the single hidden layer perceptron model
or the simple neural networks, in that chapter we also introduced the concept of gradient
descent. Gradient descent, as applicable to the Deep Neural Network, essentially means we
define the weights and biases for the neuron connections so as to reduce the value of the
cost function. The network is initialized to a random state (random weights and bias
values) and the initial cost value is calculated. The weights are adjusted with the help of the
derivative of cost with respect to weights on the Deep Neural Network.

In mathematics, the derivative is a way to show the rate of change, that is,
the amount by which a function is changing at one given point.

For functions that act on real numbers, it is the slope of the tangent line at a point on a
graph:

" ' | The dotted line is a tangent at a point on the cost function.
' The cost function represents the aggregate difference between
Tangent | the expected and the actual output from the deep neural network.

Cost
P

Weights aggregate

[126]

Deep Big Data Analytics Chapter 5

In a typical classification problem, where we are trying to predict the output classes based
on the training data, we should be able to define the model's accuracy based on the number
of correct predictions. In that case, it will not be possible to understand the effect of various
weight values on the classification output. Instead, the Deep neural network is trained to
produce a cost value that is a quadratic function of the input variables. With this, tuning
various weight and bias values has a small gradient effect on the prediction confidence for a
particular class.

The gradient-based learning can be visualized with an object that is rolling downhill in the
direction of the lowest point in the valley. Gravity is the driving force that always moves
the object in the direction of the lowest point. The gradient descent algorithm works in a
similar manner. The slope is calculated at a random point initially; if the slope is negative,
the weights and biases are modified in the same direction. Let's consider £(w1,b1) as a small
movement for the cost value in the direction of (ws1,b1) and A(wa,by) as the small movement in
the (w2,b2) direction. We can define the change in the value of cost function as:

dC dC

ANC = ———A b _—
(wla 1)+ d(w27b2)

d(wl,bl) A(,LU?’bQ)

The goal is to choose values of (w;,bi) so that AC is a negative value. In order to meet
this goal, let's define AV as a vector of changes in (w;,bi):

AV = (A(wy, by), A(ws, by)T

Let's now define a gradient vector of the cost function as a vector of partial derivatives:

B dc de .
VG= (d(wl,bl) ’ d(uzz,bg))

We can now represent the change in the value of the cost function as:
AC~=VC.AV

The gradient vector, VC, establishes a relationship between changes in weight bias values
(wi,bi) and the changes in the value of the cost function, C. This equation allows choice of all
the weights and biases, AV, so that we get a negative value for AC. As a special case, if we
choose &V = -nVC, where 7 is the learning rate (small value that defines the step size for the
gradient descent). With this, the change in the value of the cost function becomes:

AC =~ —nVC.VC = —q||VC|?

[127]

Deep Big Data Analytics Chapter 5

Since the square value of VC is always going to be 2 0, AC will always be < 0. That means
cost, C, is always going to decrease, which is the intended behavior of the gradient descent.
We change the value of weights and biases as (wi,bi) = (wi,bi) - 7VC . This rule is used in an
iterative manner to reach the minimum cost value with the gradient descent algorithm.
With gradient descent, we need to carefully choose the value of 7 so that the function is
approximated properly. If the value is too great, the descent will miss the minima, and for
too small a value, the steps will be small and the convergence will take a lot of time and
computation. Applying the gradient descent to the deep neural network, we need to
repeatedly apply the following updates and calculate the cost with each iteration leading to
the minimum value for the cost function. The combinations of weights and biases at the
minimum cost value is the optimization for the deep neural network and provides the
required generalization:

wi=w1i=wi— £
N n ndw7
dC
b; bl b; ndb,;

While this iterative technique works mathematically, it becomes computationally
demanding as the number of training inputs goes on increasing. As a result, the learning
time increases. In most practical scenarios, the stochastic gradient descent is utilized. This
is a variation of gradient descent in which we randomly pick up a small number of inputs.
The gradient is averaged over these small numbers of input. This speeds up the gradient to
the minimum cost.

Backpropagation
Backpropagation, or backprop, is used to efficiently calculate the gradient of the cost

function, C. In simple terms, the goal of backprop is to compute the rate of change of the

dC dC
cost, C, with respect to the weights, (aw), and the biases, (a).

[128]

Deep Big Data Analytics Chapter 5

In order to clarify the intuition behind backprop, let's consider following deep neural
network:

c)
_/

! !
Imagine that we have made a small change, ijk, in the weight value of some weight, wﬂ“,

in the network. Due to this weight change, a corresponding change in the activation, Aali, for
the connected neuron takes place. This change propagates to the output layer and ultimately
affects the value of the cost function, as denoted by the solid lines in the earlier

diagram. This change in cost, AC, can be related to change in weight, Awlik, with

the following equation:

dC

!
jk

AC =

Awh,
w gk

l
This equation allows us to establish the relationship between a small change, Awﬂ»‘, and the
dc

overall cost, C, which also leads to computation of 4% . The change in the value of the
activation function for a connected neuron, 2] (j*h neuron in [** layer), is caused by the
weight change. This change can be represented as follows:

daé-
Adt =~ At
J duw! k

ik

[129]

Deep Big Data Analytics Chapter 5

This change in activation changes the activation for all the neurons in the next and
subsequently connected layers, shown by the solid arrows in the earlier formula.
The change can be represented as follows:

1+1
dag
!

a;

1 !
Nag™ =~ Aaj

Based on the value of change in the activation value, Aa’v’, we calculated earlier, the equation
can be rewritten as follows:

At ~ ——
l l
da; dwy
The chain reaction based on the change in weight for one of the connections propagates
to the end and affects the cost, C, which can be depicted as follows:

dc 5 dC dal dak! dakf! dd}
dwz.k dak da#' . da,L,’2 daé- dwé.k

This is the equation for backpropagation, which gives the change in rate for cost, C, with
respect to the weights in the network.

Non-linearities

Let's consider two types of feature spaces, where x1 and x2 are independent variables and
y is a dependent variable that takes a values based on x1 and x2:

Y |\‘\ Linearly non-separable
{ ‘ | \\‘O 0 t 5 3
o \!‘{?@59%0 0° R 23023 X
% o \\\\\s}‘?%»] o] 2\3023
B e ® %/@ g5 T
£ h g O
x1 > x1 >

[130]

Deep Big Data Analytics Chapter 5

In the first instance, the input features are linearly separable with a straight line that
represents the separation boundary. In other words, the space is linearly separable.
However, in the second instance, the features space is inconsistent and cannot be separated
with a line. We need some type of nonlinear or quadratic equation in order to derive the
decision boundary. Most of the real-world scenarios are represented with the second type of
feature space.

The deep neural networks receive data at the input layer, process the data, map it
mathematically within the hidden layers, and generate output in the last layer. In order for
the deep neural network to understand the feature space and model it accurately for
predictions, we need some type of non-linear activation function. If the activation functions
on all the neurons are linear, there is no significance for the deep neural networks. All the
linear relationships across layers can be aggregated in single linear function that eliminates
the need for multiple hidden units. In order to model the complex feature spaces, we
require non-linearities within the nodes' activation functions. In the case of the more
complex data input, such as images and audio signals, the deep neural networks model the
feature space with weights and biases on the connectors.

The non-linear activations define whether a neuron fires or not based on the input signal and
the applied activation function. This introduces enough non-linearity across the layers of a deep
neural network in order to model hundreds and thousands of training data samples. The typical
nonlinear functions that are deployed in the deep neural networks are:

» Sigmoid function: This is a mathematical function that takes the shape of 'S” and

ranges between 0 and 1. This takes a mathematical form of =g +e,

¢ Tanh function: This is a variation of the sigmoid for which the values range from
o . . tanh(z) = ———
-1 to 1. This nonlinear function takes the mathematical form of efser®
* Rectified linear unit (RELU): This function outputs 0 for any negative value of x
and equals the value of x when it is positive: f(z) = maz(0,z),

[131]

Deep Big Data Analytics Chapter 5

Dropout

Dropout is a popular regularization technique used to prevent overfitting. When the deep
neural network memorizes all the training data due to the limited size of the samples and a
network of right depth is utilized for training, it does not generalize well enough to produce
accurate results with the new test data. This is termed overfitting. Dropout is used primarily
for preventing overfitting. This is a simple technique to implement. During the training
phase, the algorithm selects the nodes from the deep neural network to be dropped
(activation value set to 0). With each epoch, a different set of nodes is selected based on a
predefined probability. For example, if a dropout rate of 0.2 is selected, during each of the
epochs, there is 20% chance that the node will not participate in the learning process. The
network with dropout can be visualized as follows:

Original Neural Network Neural Network with 50% dropout
F24 ‘;,,“ ‘; / X ‘:7: X
L) (& 5 (X @
~ ~— P 1 N~ — ~— X e
) £ ') () £ o
- s " - i x\ =
v) X
. &, 4) i) X
S b « 05 \ 9
A N) * Dropout = ~ :
W OS @ @Y 1t g7d)\ X ¥ X @/
3 - o= ~—)))
~ ~ ~ —
« <) X q X
< < () X e
Activation =0 -

By dropping out the nodes, a penalty is added to the loss function. Due to this, the model is
prevented from memorizing by learning interdependence between neurons in terms of
activation values as well as corresponding connecting weights. As a result of the dropout
where the activation on the dropped-out units is 0, we are going to have a reduced value on
the subsequent nodes in the network, we need to add a multiplication factor of 1 -
drop_out_rate (1 - 0.5 in our case) to the nodes that are participating in the training process.
This process is called inverted dropout. With this, the activation on the participating node
ig @ = a/(1 — drop_out_percentage) = a/(1 - 0.5) = a/0.5 = a *2 n order to further optimize the
dropout process, on the same training example, multiple iterations of the dropout with
different nodes randomly eliminated can be applied. This technique also helps to

eliminate the memorizing effect of the deep neural network and generalizes the training
model further. Since the number of units in the neural network are reduced, each epoch
through the network is optimized in terms of the time it takes through the iteration,
including the backpropagation.

[132]

Deep Big Data Analytics Chapter 5

However, with the tests on multiple datasets and neural network sizes, it is observed that
the number of iterations required for convergence are doubled with dropout (at a 50%
dropout rate) and the overfitting zone is eliminated, as shown in the following diagram:

T Dropout = 0 (original network) I Dropout = 0.5

c c e

_% Validation Set ,% . ~__—— Validation Set

£ =

= e >

E / '\9(\ E P SJO'—VC

s '\(‘Q’] g r""@r

] Peak {@'r | é’enCE

g o® g Peaki
W | Training Set W | Training Set 4
| | o/

—— # of Epochs ——— ——— # of Epochs ——

Building data preparation pipelines

The deep neural networks are best suited for supervised learning problems where we have
access to historical datasets. These datasets are used for training the neural network. As
seen in diagram 5.1, the more data we have at our disposal for training, the better the deep
neural network gets in terms of accurately predicting the outcome for the new and
unknown data values by generalizing the training datasets. In order for the deep neural
networks to perform optimally, we need to carefully procure, transform, scale, normalize,
join, and split the data. This is very similar to building a data pipeline in a data warehouse
or a data lake with the help of the ETL (Extract Transform and Load with a traditional data
warehouse) and ELTTT (Extract Load and Transform multiple times in modern data
lakes) pipelines.

We are going to deal with data from a variety of sources in structured and unstructured
formats. In order to use the data in deep neural networks, we need to convert it into a
numerical representation and make it available in multi-dimensional arrays. DataVec is a
popular Apache 2.0 library for generic machine-learning operations that we listed earlier.
DataVec supports many data sources out-of-the-box. These data sources cover the majority
of the types typically used within the data science community.

[133]

Deep Big Data Analytics Chapter 5

The data sources and types supported by DataVec are listed in the following table:

Data Type Description
Ccsv Comma separated files. The data fields (attributes are separated by COMMA ',' character)
Raw Test Data Tweets, Text Documents and 50 on

The imagesare stored as the two dimensional array of pixels. The pixels are represented as
Image Data an integer value in various color scales. For example, the grey scale image contains 256

unigue sheds represented by numbers between 0 and 255
LibSVYM is an open machine library which specifies the datarepresentation in a structured

LibSVM Data

schema

This is a binary file format which isinternally used by Matlab. It includes arrays, variables,
Matlab (MAT) format functions v v v ¥

These are text formats which are defined by semantic rules and support hierarchial

JSON, XML, YAML)
reprentation of the data

A generic machine learning pipeline consists of standard steps, such as data extraction
from source, ingestion, preparation, model training and retraining, model deployment, and
predictions (class prediction or regression value). The pipeline can be visualized as follows:

~
) , Model Model
Ingestion — Preparation — Training — Deployment
S/
Normalization
. F’_/
Predictions

There are more and more devices and systems generating data in digital formats. These
data assets are typically pushed into data lake structures that are based on distributed
computing frameworks. Many organizations are also adopting a cloud-first strategy. The
majority of the data loads are computation is moving to cloud infrastructure and
platforms. For the machine learning, and specifically for the use cases based on deep
neural networks, we need to carefully define the data ingestion and processing pipelines.

