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Preface 
 

 

We are at an interesting juncture in the evolution of the digital age, where there is an 
enormous amount of computing power and data in the hands of everyone. There has been 
an exponential growth in the amount of data we now have in digital form. While being 
associated with data-related technologies for more than 6 years, we have seen a rapid shift 
towards enterprises that are willing to leverage data assets initially for insights and 
eventually for advanced analytics. What sounded like hype initially has become a reality in 
a very short period of time. Most companies have realized that data is the most important 
asset needed to stay relevant. As practitioners in the big data analytics industry, we have 
seen this shift very closely by working with many clients of various sizes, across regions 
and functional domains. There is a common theme evolving toward open distributed open 
source computing to store data assets and perform advanced analytics to predict future 
trends and risks for businesses. 
 

This book is an attempt to share the knowledge we have acquired over time to help new 
entrants in the big data space to learn from our experience. We realize that the field of 
artificial intelligence is vast and it is just the beginning of a revolution in the history of 
mankind. We are going to see AI becoming mainstream in everyone’s life and 
complementing human capabilities to solve some of the problems that have troubled us for 
a long time. This book takes a holistic approach into the theory of machine learning and AI, 
starting from the very basics to building applications with cognitive intelligence. We have 
taken a simple approach to illustrate the core concepts and theory, supplemented by 
illustrative diagrams and examples. 
 

It will be encouraging for us for readers to benefit from the book and fast-track their 
learning and innovation into one of the most exciting fields of computing so they can 
create a truly intelligent system that will augment our abilities to the next level. 
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Who this book is for 
 
This book is for anyone with a curious mind who is exploring the fields of machine 
learning, artificial intelligence, and big data analytics. This book does not assume that you 
have in-depth knowledge of statistics, probability, or mathematics. The concepts are 
illustrated with easy-to-follow examples. A basic understanding of the Java programming 
language and the concepts of distributed computing frameworks (Hadoop/Spark) will be an 
added advantage. This book will be useful for data scientists, members of technical staff in 
IT products and service companies, technical project managers, architects, business 
analysts, and anyone who deals with data assets. 

 

What this book covers 
 
Chapter 1, Big Data and Artificial Intelligence Systems, will set the context for the convergence of 
human intelligence and machine intelligence at the onset of a data revolution. We have the 
ability to consume and process volumes of data that were never possible before. We will 

understand how our quality of life is the result of our decisive power and actions and how it 
translates into the machine world. We will understand the paradigm of big data along with its 

core attributes before diving into the basics of AI. We will conceptualize the big data 
frameworks and see how they can be leveraged for building intelligence into machines. The 
chapter will end with some of the exciting applications of Big Data and AI. 
 
Chapter 2, Ontology for Big Data, introduces semantic representation of data into 
knowledge assets. A semantic and standardized view of the world is essential if we want 
to implement artificial intelligence, which fundamentally derives knowledge from data 
and utilizes contextual knowledge for insights and meaningful actions in order to augment 
human capabilities. This semantic view of the world is expressed as ontologies. 
 

Chapter 3, Learning from Big Data, shows broad categories of machine learning 

as supervised and unsupervised learning, and we understand some of the fundamental 
algorithms that are very widely used. In the end, we will have an overview of the 
Spark programming model and Spark's Machine Learning library (Spark MLlib). 
 

Chapter 4, Neural Networks for Big Data, explores neural networks and how they have 
evolved with the increase in computing power with distributed computing frameworks. 
Neural networks get their inspiration from the human brain and help us solve some very 
complex problems that are not feasible with traditional mathematical models. 
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Chapter 5, Deep Big Data Analytics, takes our understanding of neural networks to the 
next level by exploring deep neural networks and the building blocks of deep learning: 
gradient descent and backpropagation. We will review how to build data preparation 
pipelines, the implementation of neural network architectures, and hyperparameter 
tuning. We will also explore distributed computing for deep neural networks with 
examples using the DL4J library. 
 

Chapter 6, Natural Language Processing, introduces some of the fundamentals of Natural 

Language Processing (NLP). As we build intelligent machines, it is imperative that the 
interface with the machines should be as natural as possible, like day-to-day human 

interactions. NLP is one of the important steps towards that. We will be learning about text 

preprocessing, techniques for extraction of relevant features from natural language text, 
application of NLP techniques, and the implementation of sentiment analysis with NLP. 
 

Chapter 7, Fuzzy Systems, explains that a level of fuzziness is essential if we want to build 
intelligent machines. In the real-world scenarios, we cannot depend on exact mathematical 
and quantitative inputs for our systems to work with, although our models (deep neural 
networks, for example) require actual inputs. The uncertainties are more frequent and, due 
to the nature of real-world scenarios, are amplified by incompleteness of contextual 
information, characteristic randomness, and ignorance of data. Human reasoning are 
capable enough to deal with these attributes of the real world. A similar level of fuzziness is 
essential for building intelligent machines that can complement human capabilities in a real 
sense. In this chapter, we are going to understand the fundamentals of fuzzy logic, its 
mathematical representation, and some practical implementations of fuzzy systems. 
 

Chapter 8, Genetic Programming, big data mining tools need to be empowered by 
computationally efficient techniques to increase the degree of efficiency. Genetic 
algorithms over data mining create great, robust, computationally efficient, and adaptive 
systems. In fact, with the exponential explosion of data, data analytics techniques go on to 
take more time and inversely affect the throughput. Also due to their static nature, complex 
hidden patterns are often left out. In this chapter, we want to show how to use genes to 
mine data with great efficiency. To achieve this objective, we’ll introduce the basics of 
genetic programming and the fundamental algorithms. 
 

Chapter 9, Swarm Intelligence, analyzes the potential of swarm intelligence for solving 
big data analytics problems. Based on the combination of swarm intelligence and data 
mining techniques, we can have a better understanding of the big data analytics problems 
and design more effective algorithms to solve real-world big data analytics problems. In 
this chapter, we’ll show how to use these algorithms in big data applications. The basic 
theory and some programming frameworks will be also explained. 
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Chapter 10, Reinforcement Learning, covers reinforcement learning as one of the 
categories of machine learning. With reinforcement learning, the intelligent agent learns 
the right behavior based on the reward it receives as per the actions it takes within a 
specific environmental context. We will understand the fundamentals of reinforcement 
learning, along with mathematical theory and some of the commonly used techniques for 
reinforcement learning. 
 

Chapter 11, Cyber Security, analyzes the cybersecurity problem for critical infrastructure. 
Data centers, data base factories, and information system factories are continuously under 
attack. Online analysis can detect potential attacks to ensure infrastructure security. This 
chapter also explains Security Information and Event Management (SIEM). It emphasizes 
the importance of managing log files and explains how they can bring benefits. 
Subsequently, Splunk and ArcSight ESM systems are introduced. 
 
Chapter 12, Cognitive Computing, introduces cognitive computing as the next level in the 
development of artificial intelligence. By leveraging the five primary human senses along 
with mind as the sixth sense, a new era of cognitive systems can begin. We will see the 
stages of AI and the natural progression towards strong AI, along with the key enablers for 
achieving strong AI. We will take a look at the history of cognitive systems and see how 
that growth is accelerated with the availability of big data, which brings large data volumes 
and processing power in a distributed computing framework. 

 

To get the most out of this book 
 
The chapters in this book are sequenced in such a way that the reader can progressively 
learn about Artificial Intelligence for Big Data starting from the fundamentals and eventually 
move towards cognitive intelligence. Chapter 1, Big Data and Artificial Intelligence Systems, 
to Chapter 5, Deep Big Data Analytics, cover the basic theory of machine learning and 
establish the foundation for practical approaches to AI. Starting from Chapter 6, Natural 
Language Processing, we conceptualize theory into practical implementations and possible 
use cases. To get the most out of this book, it is recommended that the first five chapters are 
read in order. From Chapter 6, Natural Language Processing, onward, the reader can choose 
any topic of interest and read in whatever sequence they prefer. 
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Download the example code files 
 
You can download the example code files for this book from your account at 

www.packtpub.com. If you purchased this book elsewhere, you can visit 

www.packtpub.com/support and register to have the files emailed directly to you. 
 

You can download the code files by following these steps: 
 

1. Log in or register at www.packtpub.com.  
2. Select the SUPPORT tab.  
3. Click on Code Downloads & Errata.  
4. Enter the name of the book in the Search box and follow the onscreen 

instructions. 
 

Once the file is downloaded, please make sure that you unzip or extract the folder using the 
latest version of: 
 

 WinRAR/7-Zip for Windows  
 Zipeg/iZip/UnRarX for Mac  
 7-Zip/PeaZip for Linux 

 

The code bundle for the book is also hosted on GitHub at 
https://github.com/PacktPublishing/Artificial-Intelligence-for-Big-Data. We also 
have other code bundles from our rich catalog of books and videos available at https:// 

github.com/PacktPublishing/. Check them out! 

 

Download the color images 
 
We also provide a PDF file that has color images of the screenshots/diagrams used in 
this book. You can download it here: http://www.packtpub.com/sites/default/files/ 

downloads/ArtificialIntelligenceforBigData_ColorImages.pdf. 

 

Conventions used 
 

There are a number of text conventions used throughout this book. 
 

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as 

another disk in your system." 
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A block of code is set as follows: 
 

StopWordsRemover remover = new StopWordsRemover()  
.setInputCol("raw")  
.setOutputCol("filtered"); 

 

Any command-line input or output is written as follows: 
 

$ mkdir css  
$ cd css 

 

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an 
example: "Select System info from the Administration panel." 
 

Warnings or important notes appear like this. 
 
 
 

 

Tips and tricks appear like this. 
 
 
 
 

 

Get in touch 
 

Feedback from our readers is always welcome. 
 

General feedback: Email feedback@packtpub.com and mention the book title in the subject 

of your message. If you have questions about any aspect of this book, please email 

us at questions@packtpub.com. 
 

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book, we would be grateful if 
you would report this to us. Please visit www.packtpub.com/submit-errata, selecting 
your book, clicking on the Errata Submission Form link, and entering the details. 
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Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website 
name. Please contact us at copyright@packtpub.com with a link to the material. 
 

If you are interested in becoming an author: If there is a topic that you have expertise 
in and you are interested in either writing or contributing to a book, please visit 

authors.packtpub.com. 

 

Reviews 
 
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about our 
products, and our authors can see your feedback on their book. Thank you! 
 

For more information about Packt, please visit packtpub.com. 
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 
Big Data and Artificial 

Intelligence Systems 
 

The human brain is one of the most sophisticated machines in the universe. It has evolved 
for thousands of years to its current state. As a result of continuous evolution, we are able 
to make sense of nature's inherent processes and understand cause and effect relationships. 
Based on this understanding, we are able to learn from nature and devise similar machines 
and mechanisms to constantly evolve and improve our lives. For example, the video 
cameras we use derived from the understanding of the human eye. 
 

Fundamentally, human intelligence works on the paradigm of sense, store, process, and act. 
Through the sensory organs, we gather information about our surroundings, store the 
information (memory), process the information to form our beliefs/patterns/links, and use 
the information to act based on the situational context and stimulus. 
 

Currently, we are at a very interesting juncture of evolution where the human race has 
found a way to store information in an electronic format. We are also trying to devise 
machines that imitate the human brain to be able to sense, store, and process information to 
make meaningful decisions and complement human abilities. 
 
This introductory chapter will set the context for the convergence of human intelligence 
and machine intelligence at the onset of a data revolution. We have the ability to consume 
and process volumes of data that were never possible before. We will understand how our 
quality of life is the result of our decisive power and actions and how it translates to the 
machine world. We will understand the paradigm of Big Data along with its core attributes 
before diving into artificial intelligence (AI) and its basic fundamentals. We will 
conceptualize the Big Data frameworks and how those can be leveraged for building 
intelligence into machines. The chapter will end with some of the exciting applications of 
Big Data and AI. 



Big Data and Artificial Intelligence Systems Chapter 1  

 

We will cover the following topics in the chapter: 
 

 Results pyramid  
 Comparing the human and the electronic brain  
 Overview of Big Data 

 

 

Results pyramid 
 
The quality of human life is a factor of all the decisions we make. According to Partners 
in Leadership, the results we get (positive, negative, good, or bad) are a result of our 
actions, our actions are a result of the beliefs we hold, and the beliefs we hold are a result 
of our experiences. This is represented as a results pyramid as follows:  
 
 
 
 
 
 
 
 
 
 
 

 

At the core of the results pyramid theory is the fact that it is certain that we cannot achieve 
better or different results with the same actions. Take an example of an organization that is 
unable to meets its goals and has diverted from its vision for a few quarters. This is a result 
of certain actions that the management and employees are taking. If the team continues to 
have same beliefs, which translate to similar actions, the company cannot see noticeable 
changes in its outcomes. In order to achieve the set goals, there needs to be a fundamental 
change in day-to-day actions for the team, which is only possible with a new set of beliefs. 
This means a cultural overhaul for the organization. 
 

Similarly, at the core of computing evolution, man-made machines cannot evolve to be 
more effective and useful with the same outcomes (actions), models (beliefs), and data 
(experiences) that we have access to traditionally. We can evolve for the better if 
human intelligence and machine power start complementing each other. 
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What the human brain does best 
 
While the machines are catching up fast in the quest for intelligence, nothing can come close 

to some of the capabilities that the human brain has. 
 

 

Sensory input 
 
The human brain has an incredible capability to gather sensory input using all the senses 
in parallel. We can see, hear, touch, taste, and smell at the same time, and process the input 
in real time. In terms of computer terminology, these are various data sources that stream 
information, and the brain has the capacity to process the data and convert it into 
information and knowledge. There is a level of sophistication and intelligence within the 
human brain to generate different responses to this input based on the situational context. 
 

For example, if the outside temperature is very high and it is sensed by the skin, the brain 
generates triggers within the lymphatic system to generate sweat and bring the body 
temperature under control. Many of these responses are triggered in real time and without 
the need for conscious action. 
 

 

Storage 
 
The information collected from the sensory organs is stored consciously and 
subconsciously. The brain is very efficient at filtering out the information that is non-critical 
for survival. Although there is no confirmed value of the storage capacity in the human 
brain, it is believed that the storage capacity is similar to terabytes in computers. The brain's 
information retrieval mechanism is also highly sophisticated and efficient. The brain can 
retrieve relevant and related information based on context. It is understood that the brain 
stores information in the form of linked lists, where the objects are linked to each other by a 
relationship, which is one of the reasons for the availability of data as information and 
knowledge, to be used as and when required. 
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Processing power 
 
The human brain can read sensory input, use previously stored information, and make 
decisions within a fraction of a millisecond. This is possible due to a network of neurons 
and their interconnections. The human brain possesses about 100 billion neurons with 
one quadrillion connections known as synapses wiring these cells together. It coordinates 
hundreds of thousands of the body's internal and external processes in response to 
contextual information. 
 

 

Low energy consumption 
 
The human brain requires far less energy for sensing, storing, and processing information. 
The power requirement in calories (or watts) is insignificant compared to the equivalent 
power requirements for electronic machines. With growing amounts of data, along with 
the increasing requirement of processing power for artificial machines, we need to consider 
modeling energy utilization on the human brain. The computational model needs to 
fundamentally change towards quantum computing and eventually to bio-computing. 
 

 

What the electronic brain does best 
 
As the processing power increases with computers, the electronic brain—or computers—

are much better when compared to the human brain in some aspects, as we will explore in 
the following sections. 
 

 

Speed information storage 
 
The electronic brain (computers) can read and store high volumes of information at 
enormous speeds. Storage capacity is exponentially increasing. The information is easily 
replicated and transmitted from one place to another. The more information we have at 
our disposal for analysis, pattern, and model formation, the more accurate our predictions 
will be, and the machines will be much more intelligent. Information storage speed is 
consistent across machines when all factors are constant. However, in the case of the 
human brain, storage and processing capacities vary based on individuals. 
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Processing by brute force 
 
The electronic brain can process information using brute force. A distributed computing 
system can scan/sort/calculate and run various types of compute on very large volumes of 
data within milliseconds. The human brain cannot match the brute force of computers. 
 

Computers are very easy to network and collaborate with in order to increase collective 
storage and processing power. The collective storage can collaborate in real time to produce 
intended outcomes. While human brains can collaborate, they cannot match the electronic 
brain in this aspect. 
 

 

Best of both worlds 
 
AI is finding and taking advantage of the best of both worlds in order to augment human 
capabilities. The sophistication and efficiency of the human brain and the brute force of 
computers combined together can result in intelligent machines that can solve some of the 
most challenging problems faced by human beings. At that point, the AI will complement 
human capabilities and will be a step closer to social inclusion and equanimity by 
facilitating collective intelligence. Examples include epidemic predictions, disease 
prevention based on DNA sampling and analysis, self driving cars, robots that work in 
hazardous conditions, and machine assistants for differently able people. 
 

Taking a statistical and algorithmic approach to data in machine learning and AI has been 

popular for quite some time now. However, the capabilities and use cases were limited until 
the availability of large volumes of data along with massive processing speeds, which is called 

Big Data. We will understand some of the Big Data basics in the next section. The availability of 
Big Data has accelerated the growth and evolution of AI and machine learning applications. 
Here is a quick comparison of AI before and with with Big Data:  
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The primary goal of AI is to implement human-like intelligence in machines and to create 
systems that gather data, process it to create models (hypothesis), predict or influence 
outcomes, and ultimately improve human life. With Big Data at the core of the pyramid, we 
have the availability of massive datasets from heterogeneous sources in real time. This 
promises to be a great foundation for an AI that really augments human existence:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Big Data 
 

"We don't have better algorithms, We just have more data." 
 

- Peter Norvig, Research Director, Google 
 

Data in dictionary terms is defined as facts and statistics collected together for reference or 
analysis. Storage mechanisms have greatly evolved with human evolution—sculptures, 
handwritten texts on leaves, punch cards, magnetic tapes, hard drives, floppy disks, CDs, 
DVDs, SSDs, human DNA, and more. With each new medium, we are able to store more 
and more data in less space; it's a transition in the right direction. With the advent of the 
internet and the Internet of Things (IoT), data volumes have been growing exponentially. 
 

Data volumes are exploding; more data has been created in the past two 

years than in the entire history of the human race. 
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The term Big Data was coined to represent growing volumes of data. Along with volume, 
the term also incorporates three more attributes, velocity, variety, and value, as follows: 
 

 Volume: This represents the ever increasing and exponentially growing amount 

of data. We are now collecting data through more and more interfaces between 

man-made and natural objects. For example, a patient's routine visit to a clinic 

now generates electronic data in the tune of megabytes. An average 

smartphone user generates a data footprint of at least a few GB per day. A flight 

traveling from one point to another generates half a terabyte of data.  
 Velocity: This represents the amount of data generated with respect to time and a 

need to analyze that data in near-real time for some mission critical operations. 

There are sensors that collect data from natural phenomenon, and the data is 

then processed to predict hurricanes/earthquakes. Healthcare is a great example 

of the velocity of the data generation; analysis and action is mission critical:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Variety: This represents variety in data formats. Historically, most electronic 

datasets were structured and fit into database tables (columns and rows). 