[134]

Deep Big Data Analytics Chapter 5

The DataVec API has libraries that make it easy to get the data in the format that the neural
networks can understand. The primary component is the vectorization and hence the API is
called DataVec. This is a process by which the data attributes are converted into numerical
formats and regularized for the specific use case requirements. DataVec has a similarity in
dealing with input and output data. The structures are defined to suit parallel processing
and to work seamlessly with distributed file systems, such as HDFS.

The Hadoop Distributed File System (HDFS) is a distributed file system
designed to run on commodity hardware. It has many similarities with
existing distributed file systems. However, the differences from other
distributed file systems are significant. HDFS is highly fault-tolerant and is
designed to be deployed on low-cost hardware. HDFS provides high
throughput access to application data and is suitable for applications that
have large datasets.

There are three primary entities in HDFS, as well as DataVec, for storing and loading
the data for processing.

¢ InputFormat: This defines the structural semantic of the data. It confines to a
predefined schema. The validators are implemented for validation based on the
InputFormat. The input formats are defined in such a way that they can be
easily split for distributed processing. The most commonly used input formats

are:
¢ FileInputFormat: This is a file-based format and treats a file as an

independent and unique object. The format is tied with an input
directory in which the data file is present. This format can also read
and process all the files in a directory. Once all the files are loaded,
the splits are created based on the underlying distributed file
system rules.

* TextInputFormat: The Hadoop MapReduce framework utilizes
this as the default format. The best-suited and default format is a
comma-separated data structure that typically contains a newline
character as a record separator.

* SequenceFileInputFormat: This format is used for reading the
sequence files.

* InputSplit: This object is created from the InputFormat and represents the data
logically. The splits are divided into records. The records can be independently
processed in a distributed manner by Hadoop.

* RecordReader: This object reads the records defined by the InputSplit. It
generates key-value pairs based on the indexing of the datasets. This makes it
easy for the Mapper to read in sequences of available data chunks for
processing.

[135]

Deep Big Data Analytics Chapter 5

These concepts are also implemented in the DataVec API for facilitating distributed parallel
processing. DataVec also supports the OutputFormats that are largely interoperable. The
vector formats most commonly generated with DataVec are ARFF and SVMLight. The
framework also provides extensibility for incorporating custom input formats. Once the
formats are defined with the DataVec interfaces, the framework handles those in the same
way as the predefined formats. Vectorization of the datasets is the central focus for the
DataVec library.

The numerical vectors are the only suitable input formats as well as the processing formats
for the deep neural networks. The API also supports transformation libraries for
massaging the data and filtering out the insignificant records and attributes. Once the data
is ingested it is available for utilizing in training and testing the models. Normalization is
one of the important preparation steps in order to optimize the learning process.

This step is important when the neural networks are deep within multiple
hidden layers and the data input features vary in the scale. This variance
results in slow convergence and takes a very long time for the deep neural
network to learn. One of the most common normalization technique is 0-1
range normalization. In this, the input values are normalized between 0
and 1 without affecting the data quality or losing any data.

Let's demonstrate normalization using the Weka framework:

1. Open the Weka explorer and select the iris.atff file. This is a simple dataset
with four features and a class output variable with three possible output values:

| Open file... | | Open URL... ‘ | Open DB... | | Generate... | Edi
Filter
Choose |Mormalize -5 1.0-T 0.0
Current relation Selected attribute
Relation: iris Attributes: 5 Name: sepallength
Instances: 150 Sum of weights: 150 Missing: 0 (0%) Distinct: 35
Attributes L sotins L ‘
& Open (2
d
. oo
o, LooK In: |ﬁ data |'| E
1_ p n H
2 — sepalwitlﬁr;u D airline.arff D diabetes.arff D iris_normaliz [_| Invoke options dialog
3 ; petallength D breast-cancer.arff D glass.arff D labor.arff
;’: E;t:lswmth [} contactlenses.arft [y nypothyroid.arff [ReutersCorn| Note:
D cpu.arft D lonosphere.arff D ReutersCorn Some file formats offer additional
[y cpu.with.vendor.arff [iris.2D.arff [™) ReutersGrain options which can be customized
D credit-g.arff D iris.arff D ReutersGrair when invoking the options dialog.

[136]

Deep Big Data Analytics

Chapter 5

2. Review the attributes and their original value distribution:

Attributes value Distribution

Selected attribute

Name: sepallength Type: Numeric
Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)
Statistic Value
Minimum 43
Maximum 7.9
Mean 5.843
: StdDev 0.828
Current relation k -
m:fa'ﬁi'ng 150 sum :;T;:ﬁ:: ?50 Selected atribute
‘ - Name: sepalwidth Type: Numeric
Attributes Missing: 0 (0%) Distinct: 23 Unique: 5 (3%)
All None } [Invert Pattern U | L[
d L Minimum 2
Maximum 44
s 3 it Mean 3.054
= . StdDev 0.434
2[_|sepalwidth
i lpetallength Selected attribute
4%”:-“3'"""“" Name: petallength Type: Numeric
5{lclass 0(0%) Distinct: 43 Unique: 10 (7%)
Statistic Value
Minimum 1
Maximum 6.9
Mean 3759
StdDev 1.764

3. Apply the normalization filter. Choose the filter under filters | unsupervised

| attribute | Normalize and apply the filter to the selected dataset:

Filter

[137]

Deep Big Data Analytics Chapter 5
4. Check the attribute values after normalization. The values are all in the
range between 0 and 1:
Attributes value Distribution
Selected attribute
Name: sepallength Type: Numeric
Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)
Statistic Value
| Minimum |0
Maximum .1
[Mean [0.429
Current relation | StdDev [023
Relation: iris Attributes: 5 Selectad attribute
Instances: 150 Sum of weights: 150 Name: sepalwidth Type: Numeric
Attributes Missing: 0 (0%) Distinct: 23 Unique: 5 (3%)
All i . r— pattern Statistic | Value
Minimum |0
Maximum 11
No - Name Mean 0.439
1 Jsepallengih StdDev [0.181
2[_|sepalwidth)
37: [pmauengtn Selected attribute
4l |petalwidth Name: petallength Type: Numeric
5[_Idass Missing: 0 (0%) Distinct: 43 Unique: 10 (7%)
Statistic [value
Minimum |0
‘F"'\EIXIIT\UFH ‘1
Mean [0.468
| StdDev [0.299

These normalized values in the range of 0 and 1 produce the same training model and
hence the output. However, with normalization, we optimize the learning performance for
the deep neural network. Here is the Java code for applying normalization in the data
preparation pipeline using the deeplearning4j library:

package com.aibd.dnn;

import org.datavec.api.records.reader.RecordReader;

import org.datavec.api.records.reader.impl.csv.CSVRecordReader;
import org.datavec.api.split.FileSplit;
org.datavec.api.util.ClassPathResource;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.nd4j.linalg.dataset.DataSet;

import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;

import org.nd4j.linalg.dataset.api.preprocessor.NormalizerMinMaxScaler;

import

public class Normalizer {

public static void main(Stringl[]
int numLinesToSkip = 0;

args) throws Exception {

char delimiter = ',"';

[138]

Deep Big Data Analytics Chapter 5

System.out.println("Starting the normalization process");
RecordReader recordReader = new
CSVRecordReader (numLinesToSkip,delimiter) ;

recordReader.initialize (new FileSplit (new

ClassPathResource ("iris.txt").getFile()));
int labelIndex = 4;
int numClasses = 3;

DataSetIterator fulliterator = new
RecordReaderDataSetIterator (recordReader, 150, labelIndex,numClasses) ;

DataSet dataset = fulliterator.next();

// Original dataset
System.out.println("\n{}\n" + dataset.getRange(0,9));

NormalizerMinMaxScaler preProcessor = new NormalizerMinMaxScaler () ;
System.out.println("Fitting with a dataset............... ")
preProcessor.fit (dataset);

System.out.println("Calculated metrics");

System.out.println ("Min: {} - " + preProcessor.getMin());
System.out.println("Max: {} - " + preProcessor.getMax());

preProcessor.transform(dataset) ;
// Normalized dataset
System.out.println ("\n{}\n" + dataset.getRange(0,9));

}

Here is the output from the program:

===========0riginal Values =======

[[5.10, 3.50, 1.40, 0.20],
[4.90, 3.00, 1.40, 0.20],
[4.70, 3.20, 1.30, 0.20],
[4.60, 3.10, 1.50, 0.20],
[5.00, 3.60, 1.40, 0.20],
[5.40, 3.90, 1.70, 0.40],
[4.60, 3.40, 1.40, 0.30],
[5.00, 3.40, 1.50, 0.20],
[4.40, 2.90, 1.40, 0.20]]

===========Normalized Values =======

[[0.22, 0.62, 0.07, 0.04],
[0.17, 0.42, 0.07, 0.04],
[0.11, 0.50, 0.05, 0.047],
[0.08, 0.46, 0.08, 0.04],

[139]

Deep Big Data Analytics Chapter 5

[0.19, 0.67, 0.07, 0.04],
[0.31, 0.79, 0.12, 0.12],
[0.08, 0.58, 0.07, 0.08],
[0.19, 0.58, 0.08, 0.04],
[0.03, 0.38, 0.07, 0.04]]

Practical approach to implementing neural
net architectures

While the deep neural networks are good at generalizing the training data with multi-
layered iteratively-generated models, the practical application of these algorithms and
theory requires careful consideration of various approaches. This section introduces general
guiding principles for using the deep neural networks in practical scenarios. At a high level,
we can follow a cyclic process for deployment and the use of deep neural networks, as

depicted in this diagram:

Define and
Realign the Goals |

Deep Neural Network

X

Deploy and 175 ! Dy~ et end-to-end
Evaluate ¢ | - O/ | § Pipeline

- « ot

i -
‘ «
Hldder‘\Layers

Incremental Performance
Changes ‘ Tuning

[140]

Deep Big Data Analytics Chapter 5

We explain the preceding diagram as follows:

* Define and realign the goals: This is applicable not only to the deep neural
networks but in general use of the machine learning algorithms. The use-case-
specific goals related to the choice error metric and threshold target value for the
metric need to be set as the first step. The goal around the error metric defines the
actions in the subsequent stages of architectural design and various design
choices. It is unrealistic to set the goal of zero error for most of the practical use
cases. This is due to the stochastic nature of most of the real scenarios where the
training data is often insufficient and cannot model the environment with
certainty.

* Set the end-to-end pipeline: Once the goals are determined and the expected
threshold metrics are set up, the next step is to set up the end-to-end pipeline.
While the pipeline is going to be different based on the use case and available
data assets, in this section we will learn the generic guidelines. When the use case
is to implement supervised learning with fixed and small numbers of input
parameters in vector form (for example, defining the housing price based on
various factors, such as the square foot area, number of rooms, location, start with
a feed-forward network). Initialize this network with fully connected nodes. In
case of a matrix structure data such as image pixels, use a convolutional neural
network architecture. When the input is a sequence of data that depends on the
previous value chain, use a recurrent network topology. Early stopping and
dropout can be used as the strategies when the training set contains a large
number of examples and input features.

 Performance tuning: Once we have the basic pipeline setup completed, we need
to evaluate the performance of the model. There is a decision point between
trying out a set of new models or model parameters, or adding more data to the
training set. As a general guiding principle, the initial model should be tested
through multiple iterations by adding more data and evaluating its impact on
the model performance. Measure the model performance on the training set. If
the model is not performing well on the training set, the first step is to increase
the number of hidden units in the network. With this, the model is able to
identify minor and deeper insights in the training data. The performance needs
to be evaluated based on multiple tests by setting different values for the
learning rate. Despite this, if the model's performance on the training data does
not improve, there may be an issue with the quality of the training data. The
datasets need to be carefully evaluated and cleansed before running further
optimizations.

[141]

Deep Big Data Analytics Chapter 5

Once the model is performing well on the training data, we need to test the
performance with the test data. If the model is performing well within the set
threshold in the first step, the model is well generalized and good to be utilized
with real data. If the model does not perform well on the test data, we need to
gather more data and train the model again for better generalization. As a rule of
thumb, the marginal addition of data does not improve the performance by a
great deal. We need to consider adding data in multiples of the original dataset in
order to achieve significant performance gain and reduce generalization error.

Incremental changes: The summary-level goal for deploying the deep neural
networks is to minimize the error in the real data when the model is deployed. In
order to achieve that, we need to make incremental changes to the configuration
parameters. This is termed hyperparameter tuning. Some of the
hyperparameters which typically result in quick gains are number of hidden
units, learning rate, convolution kernel width, implicit zero padding, weight
decay coefficient and dropout rate. Apart from these, different volumes of the
training data are randomly tested for incrementally optimizing the model
performance. We will cover this topic in detail in the next section.

Deploy and evaluate: Once the threshold goals for the model's performance are
achieved, the model can be deployed in the real environment. Due to the
stochastic nature of most of the environments, the model performance needs to
be constantly evaluated, especially for mission-critical applications. At this
stage, we also need to consider strategies for automated hyperparameter-tuning
based on the historical trends with the model's deployment in production. With
increasing degrees of historical data on the model's performance with different
values of manually-, as well as automatically-selected hyperparameter values, it
is also possible to treat the hyperparameter values, the volume of the training
data as an input set of the dependent variables, and the model's performance as
the dependent variable. A simplified technique, such as Bayesian regression, can
be used for further optimization at runtime in an automated manner.

In the next section, we will take a look at some of the guiding principles for tuning
the runtime parameters for the deep neural networks.

[142]

Deep Big Data Analytics Chapter 5

Hyperparameter tuning

Imagine a sound system that has a high quality speaker and mixer system. You must have
seen a series of buttons on the console that independently control a specific parameter of
sound quality. The bass, treble, and loudness are some of the controls that need to be
properly set for a great experience. Similarly, a deep neural network is only as good as the
setting of various controlling parameters. These parameters are called hyperparameters,
and the process of controlling various parameters at a value that gets the best performance
in terms of training/execution time as well as accuracy and generalization of the model.
Similar to the sound equalizer example, multiple hyperparameters need to be tuned
together for optimum performance. There are two strategies typically used when choosing a
combination of hyperparameters:

* Grid search: The hyperparameters are plotted on a matrix and the combination
that gets the best performance is selected for the model that is deployed in the
real scenario. With grid search, the number of iterations to the yield ratio is
poor.

* Random search: In the case of random search, the hyperparameter values are
selected at random. In this case, with the same number of iterations as the grid
search, there is a better chance of reaching the optimum values for the
hyperparameters. The difference between grid search and random search can
be depicted with the diagram as follows:

Grid Search Random Search
N e o o o o [o ® ® o
~ []
o . = ®
: ® e o o o Optimum o ° ® P
] ~" Combination ——&_| ®
2 e o o o o gt ®
i E ® o
o s - —
?, L @ ® O e g °® o — ‘@ (]
3 | ® ° L4
B ® L] o O o z o

° %
Hyperparameter (1) ——— Hyperparameter (1) ———

[143]

Deep Big Data Analytics Chapter 5

A variation of the random search technique can be deployed in order to reduce the number
of iterations through the search space. The technique is broadly categorized as Coarse to
Fine search. In this case, the random search is run for a few iterations and once a region
with higher optimization combination is identified, the search space is limited to a smaller
zone of hyperparameter values. With this technique, the search is confined to a region and
hence optimized. The coarse-to-fine technique can be visualized as follows:

Random Search

Optimum
Combination

- Fine Zone
A

Hyperparameter (2)

Hyperparameter (1) ———

During initial search iterations, the entire space is searched. As the optimum
hyperparameter values are found, the search space is restricted to a fine zone. With this,
the hyperparameters are finely tuned with a relatively smaller number of iterations. With
these techniques for searching for the right set of hyperparameters, let's now look at some
of the most commonly used hyperparameters with deep neural networks.

Learning rate

In the Gradient-based learning section of this chapter, we established the equations for weight
and bias updates for the deep neural network as follows:

. . . dC
Wr=wir=wt—n
dwi
dC
i b,

[144]

Deep Big Data Analytics Chapter 5

In these equations, the learning rate is denoted by 7. The learning rate for the gradient
descent algorithm defines the size of the step that algorithm takes with each training set
instance. If the learning rate is too high, the average loss across the gradient descent
steps will be high. In this case, the algorithm may miss the global minima. An extremely
low learning rate will result in slow convergence, as depicted in this diagram:

Sn:al! learning I Large learning
rate :

] | n / rate n

\ € c
5 \ k]
=] ¥ ‘;'é
g \ 32
I.|=. At R *
w \ \
2 ¥ 2
- | 1 rd
1 \ v
= g
c \ 4 / W S
w \9_ / S

—— #of Epochs —— —— #of Epochs —

If there is an opportunity to tune only one hyperparameter, this parameter needs to be
tuned. As a standard, the value of the learning rate needs to be less than 1 and greater than
10-%. Another widely used strategy with the learning rate is to adapt to a decreasing
learning rate with time (training iterations). During the initial iterations, the learning rate is
kept constant and once the model is close to convergence (when the change in the value of
loss function degrades to a minimum), the learning rate is modified with a small fraction of
the original learning rate. Typically, a 0.001 fraction of the initial learning rate is
recommended for optimum convergence to global minima. Another strategy for quicker
convergence using parallel processing and train with mini batches. These batches
independently tune the learning rate hyperparameter with small batches defined by a factor
between 1 and 100. When the mini batch factor is 1, the algorithm behaves as the gradient
descent algorithm. As an example, when the factor value is 20, the training data samples are
at 5% and are distributed for independent tuning of the learning rate, .

Number of training iterations

This hyperparameter is useful for avoiding overfitting. As the model converges (the loss
function value plateaus at a point and does not change with epochs), it tends to overfit the
training data and moves towards a non-generalized zone in which the test samples do not
perform as well as the training data. Setting the number of training iterations carefully
around the plateau region ensures early stopping and hence a robust model that
generalizes well.

[145]

Deep Big Data Analytics Chapter 5

While the hyperparameters are tuned and their effect on the overall cost function is
evaluated, the early stopping can be disabled. However, once all the other hyperparameters
are fully tuned, we can dynamically set the number of training iterations based on the
plateau region for the loss function.

Stopping immediately after convergence is not a good strategy. It is
recommended to continue the iterations for about 10% of the total epochs
that resulted in near convergence. Controlling the number of training
iterations is a good strategy to reduce the computation requirement for the
model.

Number of hidden units

The performance of the deep neural network can be tweaked by selecting and changing the
number of hidden units, nn, in each of the layers. As a general guideline, it is recommended
to select a larger-than-required nr value initially. This ensures enough generalization for the
network. However, the higher the value of 7, the greater the computational requirement
for training the deep neural network. This hyperparameter can also be tuned at the level of
a layer. Each individual layer can have a different and optimal value for n: based on the
results from multiple iterations on the test data. In such cases, the first layer that is
connected to the input layer is recommended to be overcomplete (having more nodes than
the optimum value). This strategy helps to generalize the data better than having a lean first
layer and more populated layers toward the output layer.

Number of epochs

One iteration through the entire dataset forward and backward in the deep neural network
is called as an epoch. With each epoch, the network typically uses a backpropagation
algorithm to adjust weights and biases. It is important to choose the right number of epochs.
If the number of epochs is too high, the network will potentially overfit the data and not
generalize on the new set of input.

If the number of epochs is too low, the network will underfit the data and will not perform
well, even on the training data. There is no rule of thumb for selecting the number of
epochs for a deep neural network. The number depends on the diversity of the dataset and
the volume of the data. A recommended strategy is to start with a high number of epochs,
and once the loss function does not vary significantly between multiple epochs, the training
can be stopped.

[146]

Deep Big Data Analytics Chapter 5

Experimenting with hyperparameters
with Deeplearning4j

Let's build a simple neural network to demonstrate the effects of various hyperparameters
on model performance. We will create a simple neural network that can add two numbers
based on the randomly generated training data. The training data has two independent
variables, x1 and x2, and an output variable, y1 = x1 + x2. Here is a pictorial view of the
network we will generate with the deeplearning4j library:

Y=x1+x2

x1 N *

, .
-

Here is the utility code for generating the sample data: x1 and x2 as the input
independent variables, and y as the output (dependent) variable:

// Method to generate the training data based on batch size passed as
parameter

private static DataSetIterator generateTrainingData (int batchSize,
Random rand) {

// container for the sum (output variable)
double [] sum = new double[nSamples];

// container for the first input variable
x1l double [] inputl = new double[nSamples];
//container for the second input variable
x2 double [] input2 = new double[nSamples];

[147]

Deep Big Data Analytics Chapter 5

// for set size of the sample in configuration, generate random
// numbers and fill the containers
for (int i= 0; i< nSamples; i++) {

inputl([i] = MIN RANGE + (MAX_RZ—\NGE - MIN_RZ—\NGE) *
rand.nextDouble () ;
input2([i] = MIN RANGE + (MAX_RZ—\NGE - MIN_RZ—\NGE) *

rand.nextDouble () ;
// £ill the dependent variable vy
sum[i] = inputl[i] + input2[i];
}
// Format in the deeplearning4j data structure
INDArray inputNDArrayl = Nd4j.create(inputl, new
int[] {nSamples,1}); INDArray inputNDArray2 = Nd4j.create (input2,
new int[]{nSamples,1l}); INDArray inputNDArray =
Nd4j.hstack (inputNDArrayl, inputNDArray2); INDArray outPut =
Nd4j.create(sum, new int[]{nSamples, 1}); DataSet dataSet = new
DataSet (inputNDArray, outPut); List<DataSet> listDs =
dataSet.asList (); Collections.shuffle(listDs,rand);
return new ListDataSetIterator (listDs,batchSize);

}

Here is the code for the method that generates the multi-layer neural network
with configurable hyperparameters:

/** Method for generating a multi-layer network

* @param numHidden - the int value denoting number of nodes in the hidden

unit
* @param iterations - number of iterations per mini-batch
* @param learningRate - The step size of the gradient descent algorithm
* @param numEpochs - number of full passes through the data
* @param trainingDatalterator - the iterator through the
randomly generated training data
* @return the model object (MultilLayerNetwork)
*x */
private static MultilayerNetwork generateModel (int numHidden,
int iterations, double learningRate, int numEpochs,
DataSetIterator trainingDatalterator) {

int numInput = 2; // using two nodes in the input layer
int numOutput = 1; // using one node in the output layer
MultiLayerNetwork net = new MultiLayerNetwork (new
NeuralNetConfiguration.Builder ()
.seed (SEED)
.lterations (iterations)
.optimizationAlgo (OptimizationAlgorithm.STOCHASTIC GRADIENT DESCENT)
.learningRate (learningRate)
.weightInit (WeightInit.XAVIER)
.updater (Updater .NESTEROVS)

[148]

Deep Big Data Analytics Chapter 5

.list ()
.layer (0, new Denselayer.Builder () .nIn (numInput) .nOut (numHidden)
.activation (Activation.TANH)
Lbuild())
.layer (1, new OutputlLayer.Builder (LossFunctions.LossFunction.MSE)
.activation (Activation.IDENTITY)
.nIn (numHidden) .nOut (numOutput) .build())
.pretrain(false) .backprop (true) .build()
);
net.init () ;
net.setlListeners (new ScorelterationListener(l));

//Train the network on the full dataset, and evaluate in

periodically double startTime = System.currentTimeMillis();

for(int i=0; i<nEpochs; i++) {
trainingDatalterator.reset();
net.fit(trainingDatalterator);

}

double endTime = System.currentTimeMillis();

System.out.println("Model Training Time = " + (endTime -

startTime)); return net;

This model can be tested by passing different values of the hyperparameters, as follows:

public static void main(String[] args) {

//Generate the training data
DataSetIterator iterator =
generateTrainingData (batchSize, randomNumberGenerator) ;

// Test 1: =————————— -
//Set the values of
hyperparameters int nHidden = 10;
int iterations = 1;
double learningRate = 0.01;
int nEpochs = 200;
double startTime = System.currentTimeMillis();
MultilLayerNetwork net =
generateModel (nHidden, iterations, learningRate, nEpochs,iterator);

double endTime = System.currentTimeMillis();
double trainingTime = (endTime - startTime);

// Test the addition of 2 numbers

INDArray input = Nd4j.create (new double[] { 0.6754345,
0.3333333333333 }, new intf[] { 1, 2 });

INDArray out = net.output (input, false);

[149]

Deep Big Data Analytics Chapter 5

double actualSum = 0.6754345 + 0.3333333333333; double error =
actualSum - out.getDouble(0); System.out.println("Hidden Layer
Count, Iterations, Learning Rate,
Epoch Count, Time Taken, Error");
System.out.println (""+nHidden + "," + iterations + "," +
learningRate + "," + nEpochs + "," + trainingTime + "," + error);

/] e

With this code, the output will be printed on the console as follows:

Hidden Layer Count, Iterations, Learning Rate, Epoch Count, Time
Taken, Error

10,1,0.01,200,11252.0,-3.5079920391032235
10,1,0.02,200,1,3781.0,-2.8320863346049325
10,1,0.04,200,1,3152.0,-9.223153362650587
10,1,0.08,200,1,3520.0,NaN
5,1,0.01,200,2960.0,-0.725370417017652

Alternatively, the deeplearning4j library provides a visualization interface with the
Ul library. The Ul library can be included as Maven dependency, as follows:

<dependency>
<groupld>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-ui_2.10</artifactId>
<version>${dl4dj.version}</version>
</dependency>

The user interface can be quickly enabled by adding the following lines of code:

//Initialize the user interface backend
static UIServer uiServer = UIServer.getInstance();

//Configure where the network information (gradients, score vs. time) is
to be stored.

static StatsStorage statsStorage = new InMemoryStatsStorage();

// Once the MultilayerNetwork object is initialized, register
the StateStorage instance as a //listener.

net.setlisteners (new StatsListener (statsStorage));

[150]

Deep Big Data Analytics Chapter 5

With this simple code snippet, the framework enables a UI on port 9000 on the localhost:

Model Score vs. Iteration aining Information

= Model
MultiLayerNetwork

]
[—— N = 2
| = 1
il ‘ 4
CiLanguage |
|1
| [\ Las 25727
A \ |
| \ Total Parameter Updates
—~ | GA\ \
- dad - /A
\
\/
Score : 3.81231, Iteration :
Update:Parameter Ratios (Mean Magnitudes): logyo Standard Deviations: logqo pdate: Gradient Activations

DL4J Training Ul session |

(@l overview
Layer Information

= Model

ayer Name

@ System

[Language

Activation Funct

Update:Parameter Ratios (Mean Magnitudes): logi4/pdate Param Ratio
mb
C

Output o R
layer1 |~

[151]

Deep Big Data Analytics Chapter 5

Distributed computing

As we have seen in figure 5.1, the performance of the neural network improves with an
increasing volume of training data. With more and more devices generating data that can
potentially be used for training and model generation, the models are getting better at
generalizing the stochastic environment and handling complex tasks. However, with more
data and more complex structures for the deep neural networks, the computational
requirements increase.