However, more than 80% of the electronic data we now generate is not in 

structured format, for example, images, video files, and voice data files. With Big 

Data, we are in a position to analyze the vast majority of 

structured/unstructured and semi-structured datasets. 
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 Value: This is the most important aspect of Big Data. The data is only as valuable 

as its utilization in the generation of actionable insight. Remember the results 

pyramid where actions lead to results. There is no disagreement that data holds 

the key to actionable insight; however, systems need to evolve quickly to be able 

to analyze the data, understand the patterns within the data, and, based on the 

contextual details, provide solutions that ultimately create value. 
 

 

Evolution from dumb to intelligent machines 
 
The machines and mechanisms that store and process these huge amounts of data have 
evolved greatly over a period of time. Let us briefly look at the evolution of machines (for 
simplicity's sake, computers). For a major portion of their evolution, computers were dumb 
machines instead of intelligent machines. The basic building blocks of a computer are the 
CPU (Central Processing Unit), the RAM (temporary memory), and the disk (persistent 
storage). One of the core components of a CPU is an ALU (Arithmetic and Logic Unit). This 
is the component that is capable of performing the basic steps of mathematical calculations 
along with logical operations. With these basic capabilities in place, traditional computers 
evolved with greater and higher processing power. However, they were still dumb 
machines without any inherent intelligence. These computers were extremely good at 
following predefined instructions by using brute force and throwing errors or exceptions 
for scenarios that were not predefined. These computer programs could only answer specific 
questions they were meant to solve. 
 

Although these machines could process lots of data and perform computationally heavy 
jobs, they would be always limited to what they were programmed to do. This is 
extremely limiting if we take the example of a self driving car. With a computer program 
working on predefined instructions, it would be nearly impossible to program the car to 
handle all situations, and the programming would take forever if we wanted to drive the 
car on ALL roads and in all situations. 
 
This limitation of traditional computers to respond to unknown or non-programmed 
situations leads to the question: Can a machine be developed to think and evolve as humans 
do? Remember, when we learn to drive a car, we just drive it in a small amount of situations 
and on certain roads. Our brain is very quick to learn to react to new situations and trigger 
various actions (apply breaks, turn, accelerate, and so on). This curiosity resulted in the 
evolution of traditional computers into artificially intelligent machines. 
 

Traditionally, AI systems have evolved based on the goal of creating expert 
systems that demonstrate intelligent behavior and learn with every 
interaction and outcome, similar to the human brain. 
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In the year 1956, the term artificial intelligence was coined. Although there were gradual 
steps and milestones on the way, the last decade of the 20th century marked remarkable 
advancements in AI techniques. In 1990, there were significant demonstrations of machine 
learning algorithms supported by case-based reasoning and natural language 
understanding and translations. Machine intelligence reached a major milestone when 
then World Chess Champion, Gary Kasparov, was beaten by Deep Blue in 1997. Ever since 
that remarkable feat, AI systems have greatly evolved to the extent that some experts have 
predicted that AI will beat humans at everything eventually. In this book, we are going to 
look at the specifics of building intelligent systems and also understand the core 
techniques and available technologies. Together, we are going to be part of one of the 
greatest revolutions in human history. 
 

 

Intelligence 
 
Fundamentally, intelligence in general, and human intelligence in particular, is a constantly 
evolving phenomenon. It evolves through four Ps when applied to sensory input or data 
assets: Perceive, Process, Persist, and Perform. In order to develop artificial intelligence, 
we need to also model our machines with the same cyclical approach:  
 
 
 
 
 
 
 
 
 
 
 
 
 

Types of intelligence 
 

Here are some of the broad categories of human intelligence: 
 

 Linguistic intelligence: Ability to associate words to objects and use language 

(vocabulary and grammar) to express meaning  
 Logical intelligence: Ability to calculate, quantify, and perform mathematical 

operations and use basic and complex logic for inference  
 Interpersonal and emotional intelligence: Ability to interact with other human 

beings and understand feelings and emotions 
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Intelligence tasks classification 
 

This is how we classify intelligence tasks: 
 

 Basic tasks: 

 Perception  
 Common sense  
 Reasoning  
 Natural language processing  

 Intermediate tasks: 

 Mathematics  
 Games  

 Expert tasks: 

 Financial analysis  
 Engineering  
 Scientific analysis  
 Medical analysis 

 

The fundamental difference between human intelligence and machine intelligence is the 
handling of basic and expert tasks. For human intelligence, basic tasks are easy to master 
and they are hardwired at birth. However, for machine intelligence, perception, 
reasoning, and natural language processing are some of the most computationally 
challenging and complex tasks. 
 

 

Big data frameworks 
 
In order to derive value from data that is high in volume, varies in its form and structure, 
and is generated with ever increasing velocity, there are two primary categories of 
framework that have emerged over a period of time. These are based on the 
consideration of the differential time at which the event occurs (data origin) and the time 
at which the data is available for analysis and action. 
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Batch processing 
 
Traditionally, the data processing pipeline within data warehousing systems consisted of 
Extracting, Transforming, and Loading the data for analysis and actions (ETL). With the 
new paradigm of file-based distributed computing, there has been a shift in the ETL 
process sequence. Now the data is Extracted, Loaded, and Transformed repetitively for 
analysis (ELTTT) a number of times:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In batch processing, the data is collected from various sources in the staging areas and 
loaded and transformed with defined frequencies and schedules. In most use cases with 
batch processing, there is no critical need to process the data in real time or in near real 
time. As an example, the monthly report on a student's attendance data will be generated 
by a process (batch) at the end of a calendar month. This process will extract the data from 
source systems, load it, and transform it for various views and reports. One of the most 
popular batch processing frameworks is Apache Hadoop. It is a highly scalable, 
distributed/parallel processing framework. The primary building block of Hadoop is the 
Hadoop Distributed File System. 
 
As the name suggests, this is a wrapper filesystem which stores the data 
(structured/unstructured/semi-structured) in a distributed manner on data nodes within 
Hadoop. The processing that is applied on the data (instead of the data that is processed) is 
sent to the data on various nodes. Once the compute is performed by an individual node, 
the results are consolidated by the master process. In this paradigm of data-compute 
localization, Hadoop relies heavily on intermediate I/O operations on hard drive disks. As 
a result, extremely large volumes of data can be processed by Hadoop in a reliable manner 
at the cost of processing time. This framework is very suitable for extracting value from Big 
Data in batch mode. 
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Real-time processing 
 
While batch processing frameworks are good for most data warehousing use cases, there is 
a critical need for processing the data and generating actionable insight as soon as the data 
is available. For example, in a credit card fraud detection system, the alert should be 
generated as soon as the first instance of logged malicious activity. There is no value if the 
actionable insight (denying the transaction) is available as a result of the end-of-month 
batch process. The idea of a real-time processing framework is to reduce latency between 
event time and processing time. In an ideal system, the expectation would be zero 
differential between the event time and the processing time. However, the time difference is 
a function of the data source input, execution engine, network bandwidth, and hardware. 
Real-time processing frameworks achieve low latency with minimal I/O by relying on in-
memory computing in a distributed manner. Some of the most popular real-time processing 
frameworks are: 
 

 Apache Spark: This is a distributed execution engine that relies on in-memory 

processing based on fault tolerant data abstractions named RDDs (Resilient 

Distributed Datasets).  
 Apache Storm: This is a framework for distributed real-time computation. Storm 

applications are designed to easily process unbounded streams, which generate 

event data at a very high velocity. 

 Apache Flink: This is a framework for efficient, distributed, high volume data 
processing. The key feature of Flink is automatic program optimization. Flink 

provides native support for massively iterative, compute intensive algorithms. 
 

As the ecosystem is evolving, there are many more frameworks available for batch and real-
time processing. Going back to the machine intelligence evolution cycle (Perceive, Process, 
Persist, Perform), we are going to leverage these frameworks to create programs that work 
on Big Data, take an algorithmic approach to filter relevant data, generate models based on 
the patterns within the data, and derive actionable insight and predictions that ultimately 
lead to value from the data assets. 
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Intelligent applications with Big Data 
 
At this juncture of technological evolution, where we have the availability of systems that 

gather large volumes of data from heterogeneous sources, along with systems that store these 
large volumes of data at ever reducing costs, we can derive value in the form of insight into the 
data and build intelligent machines that can trigger actions resulting in the betterment of 
human life. We need to use an algorithmic approach with the massive data and compute assets 
we have at our disposal. Leveraging a combination of human intelligence, large volumes of 
data, and distributed computing power, we can create expert systems which can be used as an 

advantage to lead the human race to a better future. 
 
 

Areas of AI 
 
While we are in the infancy of developments in AI, here are some of the basic areas in 
which significant research and breakthroughs are happening: 
 

 Natural language processing: Facilitates interactions between computers and 

human languages.  

 Fuzzy logic systems: These are based on the degrees of truth instead of 

programming for all situations with IF/ELSE logic. These systems can control 

machines and consumer products based on acceptable reasoning.  
 Intelligent robotics: These are mechanical devices that can perform mundane or 

hazardous repetitive tasks.  
 Expert systems: These are systems or applications that solve complex problems 

in a specific domain. They are capable of advising, diagnosing, and predicting 

results based on the knowledge base and models. 
 

 

Frequently asked questions 
 

Here is a small recap of what we covered in the chapter: 
 

Q: What is a results pyramid? 
 

A: The results we get (man or machine) are an outcome of our experiences (data), 
beliefs (models), and actions. If we need to change the results, we need different (better) 
sets of data, models, and actions. 
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Q: How is this paradigm applicable to AI and Big Data? 
 

A: In order to improve our lives, we need intelligent systems. With the advent of Big 
Data, there has been a boost to the theory of machine learning and AI due to the 
availability of huge volumes of data and increasing processing power. We are on the 
verge of getting better results for humanity as a result of the convergence of machine 
intelligence and Big Data. 
 

Q: What are the basic categories of Big Data frameworks? 
 

A: Based on the differentials between the event time and processing time, there are two 

types of framework: batch processing and real-time processing. 
 

Q: What is the goal of AI? 
 

A: The fundamental goal of AI is to augment and complement human life. 
 

Q: What is the difference between machine learning and AI? 
 
A: Machine learning is a core concept which is integral to AI. In machine learning, the 
conceptual models are trained based on data and the models can predict outcomes for the 
new datasets. AI systems try to emulate human cognitive abilities and are context 
sensitive. Depending on the context, AI systems can change their behaviors and outcomes 
to best suit the decisions and actions the human brain would take. 
 

Have a look at the following diagram for a better understanding:  
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Summary 
 
In this chapter, we understood the concept of the results pyramid, which is a model for the 
continuous improvement of human life and striving to get better results with an improved 
understanding of the world based on data (experiences), which shape our models (beliefs).  
With the convergence of the evolving human brain and computers, we know that the best of 
both worlds can really improve our lives. We have seen how computers have evolved from 
dumb to intelligent machines and we provided a high-level overview of intelligence and 
Big Data, along with types of processing frameworks. 
 

With this introduction and context, in subsequent chapters in this book, we are going to 
take a deep dive into the core concepts of taking an algorithmic approach to data and the 
basics of machine learning with illustrative algorithms. We will implement these algorithms 
with available frameworks and illustrate this with code samples. 
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 
Ontology for Big Data 

 
 

In the introductory chapter, we learned that big data has fueled rapid advances in the field 
of artificial intelligence. This is primarily because of the availability of extremely large 
datasets from heterogeneous sources and exponential growth in processing power due to 
distributed computing. It is extremely difficult to derive value from large data volumes if 
there is no standardization or a common language for interpreting data into information 
and converting information into knowledge. For example, two people who speak two 
different languages, and do not understand each other's languages, cannot get into a verbal 
conversation unless there is some translation mechanism in between. Translations and 
interpretations are possible only when there is a semantic meaning associated with a 
keyword and when grammatical rules are applied as conjunctions. As an example, here is a 
sentence in the English and Spanish languages:  
 
 
 
 

 

Broadly, we can break a sentence down in the form of objects, subjects, verbs, and 
attributes. In this case, John and bananas are subjects. They are connected by an activity, 
in this case eating, and there are also attributes and contextual data—information in 
conjunction with the subjects and activities. Knowledge translators can be implemented in 
two ways: 
 

 All-inclusive mapping: Maintaining a mapping between all sentences in one 

language and translations in the other language. As you can imagine, this is 

impossible to achieve since there are countless ways something (object, 

event, attributes, context) can be expressed in a language.  
 Semantic view of the world: If we associate semantic meaning with every entity 

that we encounter in linguistic expression, a standardized semantic view of the 

world can act as a centralized dictionary for all the languages. 
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A semantic and standardized view of the world is essential if we want to implement 
artificial intelligence which fundamentally derives knowledge from data and utilizes the 
contextual knowledge for insight and meaningful actions in order to augment human 
capabilities. This semantic view of the world is expressed as Ontologies. In the context 
of this book, Ontology is defined as: a set of concepts and categories in a subject area or 
domain, showing their properties and the relationships between them. 
 

In this chapter, we are going to look at the following: 
 

 How the human brain links objects in its interpretation of the world  
 The role Ontology plays in the world of Big Data  
 Goals and challenges with Ontology in Big Data  
 The Resource Description Framework  
 The Web Ontology Language  
 SPARQL, the semantic query language for the RDF  

 Building Ontologies and using Ontologies to build intelligent machines 

 Ontology learning 
 

 

Human brain and Ontology 
 
While there are advances in our understanding of how the human brain functions, the 
storage and processing mechanism of the brain is far from fully understood. We receive 
hundreds and thousands of sensory inputs throughout a day, and if we process and store 
every bit of this information, the human brain will be overwhelmed and will be unable to 
understand the context and respond in a meaningful way. The human brain applies filters 
to the sensory input it receives continuously. It is understood that there are three 
compartments to human memory: 
 

 Sensory memory: This is the first-level memory, and the majority of the 

information is flushed within milliseconds. Consider, for example, when we 

are driving a car. We encounter thousands of objects and sounds on the way, 

and most of this input is utilized for the function of driving. Beyond the frame 

of reference in time, most of the input is forgotten and never stored in memory. 
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 Short-term memory: This is used for the information that is essential for serving a 

temporary purpose. Consider, for example, that you receive a call from your co-

worker to remind you about an urgent meeting in room number D-1482. When 

you start walking from your desk to the room, the number is significant and the 

human brain keeps the information in short-term memory. This information may 

or may not be stored beyond the context time. These memories can potentially 

convert to long-term memory if encountered within an extreme situation.  
 Long-term memory: This is the memory that will last for days or a lifetime. For 

example, we remember our name, date of birth, relatives, home location, and so 

many other things. The long-term memory functions on the basis of patterns and 

links between objects. The non-survival skills we learn and master over a period 

of time, for example playing a musical instrument, require the storage of 

connecting patterns and the coordination of reflexes within long-term memory. 
 

Irrespective of the memory compartment, the information is stored in the form of patterns 
and links within the human brain. In a memory game that requires players to momentarily 
look at a group of 50-odd objects for a minute and write down the names on paper, the 
player who writes the most object names wins the game. One of the tricks of playing this 
game is to establish links between two objects and form a storyline. The players who try to 
independently memorize the objects cannot win against the players who create a linked 
list in their mind. 
 

When the brain receives input from sensory organs and the information needs to be stored 
in the long-term memory, it is stored in the form of patterns and links to related objects or 
entities, resulting in mind maps. This is shown in the following figure:  
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When we see a person with our eyes, the brain creates a map for the image and retrieves all 
the context-based information related to the person. 
 

This forms the basis of the Ontology of information science. 
 

 

Ontology of information science 
 
Formally, the Ontology of information sciences is defined as: A formal naming and 
definition of types, properties, and interrelationships of the entities that fundamentally exist for a 
particular domain. 
 
There is a fundamental difference between people and computers when it comes to dealing 
with information. For computers, information is available in the form of strings whereas 
for humans, the information is available in the form of things. Let's understand the 
difference between strings and things. When we add metadata to a string, it becomes a 
thing. Metadata is data about data (the string in this case) or contextual information about 
data. The idea is to convert the data into knowledge. The following illustration gives us a 
good idea about how to convert data into knowledge:  
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The text or the number 66 is Data; in itself, 66 does not convey any meaning. When we 

say 660 F, 66 becomes a measure of temperature and at this point it represents some 

Information. When we say 660 F in New York on 3rd October 2017 at 8:00 PM, it becomes 
Knowledge. When contextual information is added to Data and Information, it becomes 
Knowledge. 
 
In the quest to derive knowledge from data and information, Ontologies play a major role 
in standardizing the worldview by precisely defined terms that can be communicated 
between people and software applications. They create a shared understanding of objects 
and their relationships within and across domains. Typically, there are schematic, 
structural, and semantic differences, and hence conflict arises between knowledge 
representations. Well-defined and governed Ontologies bridge the gaps between the 
representations. 
 

 

Ontology properties 
 
At a high level, Ontologies should have the following properties to create a consistent view 

of the universe of data, information, and knowledge assets: 
 

 The Ontologies should be complete so that all aspects of the entities are covered.  
 The Ontologies should be unambiguous in order to avoid misinterpretation by 

people and software applications.  
 The Ontologies should be consistent with the domain knowledge to which they 

are applicable. For example, Ontologies for medical science should adhere to 

the formally established terminologies and relationships in medical science.  
 The Ontologies should be generic in order to be reused in different contexts.  
 The Ontologies should be extensible in order to add new concepts and facilitate 

adherence to the new concepts, that emerge with growing knowledge in the 

domain.  
 The Ontologies should be machine-readable and interoperable. 
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Here is an illustration to better explain properties of Ontologies:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The most important advantage of Ontological representation for real-world concepts and 
entities is that it facilitates the study of concepts independently of programming language, 
platforms, and communication protocols. This enables loose coupling, and at the same 
time, tight integration between the concepts, which enables the software development 
process to reuse the software and knowledge base as modular concepts. 
 

 

Advantages of Ontologies 
 

The following are the advantages of Ontologies: 
 

 Increased quality of entity analysis  
 Increased use, reuse, and maintainability of the information systems  
 Facilitation of domain knowledge sharing, with common vocabulary across 

independent software applications 
 

Those who are familiar with the object-oriented programming paradigm or database design 
can easily relate the Ontological representation of the domain entities to classes or database 
schemas. The classes are generic representations of the entities that encapsulate properties 
and behaviors. One class can inherit behavior and properties from another class (is-a 
relationship). For example, a cat is an animal. 
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In this case, Animal is an abstract superclass of Cat. The Cat class inherits properties from 
the Animal class and adds/overrides some of the attributes and behaviors specific to a cat. 
This paradigm is applicable in Ontologies. Similarly, relational databases have schematic 
representations of the domain entities within an organization. 
 

There are some fundamental differences between databases and Ontologies, as follows: 
 

Ontologies are semantically richer than the concepts represented by databases  
 Information representation in an Ontology is based on semi-structured, natural 

language text and it is not represented in a tabular format  
 The basic premise of Ontological representation is globally consistent 

terminology to be used for information exchange across domains 

and organizational boundaries  
 More than defining a confined data container, Ontologies focus on generic 

domain knowledge representation 
 

 

Components of Ontologies 
 

The following are the components of Ontologies: 
 

 Concepts: These are the general things or entities similar to classes in object-

oriented programming, for example, a person, an employee, and so on.  
 Slots: These are the properties or attributes of the entities, for example, gender, 

date of birth, location, and so on.  
 Relationships: These represent interactions between concepts, or is-a, has-a 

relationships, for example, an employee is a person.  
 Axioms: These are statements which are always true in regards to concepts, slots 

and relationships, for example, a person is an employee if he is employed by an 

employer.  
 Instances: These are the objects of a class in object-oriented terms. For example, 

John is an instance of the Employee class. It is a specific representation of a 

concept. Ontology, along with instances, fully represents knowledge.  
 Operations: These are the functions and rules that govern the various 

components of the Ontologies. In an object-oriented context, these 

represent methods of a class. 
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The following diagram explains the components of Ontologies:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The development of Ontologies begins with defining classes in the Ontology. These 
classes represent real-world entities. Once the entities are clearly identified and defined, 
they are arranged in a taxonomic hierarchy. Once the hierarchy is defined, the Slots and 
Relationships are defined. Filling in the values for slots and instances completes the 
development of a domain-specific Ontology. 
 