Even though we have started leveraging GPUs for deep neural network training, the
vertical scaling of the compute infrastructure has its own limitations and cost implications.
Leaving the cost implications aside, the time it takes to train a significantly large deep
neural network on a large set of training data is not reasonable. However, due to the nature
and network topology of the neural networks, it is possible to distribute the computation on
multiple machines at the same time and merge the results back with a centralized process.
This is very similar to Hadoop, as a distributed computing batch processing engine, and
Spark, as an in-memory distributed computing framework. With deep neural networks,
there are two approaches for leveraging distributed computing;:

* Model Distribution: In this approach, the deep neural network is broken into
logical fragments that are treated as independent models from a computational
perspective. The results from these models are combined by a central process, as
depicted in this diagram:

Machine-1 Machine-2 Machine-3
~ ~ ———

CHTTOD

Model Distribution

[152]

Deep Big Data Analytics Chapter 5

» Data Distribution: In this approach, the entire model is copied to all the nodes
participating in the cluster and the data is distributed in chunks for processing.
The master process collects the output from the individual nodes and
produces the final outcome, shown as follows:

7 N
14 \
(\
Data Chunk - 1 =
== 3
[
-

Training Data

(‘ % » |
@ - Data Chunk - 2 f PN

7

2
o
o
(]
N
\ /
Data Distribution b _4
4 ™\
(\
2
o
— :
Data Chunk - 3 w2
{ < < /
\ 4

The data distribution approach is very similar to Hadoop's MapReduce framework.
The MapReduce job creates the input splits based on predefined and run-time
configuration parameters. These chunks are sent to the independent nodes for
processing by the map tasks in a parallel manner.

The output from the map tasks is shuffled for relevance (simple sort) and is given as input
to the reduce tasks for generating intermediate results. The individual MapReduce chunks
are combined to produce the final result. The data distribution approach is more naturally
suitable for Hadoop and Spark frameworks and it is a more widely researched approach at
this time. The deep neural networks that leverage data distribution primarily deploy a
parameter-averaging strategy for training the model.

[153]

Deep Big Data Analytics Chapter 5

This is a simple but efficient approach for training a deep neural network with
data distribution:

A f \
Split the Training
Data into Chunks

OO
5T
OO

. N

Gather and Average \\

Parameter Values

Set global parameters \

to average
o (Ed)
Data?

Based on these fundamental concepts of distributed processing, let's review some of the
popular libraries and frameworks that enable parallelized deep neural networks.

: S
Deploy Model Training P / / O '
Routine on each worker node /";‘_k\,.\ \—/
//' 7 P
¥ // 4{ E
- 3 < ; 2
Initialize Network 1 W, O / O §
Parameters Wit1 =3 : Wit1j| Master Node Wi O g
= O O &
O)
8]

|

OO
SO
5

Distributed deep learning

With an ever-increasing number of data sources and data volumes, it is imperative that
the deep learning application and research leverages the power of distributed computing
frameworks. In this section, we will review some of the libraries and frameworks that
effectively leverage distributed computing. These are popular frameworks based on their
capabilities, adoption level, and active community support.

[154]

Deep Big Data Analytics Chapter 5

DL4J and Spark

We have coded the examples in this chapter with deeplearning4;j library. The core
framework of DL4]J is designed to work seamlessly with Hadoop (HDFS and MapReduce)
as well as Spark-based processing. It is easy to integrate DL4] with Spark. DL4J with Spark
leverages data parallelism by sharding large datasets into manageable chunks and
training the deep neural networks on each individual node in parallel. Once the models
produce parameter values (weights and biases), those are iteratively averaged for
producing the final outcome.

APl overview

In order to train the deep neural networks on Spark using DL4]J, two primary
wrapper classes need to be used:

® SparkDl4jMultilayer: A wrapper around DL4J's MultiLayerNetwork
® SparkComputationGraph: A wrapper around DL4J's ComputationGraph

The network configuration process for the standard, as well as the distributed,
mode remains same. That means, we configure the network properties by creating
aMultilayerConfiguration instance. The workflow for deep learning on Spark with

DL4]J can be depicted as follows:

Y

P

MultiLayerConfiguation Specify Network Configuration

°

TrainingMaster Specify R.unfﬂme conflggrat|on PaCkaE? t_he jar file for - package
for distributed training submitting to Spark

. 0 ’

SparkDl4jMultiLayer Instantiate the Multi layer Call Spfark Submit for .
network on Spark runtime resource spark-submit
allocation and execution

Y

JavaRDD<DataSet> Load Training Data

oL P

sparkDl4jMultiLayerfit() | Train the deep neural network

[155]

Deep Big Data Analytics Chapter 5

Here are the sample code snippets for the workflow steps:

1. Multilayer network configuration:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder ()
.optimizationAlgo (OptimizationAlgorithm.STOCHASTIC GRADIENT DESCENT).iterations(1)

.learningRate (0.1)

.updater (Updater .RMSPROP) //To configure: .updater (new
RmsProp (0.95))

.seed(12345)

.regularization(true).12(0.001)

.weightInit (WeightInit.XAVIER)

.list ()

.layer (0, new
GravesLSTM.Builder () .nIn(nIn) .nOut (lstmLayerSize) .activation (Activa
tion.TANH) .build())

.layer (1, new
GravesLSTM.Builder () .nIn(lstmLayerSize) .nOut (lstmLayerSize) .activat
ion (Activation.TANH) .build())

.layer (2, new
RnnOutputLayer.Builder (LossFunctions.LossFunction.MCXENT) .activatio
n (Activation.SOFTMAX) //MCXENT + softmax for classification

.nIn (lstmLayerSize) .nOut (nOut) .build())
.backpropType (BackpropType.TruncatedBPTT) . tBPTTForwardLength (tbpttL
ength) .tBPTTBackwardLength (tbpttLength)

.pretrain(false) .backprop (true)

Lbuild () ;

2. Set up the runtime configuration for the distributed training;

ParameterAveragingTrainingMaster tm = new
ParameterAveragingTrainingMaster.Builder (examplesPerDataSetObject)
.workerPrefetchNumBatches (2) //Async prefetch 2
batches for each worker
.averagingFrequency (averagingFrequency)
.batchSizePerWorker (examplesPerWorker)
Jouild () ;

3. Instantiate the Multilayer network on Spark with TrainingMaster:

SparkDl4jMultilayer sparkNetwork = new SparkDl4jMultilayer (sc,
config, tm);

[156]

Deep Big Data Analytics Chapter 5

4. Load the shardable training data:

public static JavaRDD<DataSet>
getTrainingData (JavaSparkContext sc) throws IOException {

List<String> list = getTrainingDatAsList(); // arbitrary
sample method

JavaRDD<String> rawStrings = sc.parallelize(list);
Broadcast<Map<Character, Integer>> bcCharTolInt =
sc.broadcast (CHAR TO INT);

return rawStrings.map (new StringToDataSetFn (bcCharToInt)) ;

}

5. Train the deep neural network:

sparkNetwork.fit (trainingData) ;

6. Package the Spark application as a . jar file:

mvn package

7. Submit the application to Spark runtime:

spark-submit --class <<fully qualified class name>> --num-executors
3 ./<<jar name>>-1.0-SNAPSHOT.jar

The DeepLearning4;j official website provides extensive documentation for
running the deep neural networks on Spark: https://deeplearning4j.
org/spark.

TensorFlow

TensorFlow is the most popular library created and open sourced by Google. It uses data-
flow graphs for numerical computations and deals with Tensor as the basic building block.
A Tensor can simply be considered as an n-dimensional matrix. TensorFlow applications
can be seamlessly deployed across platforms and it can run on GPUs and CPUs, along with
mobile and embedded devices. TensorFlow is designed as a large-scale distributed training
that supports new machine learning models, research, and granular-level optimizations.

[157]

https://deeplearning4j.org/spark
https://deeplearning4j.org/spark

Deep Big Data Analytics Chapter 5

TensorFlow is quick to install and start experimenting with. The latest
version of TensorFlow can be downloaded from nhttps://www.
tensorflow.org/. The site also contains extensive documentation

and tutorials.

Keras

Keras is a high-level neural network API, written in Python and capable of running on top
of TensorFlow. For more information, refer to nttps://keras.io/.

TensorFlow and Keras hold the top two spots in terms of adoption and mention by
researchers in scientific papers. The stack ranking of the frameworks and libraries as
per arxiv.org is as follows:

150

100

50

|:|
tensorflow keras caffe theano torch pytorch chainer mxnet ontk caffe2

Source: arXiv (Oct 2017)

[158]

https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
http://arxiv.org/

Deep Big Data Analytics Chapter 5

Frequently asked questions

Q: What is the difference between machine learning and deep learning?

A: Deep learning is a specialized implementation of machine learning as an abstract
concept. Machine learning algorithms are primarily the functions that draw lines through
the data points in the case of supervised learning algorithms. The feature space is mapped
as a multi-dimensional representation. This representation generalizes the datasets and can
predict the value or the state of the actor for new environment states. Deep learning
algorithms also model the real-world data within the context. However, they take a layered
approach in creating the models. Each layer in the network specializes in a specific part of
the input signal, starting from the high-level, more generic features in the initial layers, to
the deeper and granular features in the subsequent layers toward the output layer. These
networks are capable of training themselves based on some of the popular algorithms,
such as backpropagation. Another difference between deep learning and machine learning
is the performance with respect to the addition of data. As seen in figure 5.1, the machine
learning algorithms plateau at a certain data volume threshold. However, the deep
learning algorithms keep improving with the addition of training data. Typically, deep
learning algorithms need more time and computation power to train compared to the
traditional machine learning models.

Q: What is the difference between epoch, batch size, and iterations for a deep
neural network?

A: We come across these terminologies when the data size is high. An epoch is one forward
and backward pass through the entire training dataset. In most of the real-world scenarios,
the training dataset is so high that it is computationally very difficult to pass the entire data
through one epoch. In order to make the training through the deep neural network
computationally feasible, the entire dataset is divided into training batches. The number of
training examples in one batch is called the batch size. The number of batches to complete
one epoch is called an iteration. For example, if the training data size is 10,000 and the
batch size is 2,000, one epoch will be completed in five iterations.

Q: Why do we need non-linear activation functions in deep neural networks?

A: Within the real-world, stochastic environments, and feature spaces, nonlinearities are
more common than linear relationships. The neural networks learn by learning about the
features with a layered structure where each layer stores a specific feature set from the
training data. With a linear activation function applied at all the nodes within different
layers, the linearity can be aggregated in one layer and there is no point in having a multi-
layered network. Without a multilayered network, it is not possible to model the stochastic
input and generalize the model.

[159]

Deep Big Data Analytics Chapter 5

Q: How do we measure the performance of a deep neural network?

A: As a general principle, the performance of the deep neural network is a factor of how
well it is able to generalize the real-world data once the network is deployed in production
use. There are times when the model performs very well on the training data but does not
perform well on the test data due to overfitting. While there are many parameters on which
the deep neural network needs to be evaluated, three primary metrics help us in
understanding the model performance at a broad level:

* Receiver operating curve (ROC): Based on the predicted data points, this is a
plot between the false positive rate on the x axis and the true positive rate on the
y axis. Typically, the ROC curve takes the following shape when plotted with a
test with perfect discrimination. The closer the curve stays to the upper-left
corner, the greater the accuracy and hence the performance of the network:

True Positive ——»

False Positive ———

* Precision and recall: Precision defines the ratio of the number of correct
classifications to the total number of training input. This is a general indication of
how often the model is correct. Recall measures the utility of the model within
the search space in terms of finding the correct output. These scores are always
seen in combination and they constitute the F1 score for the model. If one of
these parameters is low, the overall F1 score is also low.