 

The role Ontology plays in Big Data 
 
As we saw in the introductory chapter, data volumes are growing at a phenomenal rate 
and in order to derive value from the data, it is impossible to model the entire data in a 
traditional Extract, Transform, and Load (ETL) way. Traditionally, data sources generate 
the datasets in structured and unstructured formats. In order to store these data assets, we 
need to manually model the data based on various entities. Taking an example of Person as 
an entity in the relational database world, we need to create a table that represents Person. 
This table is linked to various entities with foreign key relationships. However, these 
entities are predefined and have a fixed structure. There is manual effort involved in 
modeling the entities and it is difficult to modify them. 
 

In the big data world, the schema is defined at read time instead of write time. This gives us 
a higher degree of flexibility with the entity structure and data modeling. Even with 
flexibility and extensible modeling capabilities, it is very difficult to manage the data assets 
on an internet scale if the entities are not standardized across domains. 
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In order to facilitate web search, Google introduced the knowledge graph which changed the 

search from keyword statistics based on representation to knowledge modeling. 
 
This was the introduction of the searching by things and not strings paradigm. The 
knowledge graph is a very large Ontology which formally describes objects in the real 
world. With increased data assets generated from heterogeneous sources at an accelerating 
pace, we are constantly headed towards increased complexity. The big data paradigm 
describes large and complex datasets that are not manageable with traditional applications. 
At a minimum, we need a way to avoid false interpretations of complex data entities. The 
data integration and processing frameworks can possibly be improved with methods from 
the field of semantic technology. With use of things instead of text, we can improve 
information systems and their interoperability by identifying the context in which they 
exist. Ontologies provide the semantic richness of domain-specific knowledge and its 
representation. 
 
With big data assets, it is imperative that we reduce the manual effort of modeling the data 
into information and knowledge. This is possible if we can create a means to find the 
correspondence between raw entities, derive the generic schema with taxonomical 
representation, and map the concepts to topics in specific knowledge domains with 
terminological similarities and structural mappings. This implementation will facilitate 
automatic support for the management of big data assets and the integration of different 
data sources, resulting in fewer errors and speed of knowledge derivation. 
 

We need an automated progression from Glossary to Ontologies in the following manner:  
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Ontology alignment 
 
Ontology alignment or matching is a process of determining one-to-one mapping between 
entities from heterogeneous sources. Using this mapping, we can infer the entity types and 
derive meaning from the raw data sources in a consistent and semantic manner:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Goals of Ontology in big data 
 

The following are the goals of Ontology in big data: 
 

 Share a common understanding of information structures across software 

applications  
 Make ETL faster, easier, and more accurate  
 Eliminate the need for customized, situation-specific ETL pipelines  
 The automatic incorporation of new data sources  
 Enhance information extraction from text and convert it into knowledge assets  
 Enrich existing data with structural and semantic information  
 Translate business knowledge into machine-usable software 

 Build once, use many times 
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Challenges with Ontology in Big Data 
 

We face the following challenges when using Ontology in big data: 
 

 Generating entities (converting strings to things)  
 Managing relationships  
 Handling context  
 Query efficiency  
 Data quality 

 

 

RDF—the universal data format 
 
With the background of Ontologies and their significance in the big data world, let us look 
at a universal data format that defines the schematic representations of the Ontologies. One 
of the most adopted and popular frameworks is the Resource Description Framework 
(RDF). RDF has been a W3C recommendation since 2004. RDF provides a structure for 
describing identified things, entities, or concepts designed to be read and interpreted by 
computers. There is a critical need to uniquely identify an entity or concept universally. One 
of the most popular ways in the information science field is the use of Universal Resource 
Identifiers (URIs). We are familiar with website addresses, which are represented  
as Universal Resource Locators (URLs). These map to a unique IP address and hence a web 
domain on the internet. A URI is very similar to a URL, with the difference that the URIs 
may or may not represent an actual web domain. Given this distinction, the URIs that 
represent the real-world objects must be unambiguous. Any URI should be exclusive to 
either a web resource or a real-world object and should never be used to represent both at 
the same time, in order to avoid confusion and ambiguity:  
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Here is a basic example that describes the https://www.w3schools.com/rdf resource:  
 
 
 
 
 
 
 

 

When defining RDFs, there are the following considerations: 
 

 Define a simple data model  
 Define formal semantics  
 Use extensible URI-based vocabulary  
 Preferably use an XML-based syntax 

 

The basic building block of the RDF is a triple that consists of a Subject, Predicate, and an 

Object. The set of triples constitutes an RDF graph:  
 
 
 
 
 
 
 
 
 
 

 

Let us look at an example of a database of books and represent it with RDF XML: 
 

Book Name Author Company Year 
    

Hit Refresh Satya Nadella Microsoft 2017 
    

Shoe Dog Phil Knight Nike 2016 
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The first line of the RDF document is the XML declaration. The XML declaration is followed 
by the root element of the RDF documents, <rdf:RDF>. 
 

The xmlns:rdf namespace specifies that the elements with the rdf prefix are from 

the http://www.w3.org/1999/02/22-rdf-syntax-ns# namespace. The XML  
namespaces are used to provide uniquely named elements and attributes in an XML 
document. 
 

The xmlns:book namespace specifies that the elements with the book prefix are from the - 

http://www.artificial-intelligence.big-data/book# namespace. 
 

The <rdf:Description> element contains the description of the resource identified by 

the rdf:about attribute. 
 

The elements <book:author>, <book:company>, <book:year>, and so on are 

properties of the resource. 
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W3C provides an online validator service (https://www.w3.org/RDF/Validator/), 
which validates the RDF in terms of its syntax and generates tabular and graphical views 
of the RDF document:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RDF containers 
 

RDF containers are used to describe groups of things. Here is an example:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The <rdf:Bag> element is used to describe a list of values that do not have to be in 

a specific order. 
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<rdf:Seq> is similar to <rdf:Bag>. However, the elements represent an ordered list. 
 

<rdf:Alt> is used to represent a list of alternate values for the element. 
 
 

RDF classes 
 

The RDF classes are listed in the following images:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

RDF properties 
 

The RDF properties are listed as follows:  
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RDF attributes 
 

The various RDF attributes are listed as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using OWL, the Web Ontology Language 
 
While the RDF and corresponding schema definitions (RDFS) provide a structure for the 
semantic view of the information assets, there are some limitations with RDFS. RDFS cannot 
describe the entities in sufficient detail. There is no way to define localized ranges for the 
entity attributes, and the domain-specific constraints cannot be explicitly expressed. The 
existence or non-existence of a related entity, along with cardinality constraints (one-to-one, 
one-to-many, and so on), cannot be represented with RDFS. It is difficult to represent 
transitive, inverse, and symmetrical relationships. One of the important aspects of real-
world entity relationships is logical reasoning and inferences, without explicit mention of 
the relationship. RDFS cannot provide reasoning support for the related entities. 
 

The Web Ontology Language (OWL) extends and builds on top of RDF/RDFS. OWL is a 
family of knowledge representation languages for authoring Ontologies. 
 

Actually, OWL is not a real acronym. The language started out as WOL. 
However, the working group disliked the acronym WOL. Based on 

conversations within the working group, OWL had just one obvious 

pronunciation that was easy on the ear, and it opened up great 

opportunities for a logo—owls are associated with wisdom! 
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For building intelligent systems that can communicate across domains, there is a need to 
overcome the limitations of RDFS and equip the machines with access to structured 
collections of knowledge assets and sets of inference rules that can be used for automated 
reasoning. OWL provides formal semantics for knowledge representation and attempts 
to describe the meaning of the entities and their relationships and reasoning precisely. 
 

There are three species of OWL:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 OWL DL: This is used for supporting description logic. This supports maximum 

expressiveness and logical reasoning capabilities. This is characterized by: 

 Well-defined semantics  
 Well-understood formal properties for the entities  
 The ease of implementation of known reasoning algorithms 

 

 OWL Full: This is based on RDFS-compatible semantics. It complements the 

predefined RDF and OWL vocabulary. However, with OWL Full, the 

software cannot completely reason and inference.  
 OWL Lite: This is used for expressing taxonomy and simple constraints such as 

zero-to-one cardinality. 
 

OWL represents entities as classes. For example, let's define an entity of PlayGround with 

OWL: 
 

<owl:Class rdf:ID="PlayGround"> 

 

Now, define FootballGround and state that FootballGround is a type of PlayGround: 
 

<owl:Class rdf:ID="FootballGround"> 

<rdf:subClassOf rdf:resource="#PlayGround"/>  
</owl:Class> 
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OWL provides several other mechanisms for defining classes: 
 

 equivalentClass: Represents that the two classes (across Ontologies 

and domains) are synonymous.  
 disjointWith: Represents that an instance of a class cannot be an instance 

of another class. For example, FootballGround and HockyGround are 

stated as disjointed classes. 

 Boolean combinations:  
 unionOf: Represents that a class contains things that are 

from more than one class  

 intersectionOf: Represents that a class contains things 

that are in both one and the other  
 complementOf: Represents that a class contains things that are 

not other things 
 

 

SPARQL query language 
 
With a generic understanding of Ontologies, the RDF, and OWL, we are able to 
fundamentally understand how intelligent systems can communicate with each other 
seamlessly with a semantic view of the world. With a semantic worldview, the entities come 
to life by translating data assets into information and information assets into knowledge. It 
is imperative that there is a common language to leverage a semantic worldview so that 
heterogeneous systems can communicate with each other. SPARQL is a W3C standard that 
is attempting to be the global query language with the primary goal of interoperability. 
SPARQL is a recurring acronym and stands for SPARQL Protocol and RDF Query 
Language. As the name indicates, it is a query language for querying knowledge (as triples) 
stored in RDF format. Traditionally, we stored the information in relational databases in 
tabular format. The relational database view of the entities can easily be represented as 
triples. For example, let us once again consider the BOOK table: 
 

Book_ID Title Author Company Year 
     

1 Hit Refresh Satya Nadella Microsoft 2017 
     

2 Shoe Dog Phil Knight Nike 2016 
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Here, the row identifier (Book_ID and Title) is the subject, the column name is 

the predicate, and the column value is the object. For example: 
 

A Triple: 
 

{1: Hit Refresh} {Author} {Satya Nadella} 
 

Subject (Entity Name) Predicate (Attribute Name) Object (Attribute Value) 
 

The subjects and predicates are represented using URIs which universally identify 
specific subjects and predicates as resources: 
 

http://www.artificial-intelligence.big-data/book# http://www.artificial-

intelligence.big-data/book#author "Satya Nadella" 

 

Turtle syntax allows an RDF graph to be completely written in a compact 
and natural text form. It provides abbreviations for common usage 
patterns and datatypes. This format is compatible with the triple pattern 
syntax of SPARQL. 

 

Let us use the turtle syntax to represent the book table in RDF format: 
 

@prefix book: <http://www.artificial-intelligence.big-data/book#> 

 
book:1 book:Title "Hit Refresh"  
book:1 book:Author "Satya Nadella"  
book:1 book:Company "Microsoft"  
book:1 book:Year "2017" 

 
book:2 book:Title "Shoe Dog"  
book:2 book:Author "Phil Knight"  
book:2 book:Company "Nike"  
book:2 book:Year "2016" 

 

Let us use a simple SPARQL query for getting a list of books published in the year 2017: 
 

PREFIX book: <http://www.artificial-intelligence.big-data/book#> 

 
SELECT ?books  
WHERE  
{  

?books book:year "2017" .  
} 
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We have the following result: 
 

?books  
book:1 

 

Here is another SELECT query, which fetches more data elements from the dataset: 
 

PREFIX book: <http://www.artificial-intelligence.big-data/book#> 

 
SELECT ?books ?bookName ?company  
WHERE  
{  

?books book:year "2017" .  
?books book:title ?bookName .  
?books book:company ?company .  

} 

 

The result is as follows: 
 

?books ?bookName ?company  
book:1 Hit Refresh Microsoft 

 

While we are discussing role of Ontologies in the context of Artificial Intelligence for Big Data, 
a complete reference to OWL and SPARQL is outside of the scope of this book. In the 
following subsections, we will introduce a generic SPARQL language reference, which will 
help us leverage Ontologies to build artificial intelligence. 
 
 

Generic structure of an SPARQL query 
 

The generic structure of SPARQL is as follows: 
 

 PREFIX: Similar to the declaration of namespaces in the context of XML, and 

package in the context of Java, or any similar programming languages, PREFIX is 

the SPARQL equivalent, which ensures uniqueness among entity representations 

and eliminates the need for typing long URI patterns within SPARQL code. 

 SELECT / ASK / DESCRIBE / CONSTRUCT: 

 SELECT: This is an equivalent of SQL's SELECT clause. It 

defines the attributes that are required to be fetched from the 

RDF triples that fulfill the selection criteria.  
 ASK: This returns a Boolean value of true or false depending on 

the availability of the RDF triples, and based on the selection 

criteria within the RDF knowledge base. 
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 DESCRIBE: This query construct returns a graph containing all 

the available triples from the RDF knowledge base which match 

the selection criteria.  
 CONSTRUCT: This is very handy when creating a new RDF 

graph from an existing RDF based on selection criteria and 

filter conditions. This is the equivalent of XSLT in the context of 

XML. XSLT transforms XML in the intended format. 
 

 FROM: Defines the data source of the RDF endpoint, against which the query 

will be run. This is the SQL equivalent of the FROM <TABLE_NAME> clause. The 

endpoint can be a resource on the internet or a local data store accessible to the 

query engine.  
 WHERE: Defines the part of the RDF graph we are interested in. This is the 

equivalent of the WHERE SQL clause which defines filter conditions to fetch 

specific data from the entire dataset. 
 
 

Additional SPARQL features 
 

The additional SPARQL features are as follows: 
 

 Optional matching: Unlike traditional relational data stores, where the 

database schemas and constraints are predefined for the structured 

representation of data, in the big data word we deal with unstructured datasets. 

The attributes of the two resources of the same type may be different. Optional 

matching comes in handy when handling heterogeneous representations of the 

entities. The OPTIONAL block is used to select the data elements if they exist.  
 Alternative matching: Once again, considering the unstructured nature 

of knowledge assets, alternating matching provides a mechanism to return 

whichever properties are available.  

 UNION: This is in contrast to the OPTIONAL pattern. In the case of UNION, at 

least one of the datasets must find a match given the query criteria.  
 DISTINCT: This is the equivalent of the DISTINCT SQL clause, which 

excludes multiple occurrences of the same triple within the result. 
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 ORDER BY: Instructs the query to sequence results by a specific variable either 

in ascending or descending order. This is also equivalent to ORDER BY clause 

in SQL.  
 FILTERS and regular expressions: SPARQL provides features to restrict the 

result set triples by using expressions. Along with mathematical and logical 

expressions, SPARQL allows for the use of regular expressions to apply filters on 

datasets based on textual patterns.  
 GROUP BY: This allows the grouping of the resulting RDF triples based on one 

or more variables.  
 HAVING: This facilitates a selection of the query results at the group level.  
 SUM, COUNT, AVG, MIN, MAX, and so on are the functions available to be 

applied at the group level. 
 

 

Building intelligent machines with Ontologies 
 
In this chapter, we have looked at the role of Ontology in the management of big data assets 
as knowledge repositories, and understood the need for computational systems to perceive 
the data as things instead of strings. Although some of the big systems and web search 
engines use a semantic world view, the adoption of Ontology as a basis for systems is slow. 
The custodians of data assets (governments and everyone else) need to model knowledge 
assets in a consistent and standardized manner in order for us to evolve current 
computational systems into intelligent systems. 
 

Let us consider a use case that leverages Ontology-based knowledge graphs in order to 
simplify the flight boarding process. We have all experienced a hugely manual and time-
consuming process when boarding a flight. From the time we enter the airport to the time 
we board the flight, we go through a number of security checks and experience document 
verification. In a connected world where all the knowledge assets are standardized and 
defined as domain-specific Ontologies, it is possible to develop intelligent agents to make 
the flight boarding process hassle free and seamless. 
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Let us define the generic characteristics of an intelligent agent:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A little expansion on the characteristics is as follows: 
 

 Goals: Every intelligent system should have a well defined set of goals. These 

goals govern the rational decisions taken by the intelligent system and drive 

actions and hence results. For example, in the case of an intelligent agent that is 

responsible for the flight boarding process, one of the goals is to restrict access to 

anyone who does not pass all security checks, even if the person has a valid air 

ticket. In defining the goals for intelligent agents, one of the prime considerations 

should be that the AI agent or systems should complement and augment human 

capabilities.  
 Environment: The intelligent agent should operate within the context of the 

environment. Its decisions and actions cannot be independent of the context. In 

our example use case, the environment is the airport, the passenger gates, flight 

schedules, and so on. The agents perceive the environment with various 

sensors, for example video cameras.  
 Data Assets: The intelligent agent needs access to historical data in terms of the 

domain and the context in which it operates. The data assets can be available 

locally and globally (internet endpoints). These data assets ideally should be 

defined as RDF schema structures with standardized representations and 

protocols. These data assets should be queryable with standard languages and 

protocols (SPARQL) in order to ensure maximum interoperability. 
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 Model: This is where the real intelligence of the agent is available as algorithms 

and learning systems. These models evolve continuously based on the context, 

historical decisions, actions, and results. As a general rule, the model should 

perform better (more accurately) over a period of time for similar contextual 

inputs.  
 Effectors: These are the tangible aspects of the agent which facilitate actions. In 

the example of an airline passenger boarding agent, the effector can be an 

automated gate opening system which opens a gate once all the passengers are 

fully validated (having a valid ticket, identity, and no security check failures). 

The external world perceives the intelligent agent through effectors.  
 Actions and Results: Based on the environmental context, the data assets, and the 

trained models, the intelligent agent makes decisions that trigger actions through 

the effectors. These actions provide results based on the rationality of the decision 

and accuracy of the trained model. The results are once again fed into model 

training in order to improve accuracy over a period of time. 
 

At a high level, the method of the intelligent agent, which facilitates the flight 

boarding process, can be depicted as follows: 
 

1. When a passenger walks into the airport, a video camera reads the image and 
matches it to the data assets available to the agent. These data assets are 
Ontology objects which are loosely coupled and have flexibility of structure and 
attributes. Some of the inferences are made at the first level of matching to 
correctly identify the person who has entered the airport.  

2. If the person cannot be identified with the video stream, the first airport gate does 
not open automatically and requires a fingerprint scan from the passenger. The 
fingerprint scan is validated against the dataset, which is once again an Ontology 
object representation of the person entity. If the person is not identified at this 
stage, they are flagged for further manual security procedures.  