Q: What are some of the implementation areas of deep neural networks?

A: Deep learning can be applied in variety of fields, such as automatic speech recognition,
image recognition, natural language processing, medical image processing,
recommendation systems, and bioinformatics.

[160]

Deep Big Data Analytics Chapter 5

Summary

In this chapter, we took our understanding of the ANNSs further, to the deep neural
networks that contain more than one, and up to hundreds and thousands of, hidden layers.
The learning based on these deep neural networks is called deep learning. Deep learning is
evolving as one of the most popular algorithms for solving some of the extremely complex
problems within a stochastic environment. We have established the fundamental theory
behind the working of deep neural networks and looked at the building blocks of gradient
based-learning, backpropagation, nonlinearities, and the regularization technique-
dropout. We have also reviewed some of the specialized neural network architecture's
CNNs and RNNSs.

We have also studied practical approaches for building data preparation pipelines and
looked at the examples of applying regularization using the Weka library along with the
DataVec library. We have studied some practical approaches for implementing neural
network architectures. We have also reviewed a set of hyperparameters that affect the
performance of the deep neural networks, and defined best practices for tuning those
hyperparameters.

We experimented with the deeplearning4;j library to demonstrate hyperparameter tuning
and how to visualize the neural network with the deeplearning4j Ul library. The deep
neural networks are computationally heavy and hence need more processing power as we
we add more data, and consequently more hidden layers and nodes within each hidden
unit. It is imperative that we leverage the distributed computing frameworks for deep
learning. We reviewed some of the basics of distributed computing and how to integrate
deeplearning4j with Spark.

In the next chapter, we are going to transform from the area of artificial intelligence to
Machine Learning. We will understand the basics of NLP, along with the mathematical
intuition and practical guidelines with the implementation of NLP-based systems.

[161]

Natural Language Processing

Machine learning, or artificial intelligence, is based on data that can be structured or
unstructured. Natural language processing (NLP) is an area of algorithms that is focused
on processing unstructured data. This chapter is focused on unstructured data with a
natural language text format. Organizations always have large corpuses of unstructured
text data, either in the form of word documents, PDFs, email body, or web documents. With
advances in technology, organizations have started relying on large volumes of text
information. For example, a legal firm has lots of information in the form of bond papers,
legal agreements, court orders, law documents, and so on. Such information assets are
made up of textual information that is domain-specific (legal in this case). It is imperative
that in order to utilize these valuable textual assets, and convert the information into
knowledge, we require intelligent machines to be able to understand the text as-is, without
any human intervention. NLP for big data uses tons of text data from various sources to
determine relationships and patterns across contents received from those sources. It helps in
identifying trends which will be utilized in use cases like recommendation engines. This
chapter introduces the basic concepts behind NLP with practical examples.

We can divide NLP into two types of approaches, supervised NLP and unsupervised NLP.
The supervised learning NLP approach involves using supervised learning algorithms such
as Naive Bayes and Random Forests. In these algorithms, models are created based on the
predicted output given to them for training an input set. That means supervised learning
approaches are not self-learning but they train and fine-tune models based on the target
output provided to them. Unsupervised learning algorithms do not rely on the fact that the
target output is provided to them for model training. They draw deductions from input
records given to them as a result of multiple iterations over data learning from the output
of previous iterations, and tuning weights and parameters to optimize results. Recurrent
neural nets (RNN) is one of the common unsupervised learning algorithms used in natural
language processing. We will explore all these techniques in this chapter.

Natural Language Processing Chapter 6

Overall, we will cover the following topics:

» Natural language processing basics
e Text preprocessing

¢ Feature extraction

» Applying NLP techniques

¢ Implementing sentiment analysis

Natural language processing basics

Before we state some of the high-level steps involved in NLP, it is important to establish a
definition of NLP. In simple terms, NLP is a collection of processes, algorithms, and tools
used by intelligent systems to interpret text data written in human language for actionable
insights. The mention of text data makes one fact about NLP very evident. NLP is all about
interpreting unstructured data. NLP organizes unstructured text data and uses
sophisticated methods to solve a plethora of problems, such as sentiment analysis,
document classification, and text summarization. In this section, we will talk about some
of the basic steps involved in NLP.

In the subsequent sections, we will take a deep dive into those steps. The following diagram
represents some of the basics hierarchical steps involved in NLP:

e
Supervised
Learning
S~
I T 1 1
N - N ~ = - ~ PN
Tex Feature - Model
5 - - Lo Model Training - Lo Model APIs
reprocessing Extraction tion Deployment
. S S . ~ N

TN

Web Apps
S~

T
Mobile Apps

S

77N

Analytics Engine

Natural Language Processing Hierarchy ~

[163]

Natural Language Processing Chapter 6

Let us look at each of these steps briefly:

* Type of machine learning: NLP can be performed either using supervised
learning algorithms or as unsupervised learning algorithms. Supervised learning
algorithms include Naive Bayes, SVM, and Random Forest. Unsupervised
learning algorithms include Feed Forward Neural Networks (Multi Layer
Perceptron) and Recurrent Neural Network (RNN). One important thing to note
here is that the preprocessing and feature-extraction steps are same for both
classes of algorithms. What differs is how you train your model. Supervised
learning requires labeled output as their input, and unsupervised learning would
predict the outcome without any labeled output.

» Tex preprocessing: This step is required because raw natural text cannot be used
in NLP systems. This will result in bad or not-very-accurate output. Some of the
common text preprocessing steps are removing stop words, replacing capital
letter words, and removing special characters. Another common step in text
preprocessing is part of-speech tagging, which is also called annotation. Text
normalization in the form of stemming and lemmatization is also applied.

* Feature extraction: For any ML algorithm to work on text, these texts have to be
converted into some form of numerical input. Feature extraction employs
common techniques of converting input text to numerical input in the form of
vectors.

* Model training: Model training is process of establishing or finding a
mathematical function that can be used to predict the outcome based on the given
input. The process of finding a function involves multiple iterations and
parameter tuning.

* Model verification: This step is the process of verifying models resulting from
the model training process. Generally, you divide your training dataset into an
80:20 ratio. 80% of data is used for model training and 20% of the data is used for
validating the correctness of the model. In the case of discrepancies, you fine-
tune your model creation steps and re-run the validations.

[164]

Natural Language Processing Chapter 6

* Model deployment and APIs: After the models have been verified, you deploy
your models so that they can be used to predict the outcomes in the context of
enterprise applications. You can save these models on a storage location where
they can be read in-memory and can be applied to a dataset to predict its
outcome. In distributed processing, they are generally saved in a Hadoop-
distributed file system so that Hadoop batch processes can read and apply those
models. In the case of web applications, they are stored in the form of Python
pickle files, and these pickle files are read and processed upon each prediction
request. Although, for applications to use this, you would require API layers to
be exposed on top of it. These API layers can be restful APIs or come in the form
of packaged jars deployed to the location where applications are hosted. Once the
APIs are exposed, they can be used by a variety of web applications, mobile
applications, or analytics or BI engines.

Text preprocessing

Preprocessing the data is the process of cleaning and preparing the text for classification
and derivation of meaning. Since our data may have a lot of noise, uninformative parts,
such as HTML tags, need to be eliminated or re-aligned. At the word level, there might be
many words that do not make much impact on the overall semantic of the textual context.
Text preprocessing involves a few steps, such as extraction, tokenization, stop words
removal, text enrichment, and normalization with stemming and lemmatization. In addition
to these, some of the basic and generic techniques that improve accuracy involve converting
the text to lower case, removing numbers (based on the context), removing punctuation,
stripping white spaces (sometimes these add to noise in the input signal), and eliminating
the sparse terms that are infrequent terms in the document. In the subsequent sections, we'll
analyze some of these techniques in detail.

Removing stop words

Stop words are words that occur more frequently in the sentence and make the text heavier
and less important for the analysis, they should be excluded from the input. Having stop
words in your text confuses your algorithm as these stop words do not have contextual
meaning and increase dimensional features of your term vectors. Therefore, it is imperative
that these stop words be removed for better model accuracy. Examples of stop words are T,
am, is,and the.One of the ways to remove the stop words is to have a precompiled list of
the stop words and then remove those stop words from the document (text used to train the
model).

[165]

Natural Language Processing Chapter 6

With Spark, we can use the StopWordsRemover library, which has its
own list of default stop words for many natural languages. We can also
provide a list of stop words with the stopWords parameter. Another way
to remove the less significant words from the document is based on their
frequency of occurrence; if the word's frequency is low, we can remove
those words, this is also known as pruning.

Here is a sample code for using the Spark library. With this library, the process of stop
words removal is parallelized and we can quickly perform a stop words removal on a large
volume of data in a distributed manner:

import
import

import
import

import

java.util.Arrays;
java.util.List;

org.apache.spark.ml.feature.StopWordsRemover;
org.apache.spark.sqgl.Dataset;

org.apache.spark.sgl.Row; import

org.apache.spark.sqgl.RowFactory; import
org.apache.spark.sqgl.types.DataTypes; import
org.apache.spark.sqgl.types.Metadata; import
org.apache.spark.sqgl.types.StructField;

import

org.apache.spark.sqgl.types.StructType;

StopWordsRemover remover = new StopWordsRemover ()
.setInputCol ("raw")
.setOutputCol ("filtered");

List<Row> data = Arrays.asList (

RowFactory.create (Arrays.asList ("I", "am", "removing", "the", "stop",
"words")),

RowFactory.create (Arrays.asList ("from", "a", "large", "volume",
"of","data"))

)

StructType schema = new StructType (new
StructField[]{ new StructField(

"raw",

false,

1)

DataTypes.createArrayType (DataTypes.StringType),
Metadata.empty ())

Dataset<Row> dataset = spark.createDataFrame (data, schema);
remover.transform(dataset) .show (false);

[166]

Natural Language Processing Chapter 6

Stemming

Different forms of a word often communicate essentially the same meaning. Consider an
example of a search engine when a user searches shoe or when they search for shoes. The
intent of the user is the same and the search result is still going to be shoes from different
brands. But the presence of both words can confuse models. So for better accuracy, we
need to convert these different forms of the word in its row format. Stemming is
converting a word in a text into its raw format. For example, introduction, introduced, and
introducing all turn into introduce after stemming. The purpose of this method is to
remove various suffixes, to reduce the number of words. Also, this helps the model to
avoid confusion while getting trained. Many stemming algorithms are available, such as
porter stemming, snowball stemming, and Lancaster stemming. Most of the stemming
algorithms in the following sections are available in multiple natural languages.

Porter stemming

Porter stemming is one form of the stemming algorithm that removes suffixes from base
words or terms in the English dictionary. The whole purpose of Porter Stemmer is to
improve the performance of the NLP model training exercise. It does so by removing
suffixes from a word and bringing it to its base form. This way, the number of terms is
reduced and the memory footprint and complexity of your term space is also minimized.
Porter is not dictionary-based. It does not use any stem dictionary to identify suffixes that
need to be removed. It is based on a set of generic rules. Some people see this as a
drawback as its working is pretty straightforward and does not take care of the lower-level
contextual nitty-gritty of English words. Porter stemming is used for its simplicity and
speed. Porter stemming has five steps that are applied on the word until one of them
satisfies. For example, consider step 1 in porter stemming, which is as explained in the
following blocks:

SSESS >SS - This rule converts SSESS suffix of the word into SS.

For example, prepossess - > preposs

IES ->1 - This rule converts IES suffix of the word into I.
For example, ties -> ti

SS ->SS - If the word has SS as suffix this won't change.
For example, Success -> Success

S -> - If the word has S as suffix this would remove the suffix.
For example, Pens -> Pen

[167]

Natural Language Processing Chapter 6

Please refer to http://www.cs.toronto.edu/~frank/csc2501/Readings/
R2_Porter/Porter-1980.pdf for a detailed explanation of the
porter stemming algorithm.

Snowball stemming

This is also known as Porter2. The Porter2 algorithm is implemented as the English
Stemmer (based on Snowball). This algorithm was developed as a framework to use for
languages other than English. This is better in accuracy than porter algorithms. The
snowball rule example is given as follows:

ied or ies -> replace by i if preceded by more than one letter, otherwise
by ie.

ties -> tie,

cries -> cri

So as we can see with porter ties we stemmed into ti whereas with snowball
it becomes tie.

For more details, refer to http://snowballstem.org/algorithms/

english/stemmer.html.