3. Once the person is correctly identified, the agent scans the global active ticket 
directory in order to ensure that the person has a valid ticket for a flight that 
departs from the airport in a reasonable time window. The global ticket 
directory and the flight database is also available as Ontology objects for the 
agent to refer to in real time.  

4. Once ticket validity is ensured, a boarding pass is generated and delivered to the 
passenger's smartphone, once again by referring to the person Ontology to derive 
personal details in a secure manner. The real-time instructions for directions to 
the gate are also sent to the device. 
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The agent can seamlessly guide the passenger to the appropriate boarding gate. The 
system can be built easily once all the heterogeneous data sources are standardized and 
have Ontological representation, which facilitates maximum interoperability and 
eliminates a need to code diverse knowledge representations. This results in an overall 
reduction of complexity in the agent software and an increase in efficiency. 
 

 

Ontology learning 
 
With the basic concepts on Ontologies covered in this chapter, along with their significance in 
building intelligent systems, it is imperative that for a seamlessly connected world, the 
knowledge assets are consistently represented as domain Ontologies. However, the process of 
manually creating domain-specific Ontologies requires lots of manual effort, validation, and 
approval. Ontology learning is an attempt to automate the process of the generation of 
Ontologies, using an algorithmic approach on the natural language text, which is available at 

the internet scale. There are various approaches to Ontology learning, as follows: 
 

 Ontology learning from text: In this approach, the textual data is extracted from 

various sources in an automated manner, and keywords are extracted and 

classified based on their occurrence, word sequencing, and patterns.  
 Linked data mining: In this processes, the links are identified in the published 

RDF graphs in order to derive Ontologies based on implicit reasoning.  
 Concept learning from OWL: In this approach, existing domain-specific 

Ontologies are leveraged for expand the new domains using an 

algorithmic approach.  
 Crowdsourcing: This approach combines automated Ontology extraction and 

discovery based on textual analysis and collaboration with domain experts to 

define new Ontologies. This approach works great since it combines the 

processing power and algorithmic approaches of machines and the domain 

expertise of people. This results in improved speed and accuracy. 
 

Here are some of the challenges of Ontology learning: 
 

 Dealing with heterogeneous data sources: The data sources on the internet, and 

within application stores, differ in their forms and representations. Ontology 

learning faces the challenge of knowledge extraction and consistent meaning 

extraction due to the heterogeneous nature of the data sources. 
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 Uncertainty and lack of accuracy: Due the the inconsistent data sources, when 

Ontology learning attempts to define Ontology structures, there is a level of 

uncertainty in terms of the intent and representation of entities and attributes. 

This results in a lower level of accuracy and requires human intervention from 

domain experts for realignment.  
 Scalability: One of the primary sources for Ontology learning is the internet, 

which is an ever growing knowledge repository. The internet is also an 

unstructured data source for the most part and this makes it difficult to scale 

the Ontology learning process to cover the width of the domain from large text 

extracts. One of the ways to address scalability is to leverage new, open source, 

distributed computing frameworks (such as Hadoop).  
 Need for post-processing: While Ontology learning is intended to be an 

automated process, in order to overcome quality issues, we require a level of 

post-processing. This process need to be planned and governed in detail in 

order to optimize the speed and accuracy of new Ontology definitions. 
 
 

Ontology learning process 
 

The Ontology learning process consists of six Rs:  
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They are explained as followed: 
 

 Retrieve: The knowledge assets are retrieved from the web and application 

sources from the domain specific stores using web crawls and protocol-based 

application access. The domain specific terms and axioms are extracted with a 

calculation of TF/IDF values and by the application of the C-Value / NC Value 

methods. Commonly used clustering techniques are utilized and the 

statistical similarity measures are applied on the extracted textual 

representations of the knowledge assets.  
 Refine: The assets are cleansed and pruned to improve signal to noise ratio. Here, 

an algorithmic approach is taken for refinement. In the refinement step, the terms 

are grouped corresponding to concepts within the knowledge assets.  
 Represent: In this step, the Ontology learning system arranges the concepts in a 

hierarchical structure using the unsupervised clustering method (at this point, 

understand this as a machine learning approach for the segmentation of the 

data; we will cover the details of unsupervised learning algorithms in the next 

chapter).  
 Re-align: This is a type of post-processing step that involves collaboration with 

the domain experts. At this point, the hierarchies are realigned for accuracy. The 

Ontologies are aligned with instances of concepts and corresponding attributes 

along with cardinality constraints (one-to-one, one-to-many, and so on). The 

rules for defining the syntactic structure are defined in this step.  
 Reuse: In this step, similar domain-specific Ontologies with connection endpoints 

are reused, and synonyms are defined in order to avoid parallel representations 

of the same concepts, which are finalized across other Ontology definitions.  
 Release: In this step, the Ontologies are released for generic use and further 

evolution. 
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Frequently asked questions 
 

Let's have a small recap of the chapter: 
 

Q: What are Ontologies and what is their significance in intelligent systems? 
 

A: Ontology as a generic term means the knowledge of everything that exists in this 
universe. As applicable to information systems, Ontologies represent a semantic and 
standardized view of the world's knowledge assets. They are domain-specific 
representations of knowledge and models related to real world entity representations. The 
intelligent systems that link heterogeneous knowledge domains need to have access to 
consistent representations of knowledge in order to interoperate and understand contextual 
events to make inferences and decisions, which trigger actions and hence results, in order to 
complement human capabilities. 
 

Q: What are the generic properties of Ontologies? 
 

A: Ontologies should be complete, unambiguous, domain-specific, generic, and extensible. 
 

Q: What are the various components of Ontologies? 
 

A: Various Ontology components are Concepts, Slots, Relationships, Axioms, Instances, 

and Operations. 
 

Q: What is the significance of a universal data format in knowledge management systems? 
 

A: The Resource Description Format (RDF) intends to be the universal format for 
knowledge representation, allowing heterogeneous systems to interact and integrate in 
a consistent and reliable manner. This forms the basis of the semantic view of the world. 
 

Q: How is it possible to model the worldview with Ontologies? Is it possible to automate 
the Ontology definition process considering vast and ever-increasing knowledge stores 
in the universe? 
 

A: Knowledge assets are growing exponentially in size with time. In order to create an 
Ontological representation of these assets, we need an automated approach, without which 
it will be difficult to catch up with the volume. Ontology learning takes an algorithmic 
approach by leveraging distributed computing frameworks to create a baseline model of the 
worldview. The Ontology learning process retrieves textual, unstructured data from 
heterogeneous sources, refines it, and represents it in a hierarchical manner. This is 
realigned with post-processing by reusing existing domain-specific knowledge assets, and 
finally released for generic consumption by intelligent agents. 
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Summary 
 
In this chapter, we have explored the need for a standardized and consistent 
representation of the world's knowledge for the evolution of intelligent systems, and how 
these systems are modeled against the human brain. Ontologies, as applied to information 
systems, is a W3C standard that defines the generic rules for knowledge representation. 
 

This chapter introduced the basic concepts of the RDF, OWL, and a query language to 
extract the knowledge representations within Ontology instances through SPARQL. 
 
In this chapter, we have explored how to use Ontologies to build intelligent agents by 
looking at the generic characteristics of the intelligent agents. In the end, we learned how 
Ontology learning facilitates the speedy adoption of Ontologies for the worldview, with 
consistent knowledge assets and representations. 
 

In the next chapter, we will get introduced to fundamental concepts of Machine Learning 
and how Big Data facilitates the learning process. 
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 
Learning from Big Data 

 
 

In the first two chapters, we set the context for intelligent machines with the big data 
revolution and how big data is fueling rapid advances in artificial intelligence. We also 
emphasized the need for a global vocabulary for universal knowledge representation. We 
have also seen how that need is fulfilled with the use of ontologies and how ontologies 
help construct a semantic view of the world. 
 
The quest is for the knowledge, which is derived from information, which is in turn 
derived from the vast amounts of data that we are generating. Knowledge facilitates a 
rational decision-making process for machines that complements and augments human 
capabilities. We have seen how the Resource Description Framework (RDF) provides the 
schematic backbone for the knowledge assets along with Web Ontology Language (OWL) 
fundamentals and the query language for RDFs (SPARQL). 
 
In this chapter, we are going to look at some of the basic concepts of machine learning and 
take a deep dive into some of the algorithms. We will use Spark's machine learning 
libraries. Spark is one of the most popular computer frameworks for the implementation of 
algorithms and as a generic computation engine on big data. Spark fits into the big data 
ecosystem well, with a simple programming interface, and very effectively leverages the 
power of distributed and resilient computing frameworks. Although this chapter does not 
assume any background with statistics and mathematics, it will greatly help if the reader 
has some programming background, in order to understand the code snippets and to try 
and experiment with the examples. 
 

In this chapter, we will see broad categories of machine learning in supervised 

and unsupervised learning, before taking a deep dive, with examples, into: 
 

 Regression analysis  
 Data clustering  
 K-means 
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 Data dimensionality reduction  
 Singular value decomposition  
 Principal component analysis (PCA) 

 

In the end, we will have an overview of the Spark programming model and Spark's 
Machine Learning library (Spark MLlib). With all this background knowledge at 
our disposal, we will implement a recommendation system to conclude this chapter. 
 

 

Supervised and unsupervised 

machine learning 
 
Machine learning at a broad level is categorized into two types: supervised and 
unsupervised learning. As the name indicates, this categorization is based on the 
availability of the historical data or the lack thereof. In simple terms, a supervised machine 
learning algorithm depends on the trending data, or version of truth. This version of truth 
is used for generalizing the model to make predictions on the new data points. 
 

Let's understand this concept with the following example:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1 Simple training data: input (independent) and target (dependent) variables 

 

Consider that the value of the y variable is dependent on the value of x. Based on a change 
in the value of x, there is a proportionate change in the value of y (think about any examples 
where the increase or decrease in the value of one factor proportionally changes the other). 
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Based on the data presented in the preceding table, it is clear that the value of y increases 
with an increase in the value of x. That means there is a direct relationship between x and 
y. In this case, x is called an independent, or input, variable and y is called a dependent, or 
target, variable. In this example, what will be the value of y when x is 220? At this point, 
let's understand a fundamental difference between traditional computer programming and 
machine learning when it comes to predicting the value of the y variable for a specific 
value of x=220. The following diagram shows the traditional programming process:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2 Traditional computer programming process 

 

The traditional computer program has a predefined function that is applied on the input 
data to produce the output. In this example, a traditional computer program calculates 
the value of the (y) output variable as 562. 
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Have a look at the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.3 Machine learning process 

 

In the case of supervised machine learning, the input and output data (training data) are 
used to create the program or the function. This is also termed the predictor function. A 
predictor function is used to predict the outcome of the dependent variable. In its simplest 
form, the process of defining the predictor function is called model training. Once a 
generalized predictor function is defined, we can predict the value of the target variable (y) 
corresponding to an input value (x). The goal of supervised machine learning is to develop 
a finely-tuned predictor function, h(x), called hypothesis. Hypothesis is a certain function 
that we believe (or hope) is similar to the true function, the target function that we want to 
model. Let's add some more data points and plot those on a two-dimensional chart, like 
the following diagram: 
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Figure 3.4 Supervised learning (linear regression) 

 

We have plotted the input variable on the x axis and the target variable on the y axis. This 
is a general convention used and hence the input variable is termed x and the output 
variable is termed y. Once we plot the data points from the training data, we can visualize 
the correlation between the data points. In this case, there seems to a direct proportion 
between x and y. In order for us to predict the value of y when x = 220, we can draw a 
straight line that tries to characterize, or model, the truth (training data). The straight line 
represents the predictor function, which is also termed as a hypothesis. 
 

Based on the hypothesis, in this case our model predicts that the value of y when x = 220 
will be ~430. While this hypothesis predicts the value of y for a certain value of x, the line 
that defines the predictor function does not cover all the values of the input variable. For 
example, based on the training data, the value of y = 380 at x = 150. However, as per the 
hypothesis, the value comes out to be ~325. This differential is called prediction error (~55 
units in this case). Any input variable (x) value that does not fall on the predictor function 
has some prediction error based on the derived hypothesis. The sum of errors for across all 
the training data is a good measure of the model's accuracy. The primary goal of any 
supervised learning algorithm is to minimize the error while defining a hypothesis based on 
the training data. 
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A straight-line hypothesis function is as good as an illustration. However, in reality, we will 
always have multiple input variables that control the output variable, and a good predictor 
function with minimal error will never be a straight line. When we predict the value of an 
output variable at a certain value of the input variable it is called regression. In certain 
cases, the historical data, or version of truth, is also used to separate data points into 
discrete sets (class, type, category). This is termed classification. For example, an email can 
be flagged as spam or not based on the training data. In the case of classification, the classes 
are known and predefined. The following image shows the classification with the Decision 
Boundary:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5 Classification with Decision Boundary 

 

Here is a two-dimensional training dataset, where the output variables are separated by 
a Decision Boundary. Classification is a supervised learning technique that defines the 
Decision Boundary so that there is a clear separation of the output variables. 
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Regression and classification, as discussed in this section, require historical data to make 
predictions about the new data points. These represent supervised learning techniques. The 
generic process of supervised machine learning can be represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6 Generic supervised learning process 

 

The labeled data, or the version of truth, is split into training and validation sets with 
random sampling. Typically, an 80-20 rule is followed with the split percentage of the 
training and validation sets. The training set is used for training the model (curve fitting) to 
reduce overall error of the prediction. The model is checked for accuracy with the validation 
set. The model is further tuned for the accuracy threshold and then utilized for the 
prediction of the dependent variables for the new data. 
 

With this background in machine learning, let's take a deep dive into various techniques of 
supervised and unsupervised machine learning. 
 

 

The Spark programming model 
 
Before we deep dive into the Spark programming model, we should first arrive at an 
acceptable definition of what Spark is. We believe that it is important to understand what 
Spark is, and having a clear definition will help you to choose appropriate use cases 
where Spark is going to be useful as a technological choice. 
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There is no one silver bullet for all your enterprise problems. You must pick and choose the 
right technology from a plethora of options presented to you. With that, Spark can be 
defined as: 
 

Spark is a distributed in-memory processing engine and framework that provides you 
with abstract APIs to process big volumes of data using an immutable distributed 
collection of objects called Resilient Distributed Datasets. It comes with a rich set of 
libraries, components, and tools, which let you write-in memory-processed distributed code 
in an efficient and fault-tolerant manner. 

 

Now that you are clear on what Spark is, let's understand how the Spark 
programming model works. The following diagram represents a high-level component 
of the Spark programming model:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.7 Spark programming model 
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As shown, all Spark applications are Java Virtual Machine (JVM)-based components 
comprising three processes: driver, executor, and cluster manager. The driver program 
runs as a separate process on a logically- or physically-segregated node and is responsible 
for launching the Spark application, maintaining all relevant information and 
configurations about launched Spark applications, executing application DAG as per user 
code and schedules, and distributing tasks across different available executors. 
Programmatically, the main() method of your Spark code runs as a driver. The driver 
program uses a SparkContext or SparkSession object created by user code to coordinate 
all Spark cluster activity. SparkContext or SparkSession is an entry point for executing any 
code using a Spark-distributed engine. To schedule any task, the driver program converts 
logical DAG to a physical plan and divides user code into a set of tasks. Each of those tasks 
are then scheduled by schedulers, running in Spark driver code, to run on executors. The 
driver is a central piece of any Spark application and it runs throughout the lifetime of the 
Spark application. If the driver fails, the entire application will fail. In that way, the driver 
becomes a single point of failure for the Spark application. 
 

Spark executor processes are responsible for running the tasks assigned to it by the driver 
processes, storing data in in-memory data structures called RDDs, and reporting its code-
execution state back to the driver processes. The key point to remember here is that, by 
default, executor processes are not terminated by the driver even if they are not being used 
or executing any tasks. This behavior can be explained with the fact that the RDDs follow a 
lazy evaluation design pattern. However, even if executors are killed accidentally, the 
Spark application does not stop and those executors can be relaunched by driver processes. 
 

Cluster managers are processes that are responsible for physical machines and resource 
allocation to any Spark application. Even driver code is launched by the cluster manager 
processes. The cluster manager is a pluggable component and is cynical to the Spark user 
code, which is responsible for data processing. There are three types of cluster managers 
supported by the Spark processing engine: standalone, YARN, and Mesos. 

 

Further reference to about Spark RDDs and cluster managers can be found 
at the following links: 

 
 https://spark.apache.org/docs/latest/cluster-overview.  
html 

 
 https://spark.apache.org/docs/2.2.0/rdd-

programming-guide.html#resilient-distributed-

datasets-rdds 
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The Spark MLlib library 
 
The Spark MLlib is a library of machine learning algorithms and utilities designed to make 
machine learning easy and run in parallel. This includes regression, collaborative filtering, 
classification, and clustering. Spark MLlib provides two types of API included in the 
packages, namely spark.mllib and spark.ml, where spark.mllib is built on top of 
RDDs and spark.ml is built on top of the DataFrame. The primary machine learning API for 
Spark is now the DataFrame-based API in the spark.ml package. Using spark.ml with 
the DataFrame API is more versatile and flexible, and we can have the benefits provided by 
DataFrame, such as catalyst optimizer and spark.mllib, which is an RDD-based API that 
is expected to be removed in the future. 
 

Machine learning is applicable to various data types, including text, images, structured 
data, and vectors. To support these data types under a unified dataset concept, Spark ML 
includes the Spark SQL DataFrame. It is easy to combine various algorithms in a single 
workflow or pipeline. 
 

The following sections will give you a detailed view of a few key concepts in the Spark 
ML API. 
 

 

The transformer function 
 
This is something that can transform one DataFrame into another. For instance, an ML 
model can transform a DataFrame with features into a DataFrame with predictions. A 
transformer contains feature transformer and learned model. This uses the transform() 
method to transform one DataFrame into another. The code for this is given for your 
reference: 
 

import org.apache.spark.ml.feature.Tokenizer 

 
val df = spark.createDataFrame(Seq( ("This is the Transformer", 1.0), 

("Transformer is pipeline component", 0.0))).toDF( "text", "label") val 

tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words") 

val tokenizedDF = tokenizer.transform(df) 
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The estimator algorithm 
 
An estimator is another algorithm that can produce a transformer by fitting on a 

DataFrame. For instance, a learning algorithm can train on a dataset and produce a model. 
This produces a transformer by learning an algorithm. It uses the fit() method to produce 
a transformer. For instance, the Naïve Bayes learning algorithm is an estimator that calls 
the fit() method and trains a Naïve Bayes model, which is a transformer. We will use the 
following code to train the model: 
 

import org.apache.spark.ml.classification.NaiveBayes 

 
val nb = new NaiveBayes().setModelType("multinomial") 

 
val model = nb.fit(Training_DataDF) 

 

 

Pipeline 
 
Pipeline represents a sequence of stages, where every stage is a transformer or an 

estimator. All these stages run in an order and the dataset that is input is altered as it passes 
through every stage. For the stages of transformers, the transform () method is used, 
while for the stages of estimators, the fit() method is used to create a transformer. 
 