Lancaster stemming

A very aggressive stemming algorithm, sometimes to a fault. With porter and snowball, the
stemmed representations are usually fairly intuitive to a reader, not so with Lancaster, as
many shorter words will become totally obfuscated. The fastest algorithm here, it will
greatly reduce your working set of words, but if you want more distinction, this is not the
tool to use. The Lancaster rule example is given in the following block:

ies -> y - This rule converts ies suffix of the word into y.
cries -> cry

So with Lancaster stemming as we see cries stemmed into cry which
more better stemmed.

[168]

http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://www.cs.toronto.edu/~frank/csc2501/Readings/R2_Porter/Porter-1980.pdf
http://snowballstem.org/algorithms/english/stemmer.html
http://snowballstem.org/algorithms/english/stemmer.html

Natural Language Processing Chapter 6

Lovins stemming

In 1968, Lovins JB published this stemming algorithm. The approach taken by Lovins is bit
different, but it does start with removing suffixes from the word. It comes to the conclusion
in a two-step process. It first removes the longest possible suffix from a word. It is a single-
pass algorithm that removes the single largest suffix from a word. Secondly, it applies set of
rules on the resulting longest suffix to transform it into a word. This algorithm is rules- and
dictionary-based. It is faster and usually is less memory intensive. It is able to convert
words such as getting into get or words such as mice to mouse. Sometimes this algorithm
can be inaccurate due to many suffixes not available in its dictionary. Moreover, it
frequently fails to form a word from a stemmed word or even if a word is formed, it may
not have the same meaning as the original word.

Dawson stemming

This stemmer extends the same approach as the Lovins stemmer with a list of more than a
thousand suffixes in the English language. Here is the generic algorithm for the Dawson
stemmer:

1. Get the input word
2. Get the matching suffix
2a. The suffix pool is reverse indexed by length
2b. The suffix pool is reverse indexed by the last character
3. Remove longest suffix from the word with exact match.
. Recode the word using a mapping table
5. Convert stem into a valid word.

[y

The advantages of the Dawson stemmer are as follows:

e [t covers a wider range of suffixes and hence produces a more accurate stemming
output
» It is a single-pass algorithm, which makes it efficient

[169]

Natural Language Processing Chapter 6

Lemmatization

Lemmatization is a bit different from stemming. Stemming generally removes end
characters from a word with the expectation that they will get the correct base word.
However, sometimes it results in removing suffixes that add meaning to a word.
Lemmatization tries to overcome this limitation of stemming. It tries to find out the base
form of the word, called the lemma, based on a vocabulary of words that it has and a
morphological analysis on words. It uses the WordNet lexical knowledge dictionary to
get the correct base form of a word. However, this has its limitation as well, for example,
it requires part-of-speech tagging otherwise it will treat everything as a noun.

N-grams

N-gram is a continuous sequence of N-words or tokens in a given sentence or continuous
sequence of text. N is defined as an integer value starting from 1. So, N-Gram could be
Uni-Gram(N=1), Bi-Gram(N=3) or Tri-Gram(N=3). N-gram algorithms or programs
identify all continuous adjacent sequences of words in a given sentence tokens. It is a
Windows-based functionality starting from the left-most word position and then moving
windows by one step. Let's see it with an example sentence, This is Big Data AI Book. See
the following example of Uni-Gram, Bi-Gram, and Tri-Gram examples:

This is Big Data Al Book

RN Thisis |IsBig | BigData | Data Al Al Book
Tri-Gram This is Big Is Big Data Big Data Al Data Al Book

N-grams is used for developing efficient features that are passed to supervised machine
learning models, such as SVMs and Naive Bayes, for training and prediction. The idea is
to use tokens, such as Bi-Grams, instead of just Uni-Grams so that these machine learning
models can learn efficiently.

[170]

Natural Language Processing Chapter 6

Using N-grams tends to capture the context in which words are used together in a given
document. As shown in the previous example, Tri-Grams can give your machine learning
algorithm more context so that the next set of words can be predicted better. However,
what should be the optimal value of N, is something that needs to be determined based on
your dataset and after doing sufficient data exploration and analysis. A larger value of N
does not always mean a better result. You should make very informed decisions about the
value of N.

Feature extraction

As mentioned earlier in this chapter, the NLP system does not understand string values.
They need numerical input to build models, sometimes they are also called numerical
features. Feature extraction in NLP is converting a set of text information into a set of
numerical features. Any machine learning algorithm that you are going to train would
need features in numerical vector forms as it does not understand the string. There are
many ways text can be represented as numerical vectors. Some such ways are One hot
encoding, TF-IDF, Word2Vec, and CountVectorizer.

One hot encoding

One hot encoding is the binary sparse vector representation of text. In this encoding, the
resulting binary vector is all zero-value except at the position or index of the token where
itis one. Let's look at it with an example. Suppose there are two sentences: This is Big
Data AI Book. This is book explains AI algorithms on Big Data. Unique
tokens (nouns) for earlier sentences would be {data, AI,book,algorithms}. The one
hot encoding representation for these tokens would be like the following;:

data AI book Algorithms
data 1 0 0 0
ATl 0 1 0 0
book 0 0 1 0
Algorithms 0 0 0 1

[171]

Natural Language Processing Chapter 6

The Encoded Sparse Vector Representation would look like the following:

data = [1,0,0,0]

AT =10,1,0,0]

book = [0,0,1,0]
Algorithms = [0,0,0, 1]

TF-IDF

The TF-IDF method of feature extraction uses a scalar product of term frequency (TF) and
inverse document frequency (IDF) to calculate the numerical vector of a token or term. TF-
IDF not only calculates the importance of a word in a specific document but also measures
its importance in other documents of a corpus. Moreover, it tries to normalize any word
that is overly frequent in the entire corpus.

TF, or Term Frequency, is a term’s occurrence in a document. We can use the
HashingTF library in Spark to compute the term's frequency. HashingTF creates the
sparse vector corresponding to each document representing index and frequency. For
example, if we consider the extraction of the feature using HashingTF
extractionmethod text string, then the TF of every word in the earlier document
using HashingTF would be the following:

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

val exampleData = spark.createDataFrame (Seq(
(8.9, "extraction of the feature using HashingTF extraction method")
)) .toDF ("label", "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val tokensData = tokenizer.transform(exampleData)

val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(18)

val features = hashingTF.transform(tekensData)

features.select("rawFeatures")show(truncate=false)

TF Using HashingTF

[172]

Natural Language Processing Chapter 6

The output of HashingTEF:

In the preceding screenshot, we can see the first array is the extracted features from the
document, and the second array is the Array [SparseVector], which represents the index
and frequency. For an instance, the extraction word occurs twice in the document so we
can see the frequency of the word is 2. With HashingTF, tokenized word array may not be
in the same sequence as the vector array.

TF measures the importance of a word in a particular document only and not with respect
to the entire corpus of documents. Moreover, overly frequent words in a large document
may not be that important with respect to the entire corpus. This can hamper the prediction
output as words that appear less frequently may be of higher importance with respect to the
entire corpus. This is where IDF comes into the picture; it represents the inverse of the share
of the documents in which the regarded term can be found. The lower the number of
containing documents relative to the size of the corpus, the higher the factor. The reason
why this ratio is not used directly but instead its logarithm, is because otherwise the
effective scoring penalty of showing up in two documents would be too extreme. The
following is the sample example on how to calculate TF-IDF together:

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

val exampleData = spark.createDataFrame(Seq(
(8.8, "extraction of the feature using HashingTF extraction method")
)).toDF("label", "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val tokensData = tokenizer.transform(exampleData)

val hashingTF = new HashingTF()
.setlnputCol("words").setOutputCol("TF").setNumFeatures(1@)

val features = hashingTF.transform(tokensData)

val idf = new IDF().setInputCol("TF").setOutputCol("IDF")

val idfModel = idf.fit(features)

val rescaledData = +idfModel.transform{features)

rescaledData.select("label", "TF","IDF").show(truncate=false)

Code to calculate IDF

[173]

Natural Language Processing Chapter 6

The IDF code output is as follows:

—————— B it e e ——————
| Label|TF | IDF [
—————— +-—_— ¢
|e.e |(1e,[e,3,4,5,6,8],(1.6,1.6,2.06,1.0,1.0,2.0]1)|(10,[0,3,4,5,6,8),(0.0,0.0,0.0,0.0,0.0,0.0]) |
—————— 4

The goal of TF-IDF is to find words of higher relevance. The algorithm keeps track of the
local relevance of a word in a document using TF calculations and the global relevance of a
word in the entire training corpus using IDF calculations. Finally, both the calculations are
multiplied to get the final weights of a word. However, we encourage you to get a feel for
how this can be applied to your NLP system as TF-IDF ranking behavior may not give
relevant results in your use case. You can apply multiple adjustments to the corpus to get
the desired behavior. The following is the mathematical formula for TF-IDF:

The formula to calculate Term Frequency (TF)

i=N
tfra =na/ Y Mid
i=0

Where t is the term or word in a document, d. Mt,d is the count of term, ¢, in a document,
=N

D mid
. 1=0 is the count of all terms in a document.
The formula to calculate Inverse Document Frequency (IDF):

idf; = logyo(N/dft)

Where df; is term frequency in a document and N is the total number of documents in a
corpus.

The TF-IDF weight formula is:

wig = (14 (L +tfiq))-idf;

[174]

Natural Language Processing Chapter 6

CountVectorizer

CountVectorizer and CountVectorizerModel works on count of words(tokens). It uses words
in text documents to build vectors containing count of tokens. It has provisions of using
dictionary of words to identify tokens that can be taken as input to algorithms. If dictionary is
not available CountVectorizer uses its own estimator to build the vocabulary. Based on that
vocabulary it generates CountVectorizerModel, a sparse representations of training
documents. This model acts as input to NLP algorithms like LDA.

CountVectorizer counts the word frequencies for the document, whereas TE-IDF gives us
the importance of the word with regards to the whole corpus. CountVectorizer is one of the
tools used to convert the text to a vector that can passed as a feature to the machine learning
model. Similar to TE-IDF, this model also produces sparse representations for the
documents over the vocabulary. For example, if we consider the extraction of the
feature using countvectorizer extraction method text string, then the output

would look something like this:

import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel,Tokenizer}

val exampleData = spark.createDataFrame(Seq(
(0.0, “"extraction of the feature using countvectorizer extraction method")
)) .toDF("label", "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val tokensData = tokenizer.transform(exampleData)

val cvModel: CountVectorizerModel = new CountVectorizer()
.setInputCol("words")
.setOutputCol("features")
.setVocabSize(3)
.setMinDF (1)
.fit(tokensData)

cvModel. transform(tokensData) .select("words","features").show(false)

Code to calculate CountVectors

The output of the CountVector code:

[175]

Natural Language Processing Chapter 6

We can see in the earlier example that the first words array is the extracted features from
the document, similar to TF-IDF, but the second features array is the

Array [SparseVector], which represents the index and word frequency that is ordered
from highest to lowest. Also, here 3 is the vocabulary size, which means
CountVectorizer picks and is equal to the distinct words in the document, which is 3 in
our case. You can customize this in Spark.

Word2Vec

In a typical feature extraction from text, numerical vectors are created based on unique
labels given to them. However, these uniquely-labeled sparse vectors do not represent the
context in which each word has appeared. In other words, it does not specifically state or
represent the relationship a given word exhibits with other words in a corpus. That means
unsupervised learning algorithms that learn from data processing cannot be leveraged
much. These algorithms cannot leverage relationships or contextual information about the
word. Therefore, a new class of algorithms for feature extraction is developed that preserves
the context or relationship information among words. This new class of algorithms is called
Word-Embedding feature-extraction algorithms. These classes of algorithms represent
sparse vectors into continuous vector space models (VSM).

In VSM, similar words are mapped to nearby points so that they form a cluster of similar
words. Word2Vec is a predictive method based on word-embedding algorithms that can
be implemented in two ways, the continuous bag of words model (CBOW) and the Skip-
Gram model.

CBOW

Most of the prediction models are based on the words or contexts that have appeared in
past words. Based on their learning from past words, they predict the next word. CBOW, in
contrast to this, uses N words before and after the word in question to predict the outcome.
It uses a continuous representation of a bag of words to predict the outcome. However,
order is of no significance here. CBOW takes context in the form of a window of words and
predicts the word.

[176]

Natural Language Processing Chapter 6

The following figure represents how CBOW works:

INPUT PROJECTION OUTPUT
Wt-2
Wit-1
. . .
Wt - I
.'ZWK-*' — ’W(t)
’ k=0
SUM
Wi+l
Wt+2

Word2Vec: CBOW

Based on the previous diagram, CBOW can be formalized as:
1 T
J@ = T ;lOgP(M|Wt_n, o oy Wt—17 s Wt+1, o ole Wt+n)

The previous formula is based on a window of n words around a target word. f represents the
time step. The word window spans across the previous words and the next words.