Every DataFrame that is output from one stage is input for the next stage. The pipeline 
is also an estimator. Therefore, it produces PipelineModel once the fit() method is  
run. PipelineModel is a transformer. PipelineModel contains the same number of 
stages as in the original pipeline. PipelineModel and pipelines make sure that the test and 
training data pass through similar feature-processing steps. For instance, consider a 
pipeline with three stages: Tokenizer, which will tokenize the sentence and convert it into a 
word with the use of Tokenizer.transform(); HashingTF, which is used to represent a 
string in a vector form as all ML algorithms understand only vectors and not strings and 
this uses the HashingTF.transform() method; and NaiveBayes, an estimator that is 
used for prediction. 
 

We can save the model at HDFSlocation using the save() method, so in future we can 

load it using the load method and use it for prediction on the new dataset. This loaded 

model will work on the feature column of newDataset, and return the predicted 

column with this newDataset will also pass through all the stages of the pipeline: 
 

import org.apache.spark.ml.{Pipeline, PipelineModel} 

import org.apache.spark.ml.feature.{HashingTF, Tokenizer} 

import org.apache.spark.ml.classification.NaiveBayes 
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val df = spark.createDataFrame(Seq( ("This 

is the Transformer", 1.0), ("Transformer 

is pipeline component", 0.0)  
)).toDF( "text", "label") 

 
val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words") 

 
val  
HashingTF=newHashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOut

p utCol).setOutputCol(“features”) 
 

val nb = new NaiveBayes().setModelType("multinomial") 

 
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, nb))  
val model = pipeline.fit(df)  
model.save("/HDFSlocation/Path/")  
val loadModel = PipelineModel.load(("/HDFSlocation/Path/") 

 
val PredictedData = loadModel.transform(newDataset) 

 

 

Regression analysis 
 
Regression analysis is a statistical modeling technique that is used for predicting or 
forecasting the occurrence of an event or the value of a continuous variable (dependent 
variable), based on the value of one or many independent variables. For example, when we 
want to drive from one place to another, there are numerous factors that affect the amount 
of time it will take to reach the destination, for example, the start time, distance, real-time 
traffic conditions, construction activities on the road, and weather conditions. All these 
factors impact the actual time it will take to reach the destination. As you can imagine, 
some factors have more impact than the others on the value of the dependent variable. In 
regression analysis, we mathematically sort out which variables impact the outcome, 
leading us to understand which factors matter most, which ones do not impact the outcome 
in a meaningful way, how these factors relate to each other, and mathematically, the 
quantified impact of variable factors on the outcome. 
 

Various regression techniques that are used depend on the number and distribution of 
values of independent variables. These variables also derive the shape of the curve that 
represents predictor function. There are various regression techniques, and we will 
learn about them in detail in the following sections. 
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Linear regression 
 
With linear regression, we model the relationship between the dependent variable, y, and 
an explanatory variable or independent variable, x. When there is one independent variable, 
it is called simple linear regression, and in the case of multiple independent variables, the 
regression is called multiple linear regression. The predictor function in the case of linear 
regression is a straight line (refer to figure 4 for an illustration). The regression line defines 
the relationship between x and y. When the value of y increases when x increases, there is a 
positive relationship between x and y. Similarly, when x and y are inversely proportional, 
there is a negative relationship between x and y. The line should be plotted on x and y 
dimensions to minimize the difference between the predicted value and the actual value, 
called prediction error. 
 

In its simplest form, the linear regression equation is:  
 
 

 

This is the equation of a straight line, where y is the value of dependent variable, a is the y 
intercept (the value of y where the regression line meets the y axis), and b is the slope of 
the line. Let's consider the least square method in which we can derive the regression line 
with minimum prediction error. 
 
 

Least square method 
 
Let's consider the same training data we referred to earlier in this chapter. We have values 
for the independent variable, x, and corresponding values for the dependent variable, y. 
These values are plotted on a two-dimensional scatter plot. The goal is to draw a regression 
line through the training data so as to minimize the error of our predictions. The linear 
regression line with minimum error always passes the mean intercept for x and y values. 
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The following figure shows the least square method:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.8 Least square method 

 

The formula for calculating the y intercept is as follows:  
 
 
 
 

 

The least square method calculates the y intercept and the slope of the line with 
the following steps: 
 

1. Calculate the mean of all the x values (119.33).  
2. Calculate the mean of all the y values (303.20).  
3. Calculate difference from the mean for all the x and y values.  
4. Calculate the square of mean difference for all the x values.  
5. Multiply the mean difference of x by the mean difference of y for all 

the combinations of x and y.  
6. Calculate the sum squares of all the mean differences of the x values (56743.33).  
7. Calculate the sum of mean difference products of the x and y values (90452.00).  
8. The slope of the regression line is obtained by dividing the sum of the mean 

difference products of x and y by the sum of the squares of all the mean 
differences of the x values (90452.00 / 56743.33 = 1.594). In this training data, 
since there is direct proportion between the x and y values, the slope is positive. 
This is the value for b in our equation. 
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9. We need to calculate the value of the y intercept (a) by solving the 
following equation, y = a + 1.594 * x. 

 

Remember, the regression line always passes through the mean intercept 
of the x and y values. 

 
 

 

10. Therefore, 303.2 = a + (1.594 * 119.33).  
11. Solving this, we get a = 112.98 as the y intercept for the regression line. 

 

At this point, we have created our regression line with which we can predict the value of 
the dependent variable, y, for a value of x. We need to see how close our regression line 
mathematically is to the actual data points. We will use one of the most popular statistical 
techniques, R-squared, for this purpose. It is also called the coefficient of determination. R-
squared calculates the % of response variable variation for the linear regression model we 
have developed. R-squared values will always be between 0% and 100%. A higher value of 
R-squared indicates that the model fits the training data well; generally termed the 
goodness of fit. The following diagram shows the calculation of R-squared with some 
sample data points:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.9 Calculation of R-squared 
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Let's use our training data to calculate R-squared based on the formula in the preceding 
image. Please refer to the diagram we just saw, in this case, R-squared = 144175.50 /  
156350.40 = 0.9221. This value is an indication that the model is fitting the training data very 
well. There is another parameter we can derive, called standard error, from the estimate. 
This is calculated as:  
 
 
 
 
 
 

In this formula, n is the sample size or the number of observations. With our dataset, 
the standard error of the estimate comes out to be 30.59. 
 

Let's calculate the R-squared for our training dataset with the Spark machine 
learning library: 
 

import org.apache.spark.ml.feature.LabeledPoint 

import org.apache.spark.ml.linalg.Vectors  
import org.apache.spark.ml.regression.LinearRegression 

 
val linearRegrsssionSampleData = 

sc.textFile("aibd/linear_regression_sample.txt") 

 
val labeledData = linearRegrsssionSampleData.map { line 

=> val parts = line.split(',')  
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).toDouble)) 

}.cache().toDF 

 
val lr = new LinearRegression()  
val model = lr.fit(labeledData)  
val summary = model.summary  
println("R-squared = "+ summary.r2) 

 

This program produces the following output. Note the same value for R-squared:  
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Generalized linear model 
 
While we have tried to understand the concept of linear regression with one dependent and 
one independent variable, in the real world, we are always going to have multiple 
dependent variables that affect the output variable, termed multiple regression. In that case, 
our y = a + bx linear equation is going to take the following form: 
 

y = a0 + b1x1 + b2x2 + ...+ bkxk 

 

Once again, a0 is the y intercept, x1, x2, ...xk are the independent variables or factors, and b1, 

b2,.., bk are the weights of the variables. They define how much the effect of a particular 
variable has on the outcome. With multiple regression, we can create a model for 
predicting a single dependent variable. This limitation is overcome by the generalized 
linear model. It deals with multiple dependent/response variables, along with the 
correlation within the predictor variables. 
 

 

Logistic regression classification technique 
 
Logistic regression is a method in which we analyze the input variables that result in the 
binary classification of the output variables. Even though the name suggests regression, it is 
a popular method to solve classification problems, for example, to detect whether an email 
is spam or not, or whether a transaction is a fraudulent or not. The goal of logistic 
regression is to find a best-fitting model that defines the class of the output variable as 0 
(negative class) or 1 (positive class). As a specialized case of linear regression, logistic 
regression generates the coefficients of a formula to predict probability of occurrence of the 
dependent variable. Based on the probability, the parameters that maximize the probability 
of occurrence or nonoccurrence of a dependent event are selected. The probability of an 
event is bound between 0 and 1. However, the linear regression model cannot guarantee 
the probability range of 0 to 1. 
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The following diagram shows the difference between the linear regression and 
logistic regression models:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.10 Difference between linear and logistic Regression models 

 

There are two conditions we need to meet with regards to the probability of the intended 

binary outcome of the independent variable: 
 

 It should be positive (p >= 0): We can use an exponential function in order to 

ensure positivity:  
 
 
 

 

 It should be less than 1 (p <=1): We can divide the probability exponential term 

with the same value, + 1, in order to ensure that the outcome probability is less 

than:  
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Logistic regression with Spark 
 

We progress with logistic regression with Spark as follows: 
 

import org.apache.spark.ml.classification.LogisticRegression 

 
// Load training 
data val training =  
spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") 

 
val lr = new LogisticRegression()  

.setMaxIter(10)  

.setRegParam(0.3)  

.setElasticNetParam(0.8) 

 
// Fit the model  
val lrModel = lr.fit(training) 

 
// Print the coefficients and intercept for logistic 
regression println(s"Coefficients: ${lrModel.coefficients} 

Intercept: ${lrModel.intercept}") 

 

// We can also use the multinomial family for binary classification 
val mlr = new LogisticRegression()  

.setMaxIter(10)  

.setRegParam(0.3)  

.setElasticNetParam(0.8)  

.setFamily("multinomial") 

 
val mlrModel = mlr.fit(training) 

 
// Print the coefficients and intercepts for logistic regression with 
multinomial family  
println(s"Multinomial coefficients: ${mlrModel.coefficientMatrix}")  
println(s"Multinomial intercepts: ${mlrModel.interceptVector}") 

 

 

Polynomial regression 
 
While in linear regression, the correlation between the independent and the dependent 
variables is best represented with a straight line, the real-life datasets are more complex and 
do not represent a linear relationship between cause and effect. The straight line equation 
does not fit the data points and hence cannot create an effective predictive model. 
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In such cases, we can consider using a higher-order quadratic equation for the predictor 
function. Given x as an independent variable and y as a dependent variable, the 
polynomial function takes the following forms:  
 
 
 
 

 

These can be visualized with a small set of sample data as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.11 Polynomial prediction function 

 

Note that the straight line cannot accurately represent the relationship 
between x and y. As we model the prediction function with higher-order 

functions, R2 is improved. This means the model is able to be more 
accurate. 

 
We may think that it will be best to use the highest possible order equation for the 
prediction function in order to get the best fitting model. However, that is not right 
because as we create the regression line that goes through all the data points, the model 
fails to accurately predict the outcomes for any data outside of the training sample (test 
data). This problem is called overfitting. On the other end, we may also encounter the 
problem of underfitting. This is when the model does not fit the training data well and 
hence performs poorly with the test data. 
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Stepwise regression 
 
The examples we have seen so far all had one independent and one dependent variable. 
This is used to illustrate the basic concepts of regression analysis. However, real-world 
scenarios are more complex and there are multiple factors that affect the outcome. As an 
example, the salary of an employee depends on multiple factors, such as skill sets, the 
ability to learn new tools and technologies, years of experience, past projects worked on, 
ability to play multiple roles, and location. As you can imagine, some of the factors 
contribute more than others in defining the outcome (salary, in this case). 
 

When we do regression analysis on a dataset that contains lots of factors, the model can 
be accurately built if we select the factors that are more significant than others. Stepwise 
regression is a method by which the choice or selection of independent variables is 
automated. 
 

Consider the following regression function: 
 

y= β0 + β1x1+ β2x2 + β3x3 + ... . + βnxn 

 

There are n number of input variables, along with their weights or coefficients. The goal 
for stepwise regression is to shortlist the variables that are most important for building an 
accurate model. Stepwise regression can be done with two approaches, which will be 
covered in the following sections. 
 
 

Forward selection 
 
With forward selection, we start with zero or no variables in the model. One variable is 
added at a time, based on the chosen threshold or criteria. When adding a new variable, the 
improvement in the model's fit should be significant. At the point when the inclusion of a 
new variable does not improve the model, the process is complete. 
 
 

Backward elimination 
 
With backward elimination, we start with all the variables. Iteratively, we need to test the 
elimination of each of the variables. The variable, once again, is deleted with the predefined 
threshold or criteria. The variables that have the least significant impact on the model's 
accuracy are eliminated one by one in this method. 
 

It is also possible to utilize both methods together for faster parameter tuning. 
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Ridge regression 
 
With stepwise regression, we now have a set of independent variables that contribute well 
to the value of the dependent variable. If two or more predictors are related to each other 
with a near-linear relationship, we come across a problem called multicollinearity, for 
example, if we are modeling the weather data where the input data contains the altitude of 
the location and the average rainfall as predictor variables. These two variables are linearly 
related. The amount of rainfall increases with the increase in altitude. This 
multicollinearity leads to inaccurate estimates for the regression coefficients, leading to an 
increase in the standard errors, and hence degrades the model's predictability. 
 

Multicollinearity can be corrected by gathering more data points for the related factors and 
ensuring that the linear relationship does not exist between the extended data points. The 
correction is also possible by eliminating one of the factors with lower weightage. If 
multicollinearity cannot be addressed with these two methods, we can use ridge regression. 
 

 

LASSO regression 
 
The term LASSO stands for Least Absolute Shrinkage Selection Operator. The 
coefficients that tend to zero in ridge regression are set to zero in LASSO regression, and 
such factors can easily be eliminated from the predictor function equation. LASSO 
regression is generally used when there is a very large number of variables, since LASSO 
automatically does the variables selection. 
 

 

Data clustering 
 
So far, we have primarily explored supervised learning methods where we have a historical 
trail of data that is used for training the machine learning models. However, there is a very 
common scenario where the machine needs to classify objects or entities into various groups 
based on predefined or runtime categories. For example, in the dataset that contains 
information about employees, we need to categorize the employees based on one or more 
attributes combined. With this, the goal is to group similar objects and partition the data 
based on similarities. 
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The general idea is to have a consistent attribute map within a group and distinct behaviors 
across the groups. Unlike the supervised learning methods, there are no dependent 
variables in the case of data clustering. A cluster represents various groups of entities that 
demonstrate similarities in attributes. At a broader level, clustering has two types: 
 

 Fixed clustering: In this type of clustering, each of the data points belongs to 

exactly one group or cluster. The boundaries are clearly defined and clearly 

separate the data points.  
 Probabilistic clustering: In this case, for each data point, the probability that the 

object (instance of an entity) belongs to a particular cluster. As a general rule, 

the cluster to which the object belongs with the highest probability takes 

precedence over the others. 
 

Unlike supervised learning algorithms, the process and methods for clustering cannot be 
fully standardized. The outcomes differ based on the dataset and specific use cases. There 
are various models considered for data clustering. Based on these models, various 
algorithms are developed. Some of the most commonly used models are as follows: 
 

 Connectivity models: These models are based on the data distance between 

various objects. These models take two approaches for generalization. In the first 

approach, all the independent data points are treated as separate clusters and as 

per the relative distance, the clusters are created. In the second approach, the 

data points are distributed in clusters and as the relative distance between the 

data points decreases, they are distributed into other clusters. The hierarchical 

clustering algorithm implements connectivity model.  
 Centroid models: In these models, the clusters are formulated around a focal 

point. The number of focal points is predefined and the data points with 

similarities to the focal point are grouped into a cluster. In this method, the 

number of clusters is predefined. K-means clustering is one of the most popular 

implementations of the centroid model.  
 Distribution models: In these models, the data points are categorized based on 

the applicability of statistical data distribution, for example, normal or Gaussian 

distributions. These are iterative models that calculate the maximum likelihood of 

entity parameters being part of the standard distribution.  
 Density models: These are iterative models that scan the data points into 

multiple dimensions and create boundaries based on data point density within 

the data space. The regions are isolated based on the density of the data points 

and the isolated regions formulate the clusters. 
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The K-means algorithm 
 
K-means is one of the most popular unsupervised algorithms for data clustering, which is 
used when we have unlabeled data without defined categories or groups. The number of 
clusters is represented by the k variable. This is an iterative algorithm that assigns the data 
points to a specific cluster based on the distance from the arbitrary centroid. During the first 
iteration, the centroids are randomly defined and the data points are assigned to the cluster 
based on the least vicinity from the centroid. Once the data points are allocated, within the 
subsequent iterations, the centroids are realigned to the mean of the data points and the 
data points are once again added to the clusters based on the least vicinity from the 
centroids. These steps are iterated to the point where the centroids do not change more than 
the set threshold. Let's illustrate the K-means algorithm with three iterations on a sample 
two dimensional (x1, x2) dataset: 
 
Iteration 1: 

 

1. During the first iteration, select two centroids for the two clusters: (C1 - 
150:120) and (C2 - 110:100)  

2. For each data point (x1:x2), calculate the ordinary straight line distance from C1 
and C2  

3. Put the data points into C1 or C2 based on the minimum distance from the 
centroid  

4. For the data points in C1, calculate the new C1 as the mathematical mean of 
all the points (162.50:151.67)  

5. For the data points in C2, calculate the new C2 as the mathematical mean of 
all the points (110:93.33): 
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Figure 3.12 Mathematical mean calculation for cluster points 

 

Iteration 2: 
 

For the new centroids calculated in iteration 1, realign the data points into K1 and 
K2 once again, based on the minimum distance from the new centroids, and 
repeat the process to calculate new centroids:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.13 K-means algorithm: iteration-2 
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Iteration3: The centroids for iteration 3 is as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14 K-means algorithm: iteration-3 

 

 

K-means implementation with Spark ML 
 

We will proceed with the implementation of K-means with Spark ML as follows: 
 

import org.apache.spark.ml.feature.LabeledPoint 

import org.apache.spark.ml.linalg.Vectors 

import org.apache.spark.ml.clustering.KMeans 

 
val kmeansSampleData = sc.textFile("aibd/k-means-sample.txt") 

 
val labeledData = kmeansSampleData.map { line 

=> val parts = line.split(',')  
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).toDouble,  

parts(2).toDouble))  
}.cache().toDF 

 

 
val kmeans = new KMeans()  
.setK(2) // Setting the number of clusters  
.setFeaturesCol("features")  
.setMaxIter(3) // default Max Iteration is 20  
.setPredictionCol("prediction")  
.setSeed(1L) 
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val model = kmeans.fit(labeledData) 

 
summary.predictions.show  
model.clusterCenters.foreach(println) 

 

The output of the code will look like the following:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data dimensionality reduction 
 
So far in this chapter, we have looked at the basic concepts of supervised and unsupervised 
learning with the simplest possible examples. In these examples, we have considered a 
limited number of factors that contribute to the outcome. However, in the real world, we 
have a very large number of data points that are available for analysis and model 
generation. Every additional factor adds one dimension within the space, and beyond the 
third dimension, it becomes difficult to effectively visualize the data in a conceivable form. 
With each new dimension, there is a performance impact on the model generation exercise. 
 