[177]

Natural Language Processing Chapter 6

Skip-Gram model

The Skip-Gram model works opposite of the CBOW model. It predicts the context based on
the current word. In other words, it uses a central world to predict words appearing before
and after the main word. The following figure represents the Skip-Gram model:

INPUT PROJECTION OUTPUT

w) —~

0 Wil

L W2

Word2Vec: Skip-Gram Model
Based on the previous diagram, Skip-Gram can be formalized as:
1 74
Jo =7 ; —ggnlogp(v‘/tﬂ'Wt)

The skip-gram model calculates and sums up the logarithmic probabilities of the
previous and next, n, words surrounding the target word, W,

[178]

Natural Language Processing

Chapter 6

The following is code to calculate Word2Vec using the Skip-Gram model in Spark:

import org.apache.spark.ml.feature.{Word2vec,Tokenizer}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.sgl.Row

val exampleData = spark.createDataFrame(Seq(

1) .toDF (" label", "sentence")

val tokensData = tokenizer.transform{exampleData)

val word2Vec = new Word2Vec()
.setInputCol("words")
.setOutputCol("features")
.setVectorSize(3)
.setMinCount (@)
val model = word2Vec.fit(tokensData)
val result = model.transform(tokensData)
result.select ("words","features").show(false)

(8.8, "extraction of the feature using word2Vec extraction method")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")

Word2Vec: Skip-Gram code in Spark

The Word2Vec Skip-Gram Spark code output is as follows:

|words | features

,, o

__ e

| [extraction, of, the, feature, using, word2vec, extraction, method] | [-©.036735267378389835,-0.017351628514006734,0,014259896153816953] |
,, b

Applying NLP techniques

Generally, for any class of NLP problems, you first apply text preprocessing and feature
extraction techniques. Once you have reduced the noise in the text and are able to extract
features out of text, you perform various machine learning algorithms to solve different
NLP classes of NLP problems. In this section, we will cover one such problem, called text

classification.

[179]

Natural Language Processing Chapter 6

Text classification

Text classification is one of the very common use cases of NLP. Text classification can be
used for use cases such as email SPAM detection, identifying retail product hierarchy, and
sentiment analysis. This process is typically a classification problem wherein we are trying
to identify a specific topic from a natural language source of a large volume of data. Within
each of the data groups, we may have multiple topics discussed and hence it is important
to classify the article or the textual information into logical groups. Text classification
techniques help us to do that.

These techniques require a good deal of computing power if the data volume is huge and it
is recommended to use a distributed computing framework for text classification. As an
example, if we want to classify the legal documents that exist in a knowledge repository on
the internet, we can use text classification techniques for the logical separation of various
types of documents. The following illustration represents a typical text classification
process that is done in two phases:

Text

Documents

Text Classification Process

;_I:a__h_e_ls_)h{ Feature Extractor
Features l
Prediction Process

Machine Learning Classifier Labels '
Algorithm Model

Let's now look at how text classification can be performed using Spark. We will divide our
code into four parts: text preprocessing, feature extraction, model training/verification, and
prediction. We will use the Naive Bayes' algorithm for model training and prediction. But
before we deep dive into the code, let's walk you through how NB works. We will also give
you a brief overview of another algorithm, Random Forest, which can be used in text
classification.

Training Process

[180]

Natural Language Processing Chapter 6

Introduction to Naive Bayes' algorithm

The Naive Bayes (NB) classifier is a very powerful algorithm for the classification task. NB is
very good in cases where we use natural language processing for text analytics. As with the
name, Naive means independent or no relation, and the NB algorithm assumes that there is no
relation between features. As its name suggests, it works on Bayes' theorem.

So what is Bayes' theorem? Bayes' theorem finds out the probability of an event in the
future based on events that have already occurred. This type of probability is also called
conditional probability. This probability is context-based and context is determined by a
knowledge of events that have already occurred.

The following is mathematical expression of Bayes' theorem:

P(B/A)P(A
puaym) = FELAAD
For any given two events, A and B, Bayes’ theorem calculates P(A|B) (the probability
of event A occurring when event B has happened) from P(B|A) (the probability of
event B occurring, given that event A has already occurred).

Naive Bayes tries to classify data points into classes. It calculates the probability of
each data point belonging to a class. Then each of the probabilities are compared to get
the highest probability, and the second highest probability is determined.

The highest probability class is considered the primary class, and the second highest
probability is considered the secondary class. When you have multiple classes - for
example, suppose we are classifying fruits as either apple, banana, orange, or mango, then
we have more than two classes where we are classifying a fruit - it is known as MultiNomial
Naive Bayes, and if we would have only two classes - for example, email as either spam or
non-spam - it would be Binomial MultiNomial Naive Bayes. The NB algorithm would be
clearer with the following example:

A pathology lab is performing a test of a disease, D, with two results, Positive or Negative. They
guarantee that their test result is 99% accurate: if you have the disease, you will test positive 99% of the
time. If you don’t have the disease, you will test negative 99% of the time. If 3% of all the people have
this disease and test gives the positive result, what is the probability that you have the disease?

[181]

Natural Language Processing Chapter 6

For solving the preceding problem, we will have to use conditional probability. The
following mathematical calculation shows how the NB conditional probability would be
applied mathematically:

Probability of people suffering from Disease D, P(D) = 0.03 = 3%
Probability that test gives “positive” result and patient have the disease,
P(Pos | D) = 0.99 =99%

Probability of people not suffering from Disease D, P(~D) = 0.97 = 97%
Probability that test gives “positive” result and patient does have the
disease, P(Pos | ~D) = 0.01 =1%

For calculating the probability that the patient actually have the disease
i.e, P(D | Pos) we will use Bayes theorem:

P(D | Pos) = (P(Pos | D) * P(D)) / P(Pos)
We have all the values of numerator but we need to calculate P (Pos):
P(Pos) = P(D, pos) + P(~D, pos)

= P(pos|D)*P (D) + P(pos|~D)*P(~D)
= 0.99 * 0.03 + 0.01 * 0.97
0.0297 + 0.0097
= 0.0394
Let’s calculate, P(D | Pos) = (P(Pos | D) * P(D)) / P(Pos)
(0.99 * 0.03) / 0.0394
= 0.753807107

The preceding example shows that there is approximately a 75% chance of a patient having
the disease.

Random Forest

Random Forest is the class of algorithms that comes under the supervised learning algorithm
category. It is based on forests of trees, which is similar to decision trees in certain contexts.
Random Forest algorithms can be used for both classification and regression problems. A
decision tree gives the set of rules that are used in building models, which can be executed
against a test dataset for the prediction. In decision trees, we first calculate the root node. To
calculate the root node, we use information gain. For example, if you want to predict whether
your friend will accept a job offer or not. You need to feed the training dataset of the offers they
have accepted to the decision tree. Based on this, the decision tree will come up with a set of
rules that you will be using in the prediction. So let's say a rule can be if salary > 50K, then your
friend will accept the offer. A decision tree algorithm can overfit as it is very flexible. To avoid
this model overfitting in a decision tree, we can perform the pruning. The following is the
pseudocode for the Random Forest algorithm:

1. Randomly select k features from total m features. Where k << m.
2. Among the k features, calculate the node, d, using the best split point.

[182]

Natural Language Processing Chapter 6

3. Split the node into daughter nodes using the best split.

Repeat steps 1 to 3 until I number of nodes has been reached.

5. Build the forest by repeating steps 1 to 4 for n number times to create n number
of trees.

b

Once we have trained the model using the previous steps, for prediction we need to pass
the test features through all rules created by the different trees in the forest. If we want to
understand by example, suppose you want to purchase a mobile phone and you have
decided to ask your friends which phone is best for you. In this case, your friends might ask
you some random question about the features you like and suggest a suitable phone. Here,
each friend is the tree, and with the combination of all the friends, we form the forest.

Once you collect the suggestions from your friends (trees, in terms of the Random Forest
algorithm), you will count which type of phone has the most votes, and you will might
purchase that one. Similarly, in Random Forest, each tree will predict a different target
variable that we will sum with respect to that key. The key with the highest count,
predicted by the maximum number of trees, is the final target variable.

Naive Bayes' text classification code example
The following code represents how to perform text classification using the NB algorithm:

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification. {NaiveBayes,
NaiveBayesModel} import org.apache.spark.ml.feature.{StringIndexer,
StopWordsRemover, HashingTF, Tokenizer, IDF, NGram}

import org.apache.spark.ml.linalg.Vector

import org.apache.spark.sgl.Row

//Sample Data

val exampleDF = spark.createDataFrame (Seg((1,"Samsung

80 cm 32 inches FH4003 HD Ready LED TV"), (2,"Polaroid

LEDPO40A Full HD 99 cm LED TV Black"),

(3,"Samsung UA24K4100ARLXL 59 cm 24 inches HD Ready LED TV Black")
)) .toDF ("id", "description")

exampleDF.show (false)

//Add labels to dataset

val indexer = new StringIndexer ()
.setInputCol ("description™)
.setOutputCol ("label")

val tokenizer = new Tokenizer ()

[183]

Natural Language Processing Chapter 6

.setInputCol ("description")
.setOutputCol ("words")

val remover = new StopWordsRemover ()
.setCaseSensitive (false)
.setInputCol (tokenizer.getOutputCol)
.setOutputCol ("filtered")

val bigram = new
NGram () .setN(2) .setInputCol (remover.getOutputCol) .setOutputCol ("ngrams")

val hashingTF = new HashingTF ()
.setNumFeatures (1000)
.setInputCol (bigram.getOutputCol)
.setOutputCol ("features")

val idf = new IDF().setInputCol (hashingTF.getOutputCol) .setOutputCol ("IDF")

val nb = new NaiveBayes () .setModelType ("multinomial")

val pipeline = new

Pipeline () .setStages (Array (indexer, tokenizer, remover, bigram,
hashingTF, idf, nb))

val nbmodel = pipeline.fit (exampleDF)
nbmodel.write.overwrite () .save ("/tmp/spark-logistic-regression-model")

val evaluationDF = spark.createDataFrame (Seq(
(1,"Samsung 80 cm 32 inches FH4003 HD Ready LED TV")

)) .toDF ("id", "description")

val results = nbmodel.transform(evaluationDF)
results.show (false)

The following screenshot represents the results output:

|id |description label |words |filtered
|ngrams features

|1 |Samsung 8@ cm 32 inches FH4003 HD Ready LED TV|1.8 |(samsung, 8@, cm, 32, inches, fh48@3, hd, ready, led, tv]|[samsung, 88, cm, 32, inches, fh4@e3, hd, ready, le
d, tv]|[samsung 86, 8@ cm, cm 32, 32 inches, inches fh4003, fh4@@3 hd, hd ready, ready led, led tv]|(1@0@,[166,245,358,376,440,578,757,816,893],(1.6,1.0,1.08,1.06,1.0,1.
©,1.0,1.8,1.6]) | (1880, [166,245,358,376,440,570,757,816,893] ,[0.0,8.28768207245178085,0.6931471805599453,06.6931471805599453,0.6931471805599453,0.6931471805599453,08.2876
8207245178685 ,0.6931471805599453,0.,6931471805599453]) |

[184]

Natural Language Processing Chapter 6

Implementing sentiment analysis

In the following code snippet, we have implemented sentiment analysis based on the NLP
theory we discussed in this chapter. It uses SPARK libraries on Tweeter JSON records to
train models for identifying sentiments like happy or unhappy. It looks for keywords like
happy in the twitter messages and then flags it with value 1 indicating that this
message represents a happy sentiment. Other messages are flagged with value 0 which
represents unhappy sentiment. Finally TF-IDF algorithm is applied to train models:

import org.apache.spark.ml.feature.{HashingTF, RegexTokenizer,
StopWordsRemover, IDF}

import org.apache.spark.sql.functions.

import org.apache.spark.ml.classification.LogisticRegression

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import scala.util.{Success, Try}

import sqglContext.implicits.

val sglContext = new org.apache.spark.sqgl.SQLContext (sc)
var tweetDF = sqglContext.read.json ("hdfs:///tmp/sa/*")
tweetDF. show ()

var messages = tweetDF.select ("msg")

println("Total messages: " + messages.count())

var happyMessages =

messages.filter (messages ("msg") .contains ("happy")) .withColumn ("label™,1it (
" l"))

val countHappy = happyMessages.count ()

println ("Number of happy messages: " + countHappy)

var unhappyMessages = messages.filter (messages ("msg") .contains ("
sad")) .withColumn ("label™, 1it ("0"))

val countUnhappy = unhappyMessages.count ()

println ("Unhappy Messages: " + countUnhappy)

var allTweets = happyMessages.unionAll (unhappyMessages)
val messagesRDD = allTweets.rdd

val goodBadRecords = messagesRDD.map (
row =>{
val msg = row(0) .toString.toLowerCase ()
var isHappy:Int = 0

[185]

Natural Language Processing Chapter 6

if (msg.contains (" sad")) {
isHappy = 0
}else if (msg.contains ("happy")) {
isHappy = 1
}
var msgSanitized = msg.replaceAll ("happy",
msgSanitized = msgSanitized.replaceAll ("sad","")
//Return a tuple
(isHappy, msgSanitized.split ("™ ").toSeq)

n ")

val tweets = spark.createDataFrame (goodBadRecords) .toDF ("label", "message")

// Split the data into training and validation sets (30% held out for
validation testing)

val splits = tweets.randomSplit (Array(0.7, 0.3))

val (trainingData, validationData) = (splits(0), splits(l))

val tokenizer = new

RegexTokenizer () .setGaps (false) .setPattern ("\\p{L}+") .setInputCol ("msg").s
e tOutputCol ("words")

val hashingTF = new
HashingTF () . setNumFeatures (1000) .setInputCol ("message") .setOutputCol ("feat
u res")

val idf = new IDF().setInputCol (hashingTF.getOutputCol) .setOutputCol ("IDF")

val layers = Array[Int] (1000, 5, 4, 3)
val trainer = new MultilayerPerceptronClassifier().setLayers(layers)

val pipeline = new Pipeline() .setStages (Array(hashingTF,idf,trainer))
val model = pipeline.fit (trainingData)

val result = model.transform(validationData)

val predictionAndLabels = result.select ("message","label","prediction")
predictionAndLabels.where ("label==0") .show (5, false)
predictionAndLabels.where ("label==1") .show (5, false)

[186]

Natural Language Processing Chapter 6

The output is as follows:

The result after implementing sentiment analysis

The previous implementation is very basic form of NLP based sentimental analysis and
should be seen as a just simple example to understand sentimental analysis. There are more
advanced techniques that can be applied on this example to make it more adaptable
towards enterprise grade applications.