In the world of big data, where we now have the capability to bring in data from 
heterogeneous data sources, which was not possible earlier, we are constantly adding more 
dimensions to our datasets. While it is great to have additional data points and attributes 
to better understand a problem, more is not always better if we consider the computational 
overhead due to additional dimensions in the dataset. 
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If we consider our datasets as rows and columns, where one row represents one instance 
of an entity and the columns represent the dimensions, most machine learning algorithms 
are implemented column-wise. These algorithms perform more and more slowly as we 
add more columns. Once again referring to the human brain analogy we considered in 
Chapter 1, Big Data and Artificial Intelligence Systems, when we drive a car, the human 
brain constantly receives a large number of inputs (data dimensions). Our brain can 
effectively consider the dimensions that are most significant, ignore some of the input, and 
merge other input to form a singular perception point. 
 
We need to apply similar techniques to considering the most important dimensions that 
can accurately model the scenario, based on a reduced number of factors within the dataset. 
This process of reduction of factors is termed Data Dimensionality Reduction (DDR). One 
of the imperatives while considering dimensionality reduction is that the model should 
convey the same information without any loss of insight or intelligence. Let's consider some 
basic techniques that can be used for DDR, before taking a deeper dive into advanced 
techniques such as singular value decomposition (SVD) and principal component 
analysis (PCA): 
 

 Dimensions with missing values: As we gather data from various sensors and 

data sources, it is possible that for some of the factors, there is a large number of 

missing observations. In such cases, we use a default value or the mean of the 

other observations to replace the missing values. However, if the number of 

missing values crosses a threshold (percentage of observations with missing 

values of the total number of observations), it makes sense to drop the dimension 

from the model since it does not contribute to the accuracy of the model.  
 Dimensions with low variance: Within the dataset, if we have some dimensions 

for which the observations do not vary, or vary with a very low differential, such 

dimensions do not contribute to the model effectiveness. Factors with low 

variance across observations can be eliminated.  

 Dimensions with high correlation: Within the dataset, if we have two or more 

dimensions that relate to each other, or they represent the same information in 

different measurement units, the factors can be ignored without any impact on 

the model's accuracy. 
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Now, let's look at the following dataset:  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.15 Sample dataset 

 

In this example dataset, x1 has a lot of missing values, x1 has a lot of missing values, x2 has 
no variance among values, and x5 and x6 are highly correlated, hence one of the factors 
can be eliminated without affecting the model's accuracy. 
 

 

Singular value decomposition 
 
As we have seen in the previous section, reducing the dimensions of the datasets 
increases the efficiency of the model generation, without sacrificing the amount of 
knowledge contained in the data. As a result, the data is compressed and easy to visualize 
in fewer dimensions. SVD is a fundamental mathematical tool that can be easily 
leveraged for dimensionality reduction. 
 

 

Matrix theory and linear algebra overview 
 
Before we try to understand SVD, here is a quick overview of linear algebra and matrix 
theory concepts. Although a comprehensive discussion on these topics is outside the scope 
of this book, a brief discussion is definitely in order: 
 

 Scalar: A single number is termed a scalar. A scalar represents the magnitude of 

an entity. For example, the speed of a car is 60 miles/hour. Here, the number 60 is 

a scalar.  
 Vectors: An array of multiple scalars arranged in an order is called a vector. 

Typically, vectors define magnitude as well as direction, and are 

considered points in space. 
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 Matrix: This is a two-dimensional array of scalars. Each element of a matrix is 

represented by a coordinate index. A matrix is denoted by a capital letter, for 

example A, and individual elements are denoted with subscripts, as Am,n. A 

matrix can be defined as follows:  
 
 
 
 
 
 
 

 

Here, Ai is the ith row of A and A:,j is the jth column of A. Matrix A has a shape 

of height, m, and a width of n. 
 

 

 Transpose of a matrix: When we transpose a matrix, it results in a mirror image 

of the matrix structure, where the rows of the resultant matrix are the columns of 

the base matrix:  
 
 
 
 
 
 
 
 

 

Vectors are matrices with one column often represented as a transpose of a 
row matrix: 

 
X = [x1, x2, x3, .... xn] 

 

 Matrix addition: If matrices A and B have the same shape (dimensions), 

with m height and n width, they can be added to form a C matrix, as follows: 

 
C = A + B => Ci,j = Ai,j + Bi,j 

 

A scalar can be added to or multiplied by a matrix, as follows: 
 

D = aB + c => Di,j = aBi,j + c 
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 Matrix multiplication: In order to multiply matrix Am,n with matrix B, matrix 

B needs to have n number of rows. In that case, if A is of the shape mXn and B is 

of the shape nXp, then C is of the shape mXp: 

 
C = AB => Ci,j = ∑ Ai,k Bk,j  

 
 
 

 

The standard product of two matrices is not just the product of individual 

elements with positional correspondence. 
 
 
 

 The properties of a matrix product are: 

 Distributability: A(B + C) = AB + AC  
 Associativity: A (BC) = (AB) C  
 Not commutative: AB is not always equal to BA  

 (AB)T = BT AT 

 

 Identity and inverse matrices: The identity matrix is a square matrix with all the 

diagonals as 1 and non-diagonal elements as 0. The identity matrix does not 

change the value of a matrix when we multiply the matrix with the identity 

matrix. An n-dimensional identity matrix is denoted as In. The inverse of a 

square matrix is a matrix that, when multiplied with the original matrix, results 

in an identity matrix: 

 
A-1 A = In 

 

 Diagonal matrix: This is similar to an identity matrix. All the diagonal elements 

are nonzero and the non-diagonal elements are zero.  
 Symmetric matrix: This is a square matrix that is equal to the transpose of a 

matrix. 
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Linear regression in matrix form: Let's consider the simple linear regression 

model equation: Yi = β0 + βixi + εi {i = 1, ...., n}:  
 
 
 
 
 
 
 
 
 

 

Let's represent these equations in matrix form with individual matrices, as follows:  
 
 
 
 
 
 
 
 
 

 

With these definitions of the matrices, the linear regression can be expressed as:  
 
 

 

Note the simple nature of computation of the equation when represented in matrix form. 
 
With this background in matrix theory, it will now be easy to understand SVD as applicable to 

dimensionality reduction. Let's first understand how real-world entities are represented in 
matrix form. The columns of a matrix represent various dimensions for the individual instances, 
which are represented by a row. The SVD theorem says that for any m x m matrix A, there exists 

an m x r orthogonal matrix U, an n x r orthogonal matrix ∑, and an r x r diagonal  

matrix D with nonnegative values on the diagonal so that A = U∑VT. This can be 

represented diagrammatically as follows: 
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Figure 3.16 Illustration of singular value decomposition 

 

 

The important properties of singular 

value decomposition 
Now, let's take a look at some of the important properties of SVD: 
 

 It is always possible to decompose a real matrix A into 

 U, ∑, and V are unique 

 U and V are orthonormal matrices:  

 UTU = I and VTV = I (I represents an identity matrix) 
 

 ∑ is a diagonal matrix where the nonzero diagonal entries are positive and sorted 

in descending order (σ1 ≥ σ2 ≥ σ3....≥σn....>0) 
 

 

SVD with Spark ML 
 

Let's implement SVD code using the SparkML library: 
 

import org.apache.spark.mllib.linalg.Matrix 

import org.apache.spark.mllib.linalg.Vectors 

import org.apache.spark.mllib.linalg.Vector  
import org.apache.spark.mllib.linalg.distributed.RowMatrix import 

org.apache.spark.mllib.linalg.SingularValueDecomposition 
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val data = Array(Vectors.dense(2.0, 1.0, 75.0, 18.0, 

1.0,2), Vectors.dense(0.0, 1.0, 21.0, 28.0, 2.0,4), 

Vectors.dense(0.0, 1.0, 32.0, 61.0, 5.0,10), 

Vectors.dense(0.0, 1.0, 56.0, 39.0, 2.0,4), 

Vectors.dense(1.0, 1.0, 73.0, 81.0, 3.0,6), 

Vectors.dense(0.0, 1.0, 97.0, 59.0, 7.0,14)) 

 
val rows = sc.parallelize(data) 

 
val mat: RowMatrix = new RowMatrix(rows) 

 
val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD(3, 

computeU = true) 

 
val U: RowMatrix = svd.U // The U factor is stored as a row matrix 

val s: Vector = svd.s // The sigma factor is stored as a singular vector 

val V: Matrix = svd.V // The V factor is stored as a local dense matrix 

 

The output of the code will look like the following:  
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The principal component analysis method 
 
PCA is one of the most popular methods used for dimensionality reduction. In a real-
world scenario, we have thousands of dimensions in which a data point is explained. 
However, it is possible to reduce the number of dimensions without the loss of significant 
information. For example, a video camera captures the scene in three-dimensional space 
and it is projected onto a two-dimensional space (TV screens); despite the elimination of 
one dimension, we are able to perceive the scene without any problems. The data points in 
multidimensional space have convergence in fewer dimensions. As a technique, PCA 
focuses on getting a direction with the largest variance between the data points while 
getting to the best reconstruction of the dataset, without losing information. Let's illustrate 
this with a two-dimensional dataset:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17 Illustration of Principal Component 

 

This is a two-dimensional dataset where a data point is uniquely defined by x1 and x2 
values. As we can see, the data is scattered linearly as a function of x1 and x2. A regression 
line maps all the data points and is a line that captures the maximum data variation. If we 
consider a new axis, which is represented by z, we can represent the dataset with a single 
dimension without much loss. On the new z axis, we get the minimum error while moving 
from two dimensions to one dimension. There is a fundamental difference between linear 
regression and PCA. In linear regression, we try to minimize the vertical distance between 
the data point and the point in the regression line. However, in PCA, we try to minimize 
the distance between the data point and the regression line in an orthogonal direction, and 
in PCA, there is no dependent variable to calculate. 
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The PCA algorithm using SVD 
 

Now, let's look at the steps to implement the PCA algorithm using SVD. Consider the 

training set, , with m data samples. For this dataset, we will 

progress with the steps as follows: 
 

1. Mean normalization: Deduct the mean value of all the data points from the 
individual data point. With this, we increase the efficiency of model training and 

get a better error surface shape, . Replace each x(j) with (x(j) - μ(j)).  
2. Feature scaling: If the different features have different scales, if x1 is the size of a 

house and x2 is the number of bedrooms, they have different measurement 
scales. In that case, x2 will not play any role since it is orders smaller than x1. 
With normalization, we will reduce the impact of large-value features extracted 
on a different scale and allow small-value features to contribute to the equation.  

3. Calculate the covariance matrix sigma = .  
4. Apply SVD to the sigma to calculate U, Σ, and V.  
5. Get the reduced matrix (UReduce) from U based on the number of dimensions 

to which we want to model our data. In our example, it is from two dimensions 
to one dimension. This is simply done by first obtaining k (number of intended 
dimensions) columns of the U matrix.  

6. Get the z axis as z = UReduce' (x). 
 

 

Implementing SVD with Spark ML 
 
It is very easy to implement the SVD algorithm explained earlier with Spark ML. The code 

for it is given for your reference: 
 

import org.apache.spark.mllib.linalg.Matrix 

import org.apache.spark.mllib.linalg.Vectors  
import org.apache.spark.mllib.linalg.distributed.RowMatrix 

 
val data = Array(Vectors.dense(2.0, 1.0, 75.0, 18.0, 

1.0,2), Vectors.dense(0.0, 1.0, 21.0, 28.0, 2.0,4), 

Vectors.dense(0.0, 1.0, 32.0, 61.0, 5.0,10), 

Vectors.dense(0.0, 1.0, 56.0, 39.0, 2.0,4), 

Vectors.dense(1.0, 1.0, 73.0, 81.0, 3.0,6), 

Vectors.dense(0.0, 1.0, 97.0, 59.0, 7.0,14)) 
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>  
val rows = sc.parallelize(data) 

 
val mat: RowMatrix = new RowMatrix(rows) 

 
// Principal components are stored in a local dense matrix. 
val pc: Matrix = mat.computePrincipalComponents(2) 

 

// Project the rows to the linear space spanned by the top 2 
principal components.  
val projected: RowMatrix = mat.multiply(pc) 

 
projected.rows.foreach(println) 

 

Here is the program output with two principal components out of a six-dimensional 
dataset:  
 
 
 
 
 
 
 
 
 
 
 

Content-based recommendation systems 
 
With the advancement of rich, performant technology and more focus on data-driven 
analytics, recommendation systems are gaining popularity. Recommendation systems 
are components that provide the most relevant information to end users based on their 
behavior in the past. The behavior can be defined as a user's browsing history, purchase 
history, recent searches, and so on. There are many different types of recommendation 
systems. In this section, we will keep our focus on two categories of recommendation 
engines: collaborative filtering and content-based recommendation. 
 

Content-based recommendation systems are the type of recommendation engines that 
recommend items that are similar to items the user has liked in the past. The similarity of 
items is measured using features associated with an item. Similarity is basically a 
mathematical function that can be defined by a variety of algorithms. These types of 
recommendation systems match user profile attributes, such as user preferences, likes, and 
purchases, with attributes of an item using algorithmic functions. The best matches are 
presented to the user. 
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The following picture depicts a high-level approach to a content-based 
recommendation engine:  
 
 
 
 
 
 
 
 

 
Figure 3.18 Content based recommendation 

 

Let's now go through an example of content-based filtering. We have used movie data with 
this example. We will eventually use users' rating data as well. The following screenshot 
shows how the datasets look:  
 
 
 
 
 
 
 
 
 
 

 

In the movies dataset, we have the Movie column, which represents the movie name, 
and the Genres column, which represents the genres the movie belongs to. In the user 
rating dataset, we have user likes, represented by the number 1, and dislikes, represented 
by the number 2. No ratings have NULL or blank values. 
 

The following Spark code can be used to load the data: 
 

import org.apache.spark.ml.feature.{CountVectorizer,HashingTF, IDF, 

Tokenizer} 

 
val movieData = spark.createDataFrame(Seq( ("Movie1", 

Array("Action","Romance")), ("Movie2", 

Array("Adventure")), 
 

("Movie3", Array("Action","Adventure","Thriller")), 

("Movie4", Array("Romance")),  
("Movie5", Array("Romance","Thriller")), 

("Movie6", Array("Action","Romance","Thriller"))  
)).toDF("Movie", "Genres") 

 
val usersData = spark.createDataFrame(Seq( 
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("User1","Movie1",1),  
("User2","Movie1",1),  
("User1","Movie4",2),  
("User2","Movie5",2),  
("User1","Movie6",2),  
("User2","Movie6",2)  

)).toDF("User","Movie", "Ratings") 

 

Now, we need to calculate the TF-IDF score for each of the movie's records. TF (Term 
Frequency) is the frequency of terms in a data row or document. In our example, terms 
would be the genres to which a movie belongs. So, for example, the TF for the Action genre 
for the row belonging to Movie1 would be 1. We have chosen a simple raw count for 
calculating TF. The following is an example of how TF calculation would look in our data 
sheet:  
 
 
 
 
 
 
 
 
 
 
 

 

There are many variants of TF calculations available. You have to choose 
which TF variant you want to use in your application, depending on 
multiple factors, such as type of data and number of records. Further 
details about it can be found at the following links: 

 
 https://nlp.stanford.edu/IR-book/html/htmledition/

tf-idf-weighting-1.html 

 
 https://en.wikipedia.org/wiki/Tf%E2%80%93idf 

 

The following Spark code can be used for calculating TF. We have used the hashingTF 

library for the process: 
 

val hashingTF = new  
HashingTF().setInputCol("Genres").setOutputCol("rawFeatures")  
val featurizedData = hashingTF.transform(movieData)  
featurizedData.show(truncate=false) 
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The following is the output of the previous code:  
 
 
 
 
 
 
 
 
 

 

Next, we calculate the inverse document frequency (IDF). IDF finds out whether a term is 
common or rare across all documents in the given corpus. It's a log-based mathematical 
function of the total number of documents, divided by the total number of documents in 
which the term has appeared. So, IDF can be calculated using the following formula 
(taken from Wikipedia):  
 
 
 
 
 
 
 
 
 

 

In our Excel sheet, we calculated IDF based on an earlier formula. Please see the following 

screenshot to understand how it looks in our example:  
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After you have calculated the IDF, to get complete usage you need to multiply the TF 

number by the IDF number. Here is how the TF*IDF output would look in our sheet:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The following Spark code will calculate the TF*IDF score for you: 
 

val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")  
val idfModel = idf.fit(featurizedData) 

 
val rescaledData = idfModel.transform(featurizedData)  
rescaledData.select("Movie","rawFeatures","features").show() 

 

The output of the preceding code looks as follows:  
 
 
 
 
 
 
 
 

 

Now, you need to determine the user vector from user ratings. The user profile vector is 
calculated based on each movie genre. It is the vector dot product of all user ratings for 
a given genre and user ratings for all movies. 
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Frequently asked questions 
 
Q: What are the two basic categories of machine learning and how do they differ from each 

other? 
 

A: Machine learning can be broadly categorized into supervised and unsupervised learning. 
In the case of supervised learning, the model is trained based on the historical data, which 
is treated as the version of truth, termed training data. In the case of unsupervised learning, 
the algorithm derives inferences based on the input data, without labeled training data. The 
hidden patterns within the datasets are derived on the fly. 
 

Q: Why is the Spark programming model suitable for machine learning with big datasets? 
 
A: Spark is a general-purpose computation engine based on the fundamentals of 
distributed resilient computing. The large datasets are seamlessly distributed across cluster 
nodes for faster model generation and execution. Most of the underlying details are hidden 
from the data science engineer and hence there is a very limited learning curve involved in 
implementing machine learning with Spark. Spark is inherently fault-tolerant and very 
effectively leverages resource managers (Yarn, Mesos, and so on). It is one of the most 
popular Apache projects with a lot of community interest. 
 

Q: What is the difference between regression and classification? 
 

A: Regression is a technique that is used for predicting or forecasting the occurrence of an 
event or value of a continuous variable (dependent variable), based on the value of one 
or many independent variables. Classification is used as a grouping mechanism where 
the data points are tagged under a discrete category or cluster. 
 

Q: What is dimensionality reduction and what is the basic purpose of it? 
 

A: With the evolution of big data techniques, we are generating data from lots of 
heterogeneous sources. While it is true that more data is better data, modeling all the 
independent variables that are available requires great computational power. There are 
some dimensions that are redundant and some of the dimensions do not have a significant 
impact on the outcome. Dimensionality reduction techniques help us to reduce the number 
of dimensions without any loss of information by eliminating insignificant and redundant 
variables. This results in lowering the computational requirement, as well as easy 
visualization of the data within limited dimensions. 
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Summary 
 
In this chapter, we were introduced to the basic concepts of machine learning 
algorithms and saw how the Spark programming model is an effective tool in 
leveraging big data assets for machine learning. 
 

We have taken a deep dive into some of the supervised and unsupervised algorithms, and 
implemented those with Spark machine learning libraries. We will build on top of these 
fundamentals in the subsequent chapters and understand how neural networks act as the 
basic building blocks for creating intelligent machines. 
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 
Neural Network for Big Data 

 
 

In the previous chapter, we established a basic foundation for our journey toward building 
intelligent systems. We differentiated the machine learning algorithms in two primary 
groups of supervised and unsupervised algorithms, and explored how the Spark 
programming model is a handy tool for us to implement these algorithms with a simple 
programming interface, along with a brief overview of the machine learning libraries 
available in Spark. We have also covered the fundamentals of regression analysis with a 
simple example and supporting code in Spark ML. The chapter showed how to cluster the 
data using the K-means algorithm and a deep dive into the realm of dimensionality 
reduction, which primarily helps us in representing the same information with fewer 
dimensions without any loss of information. We have formed the basis for the 
implementation of the recommendation engines with an understanding of principal 
component analysis, content-based filtering, and collaborative filtering techniques. On the 
way, we have also tried to understand some of the basics of matrix algebra. 
 
In this chapter, we are going to explore the neural networks and how they have evolved 
with the increase in computing power with distributed computing frameworks. The neural 
networks take inspiration from the human brain and help us to solve some very complex 
problems that are not feasible with traditional mathematical models. In this chapter, we 
are going to cover: 
 

 Fundamentals of neural networks and artificial neural networks  
 Perceptron and linear models  
 Nonlinearities model  
 Feed-forward neural networks  
 Gradient descent, backpropagation, and overfitting 

 Recurrent neural networks 
 

We will explain these concepts with easy-to-understand scenarios and corresponding 
code samples with Spark ML. 
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Fundamentals of neural networks 

and artificial neural networks 
 
The basic algorithms and mathematical modeling concepts we covered in the last chapter 
are great when it comes to solving some of the structured and simpler problems. They are 
simpler compared to what the human brain is easily capable of doing. For instance, when 
a baby starts to identify objects through various senses (sight, sound, touch, and so on), it 
learns about those objects based on some fundamental building blocks within the human 
brain. There is a similar mechanism in all living beings with a difference in the level of 
sophistication based on the evolution cycle. 
 

A neurological study of the brains of various animals and human beings reveals that the 
basic building blocks of the brain are neurons. These biological neurons are interconnected 
with each other and are capable of transmitting signals simultaneously to thousands of 
connected neurons. It is observed that in the more complex species, such as human beings, 
the brain contains more neurons than less-complex species. For instance, it is believed that 
the human brain contains 100 billion interconnected neurons. The researchers found a 
direct correlation between the quantity and level of interconnection between the neurons 
and the intelligence in various species. This has led to the development of artificial neural 
networks (ANN), which can solve more complex problems, such as image recognition. 
 
ANNs offer an alternate approach to computing and the understanding of the human brain. 
While our understanding of the exact functioning of the human brain is limited, the 
application of ANNs for solving complex problems has so far shown encouraging results 
for primarily developing a machine that learns on its own based on the contextual inputs, 
unlike the traditional computing and algorithmic approach. 
 
In our quest to developing cognitive intelligence for machines, we need to keep in mind 
that neural networks and algorithmic computing do not compete with each other, instead, 
they complement each other. There are tasks more suited to an algorithmic approach than a 
neural network. We need to carefully leverage both to solve specific problems. There are a 
lot of systems where we require a combination of both approaches. 
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Similar to the biological neurons, the ANNs have input and output units. A simple ANN 
is represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Structure of a simple ANN 

 

An ANN consists of one input layer, which provides the input data to the network, one 
output layer, which represents the finished computation of the ANN, and one or more 
(depending on complexity) hidden layers, which is where actual computation and 
logic implementation happens. 
 
The theory of neural networks is not new. However, at the time of its origin, the 
computational resources as well as datasets were limited in order to leverage the full 
potential of the ANNs. However, with the advent of big data technologies and massively 
parallel distributed computing frameworks, we are able to explore the power of ANNs for 
some of the innovative use cases and solving some of the most challenging problems, such 
as image recognition and natural language processing. 
 

In the subsequent sections of this chapter, we will take a deep dive into the ANNs with 
some simple-to-understand examples. 
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Perceptron and linear models 
 
Let's consider the example of a regression problem where we have two input variables and 
one output or dependent variable and illustrate the use of ANN for creating a model that 
can predict the value of the output variable for a set of input variables:  
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Sample training data 

 

In this example, we have x1 and x2 as input variables and y as the output variable. The 
training data consists of five data points and the corresponding values of the dependent 
variable, y. The goal is to predict the value of y when x1 = 6 and x2 = 10. Any given 
continuous function can be implemented exactly by a three-layer neural network with n 
neurons in the input layer, 2n + 1 neurons in the hidden layer and m neurons in the 
hidden layer. Let's represent this with a simple neural network:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.3 ANN notations 
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Component notations of the neural network 
 

There is a standardized way in which the neural networks are denoted, as follows: 
 

 x1 and x2 are inputs (It is also possible to call the activation function on the input 

layer)  
 There are three layers in this network: the input layer, output layer, and hidden 

layer.  
 There are two neurons in the input layer corresponding to the input variables. 

Remember, two neurons are used for illustration. However, in reality we are 

going to have hundreds of thousands of dimensions and hence input variables. 

The core concepts of ANN are theoretically applicable to any number of input 

variables. 

 There are three neurons in the hidden layer (layer 2): (a21, a22, a23). 
 

 The neuron in the final layer produces output A31.  

 a(j)i: represents activation (the value that is computed and output by a node) of 

unit i in layer j. The activation function of a node defines the output of the node 

for a set of input. The simplest and most common activation function is a 

binary function representing two states of a neuron output, whether the neuron 

is activated (firing) or not: 

 For example, a21 is the activation of the first unit in the second 

layer.  

 W(l)ij represents the weight on a connector, l is the layer from which a signal 

is moving, i represents the neuron number from which we are moving, and j 

represents the neuron number in the next layer to which the signal is 

moving. Weights are used for reducing the difference between the actual and 

desired output of the ANN: 

 For example, W(1)12 represents the weight for the connection 

between two neurons from layer 1 to layer 2 for the first neuron 

in the layer 1 and toward the second neuron in layer 2. 
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Mathematical representation of the 

simple perceptron model 
 
The output of the neural network depends on the input values, activation functions on each 
of the neurons, and weights on the connections. The goal is to find appropriate weights on 
each of the connections to accurately predict the output value. A correlation between 
inputs, weights, transfer, and activation functions can be visualized as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4 ANN components correlation 

 

In summary, within an ANN, we do the sum of products of input (X) to their weights (W) 
and apply the activation function f(x) to get the output of a layer that is passed as input to 
another layer. If there is no activation function, the correlation between the input and 
output values will be a linear function. 
 

The perceptron is the simplest form of an ANN used for the classification 
of datasets that are linearly separable. It consists of a single neuron with 
varying weights and bias units. 

 
 

We can represent the simple perceptron model as a dot product:  
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Since we have multiple values of x1 and x2 in our example, the computation is best done 
with a matrix multiplication so that all the transfer and activation functions can be parallely 
computed. The mathematical model APIs are greatly tuned to utilize the power of 
distributed parallel computation frameworks in order to perform the matrix 
multiplications. Let's now consider our example and represent it with matrix notations. The 

input dataset can be represented as x. In our example, this is a (5x2) matrix. The weights can 

be represented as W1(2x3). The resultant matrix, (Z2), is a 5 by 3 matrix which is the activity of 
the second (hidden) layer. Each row corresponds to a set of input values and each column 
represents the transfer function or activity on each of the nodes in the hidden layer. This 
can be illustrated in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: Each row corresponds to set of input values 

 

With this, we have our first formula for the neural network. Matrix notation is really 

handy in this case since it allows us to perform complex computation in a single step:  

Z(2) = XW(1) 

 

With this formula, we are summing up the products of input and the corresponding 
synapse weights for each set of input. The output of a layer is obtained by applying an 
activation function over all the individual values for a node. 
 
The main purpose of an activation function is to convert the input signal of a node to 
an output signal. As a parallel to the biological neuron, the output after application of 
an activation function indicates whether a neuron is fired or not. Let's quickly 
understand some of the most popular activation functions used within neural networks 
before proceeding with the next steps in our linear perceptron model. 
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Activation functions 
 
Without an activation function, the output will be a linear function of the input values. A 
linear function is a straight line equation or a polynomial equation of the first degree. A 
linear equation represents the simplest form of a mathematical model and is not 
representative of real-world scenarios. It cannot map the correlations within complex 
datasets. Without an activation function, a neural network will have very limited capability 
to learn and model unstructured datasets such as images and videos. The difference 
between a linear and nonlinear function is illustrated in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.6: Linear versus nonlinear functions 

 

As we can see, the linear model that we get without use of the activation function 
cannot accurately model the training data, whereas the multi-degree polynomial 
equation can accurately model the training data. 
 

Using a nonlinear activation function, we can generate nonlinear mapping between the 
input and output variables and model complex real-world scenarios. There are three 
primary activation functions used at each neuron in the neural network: 
 

 Sigmoid function  
 Tanh function  
 Rectified linear unit 
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Sigmoid function 
 
The sigmoid function is one of the most popular nonlinear functions; it outputs 0 or 1 for 

any x input value between -∞ and +∞. The function can be mathematically and graphically 

expressed as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.7: Sigmoid function 

 

The function curve takes an S shape and hence the name sigmoid. As we can see in this 
example, for the values of x between -2 and +2, the Y output values are very steep. A small 
change in the value of X in this region contributes significantly to the value of the output. 
This can be termed as an active gradient zone. For the purpose of simplicity, let's 
understand this as a region on the curve with the highest slope. As the X values tends to be 
between -∞ and +∞, the curve enters into a diminishing gradient zone. In this region, a 
significant change in the value of X does not have a proportionate impact on the output 
value. This results in a vanishing gradient problem when the model is trying to converge. 
At this point, the network does not learn further or becomes extremely slow and 
computationally impossible to converge. The best part with the sigmoid activation function 
is that it always outputs 0 or 1, regardless of the input value X. This makes it an ideal choice 
as an activation function for binary classification problems. For example, it is great for 
identifying a transaction as fraudulent or not. Another problem with the sigmoid function is 
that it is not zero-centered (0 < Output < 1). It is difficult to optimize the neural network 
computation. This drawback is overcome by the tanh function. 
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Tanh function 
 
The hyperbolic tangent (tanh) function is a slight variation of the sigmoid function that is 0 

centered. The function can be mathematically and graphically represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: Tanh function 

 

The range of the tanh function is between -1 and 1 and it is zero-centered; -1 < Output < 1. 
In this case, the optimization is easy and this activation function is preferred over the 
sigmoid function. However, the tanh function also suffers from a vanishing gradient 
problem similar to the sigmoid function. In order to overcome this limitation, the Rectified 
Linear units activation function, ReLu, is used. 

 

ReLu 
 

The ReLu function is mathematically and graphically represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 ReLu function 
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The mathematical form of this activation function is very simple compared to the sigmoid 
or tanh functions and it looks like a linear function. However, this is a nonlinear function 
that is computationally simple and efficient, hence it is deployed in deep neural networks 
(the neural networks with multiple hidden layers). This activation function eliminates the 
vanishing gradient problem. The limitation of using ReLu is that we can only use it for the 
hidden layers. The output layer needs to use different functions for regression and 
classification problems. The ReLu function simplifies and optimizes neural network 
computation and convergence compared to the sigmoid and tanh functions. In the case of 
the sigmoid and tanh functions, all the neurons within the hidden units fire during model 
convergence. However, in the case of ReLu, some of the neurons will be inactive (for the 
negative input values) and hence the activations are sparse and efficient. While the 
efficiency due to the horizontal activation line is desirable, it introduces a problem of 
dying ReLu. The neurons that go into the state due to negative x values do not respond to 
variations in error or input values that makes the major part of the neural network passive. 
This undesirable side effect of ReLu is eliminated by a slight variation of ReLu, called 
leaky ReLu. In the case of leaky ReLu, the horizontal line is converted into a slight sloped 
non-horizontal line (0.001x for x < 0), ensuring that the updates to the input values on the 
negative side of the spectrum are alive. The leaky ReLu is graphically represented as 
follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10: Leaky ReLu 
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Nonlinearities model 
 
With the background information about the activation functions, we now understand why 
we need nonlinearities within the neural network. The nonlinearity is essential in order to 
model complex data patterns that solve regression and classification problems with 
accuracy. Let's once again go back to our initial example problem where we have 
established the activity of the hidden layer. Let's apply the sigmoid activation function to 
the activity for each of the nodes in the hidden layer. This gives our second formula in the 
perceptron model: 

Z(2) = XW(1) 
  

 a(2) = f(z(2)) 
 

Once we apply the activation function, f, the resultant matrix will be the same size as z(2). 
That is, 5 x 3. The next step is to multiply the activities of the hidden layer by the weights on 
the synapse on the output layer. Refer to the diagram on ANN notations. Note that we have 
three weights, one for each link from the nodes in the hidden layer to the output layer. Let's 

call these weights W(2). With this, the activity for the output layer can be expressed with our 
third function as: 

Z(3) = a(2) W(2) 
 
 

As we know, a(2) is a 5 x 3 matrix and W(2) is a 3 x 1 matrix. Hence, Z(3) will be a 5 x 1 matrix. 
Each row representing an activity value corresponds to each individual entry in the training 
dataset. 
 

Finally, we apply the sigmoid activation function to Z(3) in order to get the output 
value estimate based on the training dataset: 
 

y∧ = f(Z(3)) 

 

The application of activation functions at the hidden and output layers ensures nonlinearity 

in the model and we can model the nonlinear training dataset into the ANN. 
 

 

Feed-forward neural networks 
 
The ANN we have referred to so far is called a feed-forward neural network since the 
connections between the units and layers do not form a cycle and move only in one 
direction (from the input layer to the output layer). 
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Let's implement the feed-forward neural network example with simple Spark ML code: 
 

object FeedForwardNetworkWithSpark {  
def main(args:Array[String]): Unit ={  
val recordReader:RecordReader = new CSVRecordReader(0,",")  
val conf = new SparkConf()  
.setMaster("spark://master:7077")  
.setAppName("FeedForwardNetwork-Iris")  
val sc = new SparkContext(conf)  
val numInputs:Int = 4  
val outputNum = 3  
val iterations =1  
val multiLayerConfig:MultiLayerConfiguration = 

new NeuralNetConfiguration.Builder()  
.seed(12345)  
.iterations(iterations)  
.optimizationAlgo(OptimizationAlgorithm  

.STOCHASTIC_GRADIENT_DESCENT)  
.learningRate(1e-1)  
.l1(0.01).regularization(true).l2(1e-3)  
.list(3)  
.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(3)  
.activation("tanh")  
.weightInit(WeightInit.XAVIER)  
.build())  
.layer(1, new DenseLayer.Builder().nIn(3).nOut(2)  
.activation("tanh")  
.weightInit(WeightInit.XAVIER)  
.build())  
.layer(2, new  
OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)  
.weightInit(WeightInit.XAVIER)  
.activation("softmax")  
.nIn(2).nOut(outputNum).build())  
.backprop(true).pretrain(false)  
.build  

val network:MultiLayerNetwork = new  
MultiLayerNetwork(multiLayerConfig)  
network.init  
network.setUpdater(null)  
val sparkNetwork:SparkDl4jMultiLayer = new 

SparkDl4jMultiLayer(sc,network) val 

nEpochs:Int = 6  
val listBuffer = new ListBuffer[Array[Float]]()  
(0 until nEpochs).foreach{i =>  
val net:MultiLayerNetwork =  
sparkNetwork.fit("file:///<path>/  
iris_shuffled_normalized_csv.txt",4,recordReader) 
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listBuffer +=(net.params.data.asFloat().clone())  
}  
println("Parameters vs. iteration Output: ") 

(0 until listBuffer.size).foreach{i => 

println(i+"\t"+listBuffer(i).mkString)}  
}  

} 

 

As we can see, the output value predicted by our model is not accurate. This is because we 
have initialized the weights randomly and only forward propagated once. We need our 
neural network to optimize the weights on each of the links between the input layer to the 
hidden layer to the final output layer. This is achieved with a technique called 
backpropagation, which we will discuss in the next section. 
 

 

Gradient descent and backpropagation 
 
Let's consider the following linear regression example where we have a set of training data. 
Based on the training data, we use forward propagation to model a straight line prediction 
function, h(x), as in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.11: Forward propagation to model a straight line function 
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The difference between the actual and predicted value for an individual training sample 
contributes to the overall error for the prediction function. The goodness of fit for a neural 
network is defined with a cost function. It measures how well a neural network 
performed with respect to the training dataset when it modeled the training data. 
 

As you can imagine, the cost function value in the case of the neural network is 
dependent on the weights on each neuron and the biases on each of the nodes. The cost 
function is a single value and it is representative of the overall neural network. The cost 
function takes the following form in a neural network: 
 

C (W, Xr, Yr) 

 

 W represents weights for the neural network  

 Xr represents the input values of a single training sample 

 Yr represents the output corresponding Xr 

 

As we saw in Chapter 3, Learning from Big Data, the cost for all the training data points 
can be expressed as a sum of squared error. With this, we get our fifth equation for the 
neural network which represents the cost: 
 

 C (W, Xr, Yr) = J = ∑ 1/2 (y - y∧)2 

 

Since the input training data is contextual and something that we cannot control, the goal of 
a neural network is to derive the weights and biases so as to minimize the value of the cost 
function. As we minimize the cost, our model is more accurate in predicting values for the 
unknown data input. There is a combination of weights, W, that gets us the minimum cost. 
Refer to figure 4.3, we have nine individual weights in our neural network. Essentially, 
there is a combination of these nine weights that gets us the minimum cost for our neural 
network. Let's further simplify our example and assume that we just have one weight that 
we want to optimize in order to minimize the cost of the neural network hypothesis. We can 
initialize the weight to a random value and test a high number of arbitrary values and plot 
the corresponding cost on a simple two-dimensional graph, as follows:  
 
 
 
 
 
 
 
 
 

 
Figure 4.12: Weight-to-cost graph 
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It may be computationally easy and feasible to calculate the minimum cost for a large 
number of input weights selected at random. However, as the number of weights 
increases (nine in our case) along with the number of input dimensions (just two in our 
example), it becomes computationally impossible to get to the minimum cost in a 
reasonable amount of time. In real-world scenarios, we are going to have hundreds or 
thousands of dimensions and highly complex neural networks with a large number of 
hidden layers and hence a large number of independent weight values. 
 

As we can see, the brute-force optimization method for optimizing the weights will not 
work for a large number of dimensions. Instead, we can use a simple and widely used 
gradient descent algorithm in order to significantly reduce the computational requirement 
in training the neural network. In order to understand gradient descent, let's combine our 
five equations into a single equation, as follows: 
 

J = Σ 1/2 (y -f( f(X W(1)) W(2)) )2 

 

In this case, we are interested in finding the rate of change in J with respect to W, which 
can be represented as a partial derivative, as follows:  
 
 
 

 

If the derivative equation evaluates to a positive value, we are going up the hill and not in 
the direction of minimum cost, and if the derivative equation evaluates to a negative 
value, we are descending in the right direction:  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.13: Positive slope versus Negative 
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Since we know the direction of negative slope, or the descent in the direction of reduced 
cost for the neural network, we can save the cost of computation while going in the wrong 
direction for the combinations of the weight values. We can iteratively go down the hill 
and stop at a point where the cost gets to a minimum and does not change significantly 
with a change in weight. 
 