Frequently asked questions

Q: What are some of the common use cases of natural language processing?

A: Natural Language processing is branch of Machine learning algorithms that process text
data to produce meaningful insights. A few of the common use cases of NLP are answering
questions asked by the user, sentimental analysis, language translation to a foreign
language, search engines, and document classifications. The key point to understand here is
that if you want to perform analytics/machine learning on data represented by
text/sentences/word format, NLP is the way to go.

Q: How is feature extraction relevant to NLP?

A: Machine learning algorithms work on mathematical forms. Any other forms, such as
Text, need to be converted into mathematical forms to apply machine learning algorithms.
Feature extraction is converting forms, such as texts/images, into numerical features, such
as Vectors. These numerical features act as an input to Machine learning algorithms.
Techniques such as TF-IDF and Word2Vec are used to convert text into numerical
features. In a nutshell, feature extraction is a mandatory step to perform NLP on text data.

[187]

Natural Language Processing Chapter 6

Summary

In this chapter, we reviewed one of the most important techniques for the evolution of
intelligent machines to understand and interpret human language in its natural form. We
covered some of the generic concepts within NLP with sample code and examples. It is
imperative that the NLP technique and our understanding of the text gets better with
more and more data assets used for training.

Combining NLP with an ontological worldview, intelligent machines can derive meaning
from the text based assets at the internet scale and evolve to a know-everything system that
can complement the human ability to comprehend vast amounts of knowledge, and use it at
the right time with the best possible actions based on the context.

In the next chapter, we are going to look at fuzzy systems and how those systems combined
with NLP techniques can take us closer to creating systems that are very close to the human
ability to derive meaning from vague input, rather than exact input as required by
computers.

[188]

Fuzzy Systems

In the previous chapter, we saw an overview of the theory and techniques for building
intelligent systems that are capable of processing natural language input. It is certain that
there will be a growing demand for machines that can interact with human beings via
natural language. In order for the systems to interpret the natural language input and react
in the most reasonable and reliable way, the systems need a great degree of fuzziness. The
biological brain can very easily deal with approximations in the input compared to the
traditional logic we have built with computers. As an example, when we see a person, we
can infer the quotient of oldness without explicitly knowing the age of the person. For
example, if we see a a two-year-old baby, on the oldness quotient, we interpret the baby as
not old and hence young. We can easily deal with the ambiguity in the input. In this case,
we do not need to know the exact age of the baby for a fundamental and very basic
interpretation of the input.

This level of fuzziness is essential if we want to build intelligent machines. In real-world
scenarios, we cannot depend on the exact mathematical and quantitative input for our
systems to work with, although our models (deep neural networks, for example) require
actual input. The uncertainties are more frequent and the nature of real-world scenarios are
amplified by the incompleteness of contextual information, characteristic randomness, and
ignorance of the data. The human reasoning levels are capable enough to deal with these
attributes in the real world. A similar level of fuzziness is essential for building intelligent
machines that can complement human capabilities, in real sense of the term.

In this chapter, we are going to understand the fundamentals of the fuzzy logic theory
and how it can be implemented for building the following;:

» Adaptive network-based fuzzy inference systems
» Classifiers with fuzzy c-means
» Neuro-fuzzy-classifiers

Fuzzy Systems Chapter 7

We will be covering the following topics in the chapter:

» Fuzzy logic fundamentals
¢ ANFIS network

¢ Fuzzy C-means clustering
¢ NEFCLASS

Fuzzy logic fundamentals

Let's quickly understand how human interactions are seamless, even with a degree of
vagueness within our statements. A statement such as John is tall does not have any
indication of John's exact height in inches or centimeters. However, within the context of the
conversation, two people communicating with each other can understand and infer from it.
Now, consider that this conversation is taking place between two teachers in a school about
a second grade student, John. Within this context, the statement John is tall means a certain
height and we are really good at understanding and inferring contextual meaning from this
vague information. The fundamental concept of fuzzy logic originates from the fact that
with an increase in the complexity of the environmental context, our ability to make precise
and exact statements about the state diminishes, yet in spite of that, the human brain is
capable of drawing precise inferences. Fuzzy logic represents a degree of truth instead of
the absolute (mathematical at times) truth. Let's represent the difference between traditional
logic and fuzzy logic with a simple diagram:

—
= — Yes)
E) [
= % C—>| lsJohnTall? }7
il —
= ~ - / No \\
© John " 4
= .
(;irExtrernelyTaII\:>
Y i P
2 | IsJohnTall? P
L] Somewhat Tall
=1 hN /S — —
= John o
_ Moderate Tall H>

[190]

Fuzzy Systems Chapter 7

While the traditional computing frameworks are better suited for traditional logic, the
intelligent systems we intend to build need to adapt to fuzzy input based on context. The
computing frameworks need to transition from absolute truth, yes/no, to partial

truth, extremely tall, very tall, and so on. This is very similar to the human reasoning

paradigm in which the truth is partial and falseness is a diminishing degree of truth.

Fuzzy sets and membership functions

In our example, all the possible answers to the question of the height of a person constitute
a set. Since there is enough uncertainty within each of the values, it is termed a fuzzy set.
In this case, the fuzzy set is =k, {"Very tall”, "Somewhat tall”, "Moderately tall”}. Each member
of the set has a mathematical value that represents the level or degree of membership. In
our example, the set can be represented, along with the degree of membership, as
{"Extremely tall”:1.0, "Very tall”:0.8, "Somewhat tall”:0.6, “Moderately tall”:0.2}. The input can
be plotted on a curve that represents the values in the fuzzy set along with the degrees of

membership:

i,
o
2
w
@
£ =
™
£ >
‘E - ?u [
3 E_|F] ¢
3 e@ |2 X
3
0
1 2 3 4 5 6 7
Height (ft) —

Let's define some standard terminology around fuzzy sets. A fuzzy set is typically marked
with character “A’, which represents the data space parameter X (measure of tallness, in this
case). The fuzzy set, A, is defined using a membership function, ua (X), which associates
each value within A with a real number between 0 and 1, denoting the grade of
membership within A.

[191]

Fuzzy Systems Chapter 7

The membership space is also termed the universe of discourse, which simply refers to all
the possible values within set A. Within the value space, the membership function needs to
satisfy only one condition: that the degree of membership for all the fuzzy set members
should be between 0 and 1. Within this constraint, the membership functions can take any
form (Triangular, Sigmoid, Step, Gaussian, and so on) depending on the dataset and the
predicament context. Here is a representation of the member functions for our dataset that
denotes tallness for a person:

i
2
5
2

: - _
E ——___ Membership
] = .

o L functions

2 «—

&

(a]

0

NT ST VT ET
Set Members

(NT: Not tall - ST: Somewhat Tall - VT: Very Tall - ET: Extremely Tall

The linguistic variables (NT/ST/VT/ET) can be related to the numerical variables (actual
height of a person in inches) with a level of approximation or fuzziness.

Attributes and notations of crisp sets

A crisp set is a collection of entities that can be clearly separated as members versus non-
members, for example, a set of living objects versus non-living objects. In this case, the
container fully includes or fully excludes the elements. There are several ways in which
crisp sets can be defined:

* A set of even numbers greater than 0 and less than 10
» A=1{2,46,8}

» A set of elements that belong to another set, P and Q
e A={x | x is an element belonging to P and Q}

[192]

Fuzzy Systems Chapter 7

o uA(X)=1if(x € A), 0if(x ¢A)
» @:Represents a null or empty set
» Power set P(A) ={X | x & A}: This is a set containing all the possible subsets of
A e For the crisp sets A and B containing a super-set of elements within X:
e x C A==>xbelongs to A
» x ¢ A==>x does not belong to A
* x C X ==>x belongs to the entire universe X
 Consider crisp sets A and B on X space
* A C B==>Ais completely part of B (ifx € Athen x €B) -
implicit reasoning
* A © B==>Ais contained in or equivalent to
Be A=B=>A CBorBCA

Operations on crisp sets

Similar to the mathematical numerals, we can perform certain operations on crisp sets:

e Union: A UB={x | x €A ORx €B]}

e Intersection: A N B={x | x EAANDx €B}

o Complement: A={x | x ¢A, x €X}

e Difference: A-B=A | B={x | x §Aand x ¢B}=>A-(A N B)

This is how we we represent these operations:

Union Intersection
Dl‘fference
Complement of A (A-B) (B-A)

[193]

Fuzzy Systems Chapter 7

Properties of crisp sets

Crisp sets demonstrate certain properties, as follows:

¢ Commutivity:
s AUB=BUA
» ANB=BNA
e Associativity:
* AU(BUC)=(A UB) UC
« AN(BNC)=(ANB)NC
* Distributivity:
* AUBNC)=(AUB)N(AUC)
* ANAUC)=(ANB) UANC)
* Idempotency:
* AUA=A
e ANA=A
¢ Transitivity:
e fASBES CthenASC

Fuzzification

Digital computers are designed and programmed to primarily work with crisp sets. This
means they are able to apply logical operations and computational reasoning based on
the classical sets. In order to make intelligent machines, we require a process called
fuzzification. With this process, the digital inputs are translated into fuzzy sets.

Membership of the fuzzy sets corresponds to a certain degree of certainty for the fuzzy
set. Fuzzification is a process by which we move gradually from precise symbols to
vagueness for the element representations, which translates measured numerical values
into fuzzy linguistic values. Consider a set of numbers that are close to integer value 5:

Adclassic = {3,4,5,6,7}

Afuzzy = {0.6/2, 0.8/3, 1.0/4, 1.0/5, 1.0/6, 0.8/7, 0.6/8}

[194]

Fuzzy Systems Chapter 7

Fuzzification is a process for defining the membership degree of the set members. In the
case of the classic set, the membership degree is 1 or 0. Whereas in the fuzzy set, the
membership degree varies between 0 and 1. The following diagram illustrates a dataset
representation for Poorness of Grades. Assume that a student gets grades from 0 to 100 on
the exam. 0 is the minimum and hence the poorest grade, and 100 is the maximum and
hence not a poor grade at all:

Traditional Logic

Fuzzy Logic

Poorness of Grades
[
Poorness of Grades

0
Exam Grades 20 40 60 80 100 20 40 60 80 100

Fuzzification

If a student scores 30 in the exam, with traditional logic, they have received poor grades,
since the poorness of grades is a step function that treats all the grades below 40 as poor and
higher than 40 as not-poor. In the case of fuzzy logic, if a student gets 30, they have a 0.8
degree of a poor grade and if the student scores 70, they have a 0.2 degree of a poor grade.
The fuzzy sets do not need to be distinct and they can union, intersect, complement, and
differentiate with each other:

Iy (%) e

(%)
“ uanB(x) = min (ua(x), us(x)) Vx € X

Intersection

[195]

Fuzzy Systems Chapter 7

H (%)

(=) A uB(x) = max (pa(x), w(x)) Vs €X

Union

Bax) =1-pa(x)VeX

Complement

The fuzzy function can take any complex form based on the contextual data-based
reasoning. Membership for elements in a fuzzy set that follows the fuzzy function can
be ensured in multiple ways, depending on the context:

* Membership as similarity

* Membership as probability

* Membership as intensity

* Membership as approximation
» Membership