The neural network is trained when we get the combination of weights that results in the 
minimum value for the cost function. With the increase in the number of dimensions and 
the number of hidden layers, the optimization level due to the application of gradient 
descent increases and it is possible to train the neural network. However, the gradient 
descent works well only for a convex function relationship between weights and the cost. If 
the relationship is non-convex, the gradient descent algorithm my get stuck in a local 
minima instead of global minima. This is illustrated in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.14: Graph of local minima and global minima 

 

Depending on how we use our input data in conjunction with the weights matrix, it may 
not matter whether the cost function graph is non-convex in nature if we use the training 
examples and the corresponding weights one at a time in order to test multiple values in the 
direction of negative slope or gradient descent. This technique is called stochastic gradient 
descent. As the number of features increase, the gradient descent becomes computationally 
intensive and unreasonable for very complex problems and neural networks. 
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Stochastic gradient descent is an iterative technique that can distribute the work units 
and get us to the global minima in a computationally optimal way. In order to 
understand the difference between gradient descent and the stochastic gradient descent, 
let's look at the pseudocode for each:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.15: Difference between gradient and stochastic descent 

 

 

Gradient descent pseudocode 
 

We proceed with the gradient descent pseudocode: 
 

1. Let w be some initial value that can be chosen randomly.  
2. Compute the ∂J/∂W gradient.  
3. If ∂J/∂W < t, where t is some predefined threshold value, EXIT. We found 

the weight vector that gets the minimum error for the predicted output.  
4. Update W. W = W - s (∂J/∂W) [s is called the learning rate. It needs to be 

chosen carefully, if it is too large, the gradient will overshoot and we will miss 

the minimum. If it is too large, it will take too many iterations to converge]. 
 

So far, we have traversed the ANN in one direction, which is termed as forward 
propagation. The ultimate goal in training the ANN is to derive the weights on each of the 
connections between the nodes so as to minimize the prediction error. One of the most 
popular technique is termed backpropagation. The fundamental idea is that once we know 
the difference between the actual value of the predictor variable based on the training 
example, the error is calculated. 
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The error in the final output layer is a function of the activation values of the nodes on the 
previous hidden layer. Each node in the hidden layer contributes with a different degree for 
the output error. The idea is to fine-tune the weights on the connectors so as to minimize 
the final output error. This will essentially help us to define how the hidden units should 
look based on the input and how the output is intended to look. This is an online algorithm 
that receives training input, one at a time. We feed forward to get predictions for a class by 
multiplying weights and the application of the activation function, get prediction errors 
based on the true label, and push the error back into the network in the reverse direction. 
 

 

Backpropagation model 
 

The backpropagation model can be conceptually represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16: Backpropagation model 
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The backpropagation algorithm can easily be implemented in a staged manner. This 
is computationally less demanding compared to the gradient descent: 
 

 Initialize the model: In this step, the model is randomly initialized to a point 

where the weights are selected with mathematical approximation and 

randomness. This is the first step in the feed-forward network.  
 Propagate forward: In this step, all the input units, hidden units, and the output 

units are activated after adding the sum of the products of the neuron units and 

weights starting from the input units with the training dataset. The output is 

calculated by the application of the activation to the final output unit. 

Understandably, the output at this stage is going to be far from the ideal expected 

output.  

 Cost calculation: At this point, we have the expected output (based on the 

training dataset) and the actual output from an untrained neural network. The 

cost function is typically a sum of squared errors for each of the training data 

points. This is a performance matrix of how well the neural network fits the 

training dataset as well as an indication of how well it is able to generalize the 

unknown input values that the model is expected to receive once trained. Once 

the loss function is established, the goal of the model training is to reduce the 

error in subsequent runs and for the majority of the possible input that the 

model will encounter in the real scenario.  
 Mathematical derivation of the loss function: The loss function is optimized 

using the derivative of the error with respect to the weights on each of the 

connections within the neural network. For each of the connections in the neural 

network at this point, we calculate how much effect the change in value of a 

single weight (across the entire network) has on the loss function. Here are some 

of the possible scenarios when we calculate the cost derivative with respect to 

the weights: 

 At a particular weight value we have a loss of 0, the model 

accurately fits the input training dataset.  
 We can have a positive value for the loss function but the 

derivative is negative. In this situation, an increase in weight will 

decrease the loss function.  
 We can have a positive value for the loss function and the 

derivative is also positive. In this situation, a decrease in weight 

will decrease the loss function. 
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 Backpropagation: At this stage, the error in the output layer is back-propagated 

to the previous hidden layer and subsequently back to the input layer. On the 

way, we calculate the derivative and adjust the weights in a similar manner as in 

the previous step. The technique is called auto-differentiation in the reverse 

direction of the forward propagation. At each node, we calculate the derivative of 

the loss and adjust the weight on the previous connector.  
 Update the weights: In the previous step, we calculated the derivatives on each 

of the nodes in all the layers by propagating the overall error backward. In a 

simplified manner, New Weight = Old weight - (Derivative Rate * Learning Rate). 

The learning rate needs to be carefully selected with multiple experiments. If the 

value is too high, we may miss the minima and if the value is too low the model 

will converge extremely slowly. The weight on each connection is updated with 

following guidelines: 

 When the derivative of the error with respect to the weight is 

positive, the increase in weight will proportionally increase 

the error and the new weight should be smaller.  
 When the derivative of the error with respect to the weight is 

negative, the increase in weight will proportionally decrease 

the error and the new weight should be larger.  
 If the derivative of the error with respect to the weight is 0, no 

further updates to the weights are required and the neural 

network model has converged. 
 

 

Overfitting 
 
As we have seen in the previous sections, gradient descent and backpropagation are 
iterative algorithms. One forward and corresponding backward pass through all the 
training data is called an epoch. With each epoch, the model is trained and the weights 
are adjusted for minimizing error. In order to test the accuracy of the model, as a common 
practice, we split the training data into the training set and the validation set. 
 
The training set is used for generating the model that represents a hypothesis based on the 
historical data that contains the target variable value with respect to the independent or 
input variables. The validation set is used to test the efficiency of the hypothesis function 
or the trained model for the new training samples. 
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Across multiple epochs we typically observe the following pattern:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.17: Graph of overfitting model 

 

As we train our neural network through a number of epochs, the loss function error is 
optimized with every epoch and the cumulative model error tends to 0. At this point, the 
model has trained itself with respect to the training data. When we validate the hypothesis 
with the validation set, the loss function error reduces until a peak. After the peak, the 
error again starts to increase, as illustrated in the preceding figure. 
 
At this point, the model has memorized the training data and it is unable to generalize itself 
for a new set of data. Each epoch after this point comes under an overfitting zone. The 
model has stopped learning after this point and it will produce incorrect results or 
outcomes. One of the easiest ways to prevent overfitting and create a model that 
generalizes well is to increase the amount of training data. With an increase in training 
data, the neural network is tuned for more and more real-world scenarios and hence 
generalizes well. However, with every increase in the training dataset, the computational 
cost of each epoch proportionately increases. 
 
The machine has a finite capacity for modeling the data. The capacity of the ANN for 
modeling can be controlled by changing the number of hidden units, modifications, and 
optimizations of the number of training iterations, or changing the degree of nonlinearity 
for the activation functions. Overfitting can be controlled by reducing the number of 
features. Some features have insignificant contribution to the overall model behavior and 
hence the outcome. Such features need to be algorithmically identified with multiple 
experiments and iterations and eliminated from the final model generation. We can also 
use regularization techniques wherein all the features are used but with a varying degree of 
weightage based on the significance of the feature on the overall outcome. 
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Another popular regularization technique for preventing overfitting is dropout. With 
this technique, the nodes in the ANN are ignored (dropped) during the training phase. 
The neurons that are ignored are selected in a random manner. 
 

 

Recurrent neural networks 
 
So far, we have seen the ANNs where the input signals are propagated to the output layer in 

the forward pass and the weights are optimized in a recursive manner in order to train the 

model for generalizing the new input data based on the training set provided as input. 
 

A special case real-life problem is optimizing the ANN for training sequences of data, for 
example, text, speech, or any other form of audio input. In simple terms, when the output 
of one forward propagation is fed as input for the next iteration of training, the network 
topology is called a recurrent neural network (RNN). 
 

 

The need for RNNs 
 
In the case of the feed-forward networks, we consider independent sets of inputs. In the case of 

image recognition problems, we have input images that are independent of each other in terms 
of the input dataset. In this case, we consider the pixel matrix for the input image. The input 

data for one image does not influence the input for the next image that the ANN is trying to 
recognize. However, if the image is part of a sequence or a frame within a video input, there is a 
correlation or dependence between one frame to the next frame. 
 
This is also the case in audio or speech input to the ANN. Another limitation of the ANNs 
we have seen so far is that the length of the input layer needs to be constant. For example, a 
network that recognizes an image of 27 x 27 pixels as input will consistently be able to take 
input of the same size for training and generalization loops. An RNN can accommodate 
input of variable lengths and hence is more susceptible to the changes in input signals. 
 

In summary, the RNNs are good at dependent input and input with variable lengths. 
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Structure of an RNN 
 
A simple representation of an RNN is when we consider the output of one iteration as 

the input to the next forward propagation iteration. This can be illustrated as follows:  
 
 
 
 
 
 
 
 
 
 

 
Figure 4.18: Output of one iteration as input to the next propagation iteration 

 

A liner unit that receives input, xt, applies a weight, WI, and generates a hypothesis with an 

activation function metamorphosis into an RNN when we feed a weight matrix, WR, back 

to the hypothesis function output in time with the introduction of a recurrent connection. 
 

In the preceding example, t represents the activation in t time space. Now the activity of the 
network not only depends on the input signal, weights, and the activation function, but also 
on the activity of the previous timestamp. In the equation format, everything is the same 
except for the introduction of an additional parameter that represents output from the 
previous activation in time (t-1). 
 

 

Training an RNN 
 
The RNN can be trained by unrolling the recurring unit in time into a series of feed-forward 
networks:  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.19: Unrolling the recurring unit into a series of feed-forward networks 
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The leftmost unit is the activity of the network in time, t, which is a typical feed-forward 

network with xt as input at time, t. This is multiplied by the weight matrix, WI. With the 

application of the activation function, we get the output, yt, at time, t. This output is fed as input 

to the next unit along with the contextual and time input for the next unit in time, t+1. If you 
notice, there is a fundamental difference in the feed-forward network and the RNN. 
 
The weights within various input, hidden, and output layers in a feed-forward network are 
different from each other and represent the significance of a dependent variable and the 

connections on the overall output. In the case of the RNN, the weights across the units (WR) 
that are unrolled in time are the same. Since we are going to have an output at each of the 
units, we are going to have a cost associated with each of the units. Let's assume the cost of 

the first unit at timestamp t is Ct and subsequent units as Ct+1 and Ct+2. The RNN training 
can be mathematically represented as:  
 
 
 
 

 
Figure 4.20: RNN training mathematical expression 

 

In this case, we are combining the gradients across units to calculate the overall cost of the 
network. Since the weights are shared across the units, the cost function is a derivative with 
respect to the weights and we can derive this with the same backpropagation and gradient 
descent methods. 
 

Once the RNN is trained, it can be used primarily for the scenarios where the input are 
dependent on each other. In the case of language translation, we can use the 
connections between two keywords to predict the next word in the sequence in order to 
increase the accuracy of the language translation model. 
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Frequently asked questions 
 
Q: Are ANNs exactly the same as the biological neurons in terms of information 

storage and processing? 
 
A: Although it cannot be stated with 100% certainty that the ANNs are an exact replica in 
terms of memory and processing logic, there is evidence in medical science that the basic 
building block of a brain is a neuron, and neurons are interconnected. When the external 
stimulus is obtained or when is is generated by the involuntary processes, the neurons react 
by communicating with each other by the transmission of neurosignals. Although the 
functioning of the brain is very complex and far from fully understood, the theory of ANNs 
has been evolving and we are seeing a great deal of success in modeling some of the very 
complex problems that were not possible with traditional programming models. In order to 
make modern machines that possess the cognitive abilities of the human brain, there needs 
to be more research and a much better understanding of the biological neural networks. 
 

Q: What are the basic building blocks of an ANN? 
 
A: The ANN consists of various layers. The layer that receives input from the environment 
(independent variables) is consumed by the input layer. There is a final layer that emits 
output of the model based on the generalization of the training data. This layer is called 
the output layer. In between the input and output layers there can be one or many layers 
that process the signals. These layers are called hidden layers. The nodes within each of the 
layers are connected by synopse or connectors. Each of the connectors has an optimum 
weight so as to reduce the value of the cost function that represents the accuracy of the 
neural network. 
 

Q: What is the need for nonlinearity within an ANN? 
 

A: The neural networks are mathematical models where the input are multiplied by the 
synopse weights and the sum of all the node connection products constitutes the value on a 
node. However, if we do not include nonlinearity with an activation function, multi-layer 
neural networks will not exist. In that case, the model can be represented with a single 
hidden layer. We will be able to model very simple problems with linear modeling. In order 
to model more complex, real-world problems, we need multiple layers and hence 
nonlinearity within the activation functions. 
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Q: Which activation functions are most commonly used in building the ANNs? 
 

A: Commonly used activation functions within the ANNs are: 
 

 Sigmoid function: The output value is between 0 and 1. This function takes a 

geometrical shape of S and hence the name sigmoid.  
 Tanh function: The hyperbolic tangent function (tanh) is a slight variation of the 

sigmoid function that is 0-centered.  
 Rectified Linear Unit (ReLu): This is the simplest, computationally optimized, 

and hence most popularly used activation function for the ANNs. The output 

value is 0 for all negative input and the same as the value of input for positive 

input. 
 

Q: What is a feed-forward ANN and how are the initial values of weights selected? 
 
A: A single pass through the network from the input layer to the output layer via the 
hidden layers is called a forward pass. During this, the nodes are activated as sum 
products of the node values and the connection weights. The initial values of the weights 
are selected randomly and as a result, the first pass output may deviate from the expected 
output based on the training data. This delta is called the network cost and is represented 
with a cost function. The intuition and goal for the ANN is to ultimately reduce the cost to 
a minimum. This is achieved with multiple forward and backward passes through the 
network. One round trip is called an epoch. 
 

Q: What is the meaning of model overfitting? 
 

A: Model overfitting occurs when the model is learning the input and cannot generalize on 
the new input data. Once this happens, the model is virtually not usable for real-world 
problems. The overfitting can be identified by the variation in model accuracy between the 
runs on training and validation datasets. 
 

Q: What are RNNs and where are they used? 
 
A: RNNs are the recurrent neural networks that utilize the output of one forward pass 
through the network as an input for the next iteration. RNNs are used when the input are 
not independent of each other. As an example, a language translation model needs to 
predict the next possible word based on the previous sequence of words. ANNs have great 
significance in the field of natural language processing and audio/video processing 
systems. 
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Summary 
 
In this chapter, we introduced the most important concept in realizing intelligent machines, 
which is artificial neural networks. The ANNs are modeled against the biological brain. 
While the theory of ANN existed for decades, the advent of distributed computing power 
along with access to unprecedented volumes of data has enabled development in this 
exciting field of research. 
 

In this chapter, we introduced the basic building blocks of the ANNs and simple 
techniques to train the models in order to generalize the model for producing outcomes for 
the new datasets. 
 

This introduction is a building block for the next chapter, which will dive deeper into the 

implementation aspects of the neural networks. 
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 
Deep Big Data Analytics 

 
 

In the previous chapter, we established the fundamental theory of artificial neural 
networks (ANNs) and how they emulate human brain structure for generating output 
based on a set of inputs with the help of interconnected nodes. The nodes are arranged in 
three types of layers: input, hidden, and output. We understood the basic and 
mathematical concepts of how the input signal is carried through to the output layer and 
the iterative approach that ANNs take for training weights on neuron connections. Simple 
neural networks with one or two hidden layers can solve very rudimentary problems. 
However, in order to meaningfully utilize ANNs for real-world problems, which involve 
hundreds or thousands of input variables, involve more complex models, and require the 
models to store more information, we need more complex structures that are realized with 
large numbers of hidden layers. These types of networks are called Deep Neural Networks 
and utilizing these Deep Neural Networks for modeling the real data is termed deep 
learning. With the addition of nodes and their interconnections, the Deep Neural Networks 
can model unstructured input, such as audio, video, and images. 
 
In this chapter, we will explore how deep learning can be utilized for addressing some 
important problems in big data analytics, including extracting complex patterns from 
massive volumes of data, semantic indexing, data tagging, fast information retrieval, 
and simplifying discriminative tasks such as classification. We are going to cover: 
 

 The building blocks of deep learning: 

 Gradient descent  
 Backpropagation  
 Non-linearities  
 Dropout 

 

 Specialized neural net architectures for structured data  
 Building data preparation pipelines  
 Hyperparameter tuning  
 Leveraging distributed computing for deep learning 
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The proposed examples will be implemented using the Deeplearning4j (DL4J) Java 
framework. 
 

 

Deep learning basics and the 

building blocks 
 
In the previous chapters, we established the fact that the machine learning algorithms 
generalize the input data into a hypothesis that fits the data so that the output, based on the 
new values, can be predicted accurately by the model. The accuracy of the model is a 
function of the amount of the input data along with variation in the values of the 
independent variables. The more data and variety, the more computation power we require 
to generate and execute the models. The distributed computing frameworks (Hadoop, 
Spark, and so on) work very well with the large volumes of data with variety. The same 
principles apply to ANNs. 
 
The more input data we have along with variations, the more accurate the models can be 
generated, which requires more storage and computation power. Since the computation 
power and storage is available with the development of the big data analytics platforms 
(in-premise as well as on the cloud), it is possible to experiment with large neural networks 
with hundreds or thousands of nodes in the input layer, and hundreds or thousands of 
hidden layers. These types of ANNs are called Deep Neural Networks. 
 
While these models are computationally heavy, they produce accurate results and get better 
with more data, unlike the traditional algorithms that plateau in terms of performance at 
some point. After the plateau point, even after adding more data, the model accuracy for 
traditional mathematical models does not increase by a great margin. The Deep  
Neural Networks perform better in terms of accuracy and reliability with increasing 
amount of data. The use of these multi-layered neural networks for hypothesis generation 
is generally termed deep learning. The difference between a Simple Neural Network and a 
Deep Neural Network can be depicted as follows: 
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Simple ANN versus Deep Neural Network 

 

For supervised learning problems, the Deep Neural Networks have proven to provide 
encouraging results, especially when it comes to mapping some of the functions with high 
complexity levels. With sufficiently large datasets with labeled training examples, the Deep 
Neural Networks are able to train the connection weights so that there is no loss of 
intelligence and the model accurately represents the historical facts based on data, and at 
the same time has a level of generalization that suits most of the mission critical 
applications. Remember, the generic and common objective of all the learning methods is to 
minimize the cost function. The cost function value is inversely proportional to the model's 
accuracy. 
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Let us mathematically define the cost function for a Deep Neural Network. This is also 
termed the mean squared error function. This function will always be positive since it takes 
the square of the difference:  
 

w: collection of all the weights in the network 
b: all the biases  
n: training data size (number of samples) 
a: vector of outputs from the network corresponding to x as 

input value 

 

Let's look at some of the methods of Deep Neural Networks learning. 
 

 

Gradient-based learning 
 
In the previous chapter, we primarily discussed the single hidden layer perceptron model 
or the simple neural networks, in that chapter we also introduced the concept of gradient 
descent. Gradient descent, as applicable to the Deep Neural Network, essentially means we 
define the weights and biases for the neuron connections so as to reduce the value of the 
cost function. The network is initialized to a random state (random weights and bias 
values) and the initial cost value is calculated. The weights are adjusted with the help of the 
derivative of cost with respect to weights on the Deep Neural Network. 
 

In mathematics, the derivative is a way to show the rate of change, that is, 

the amount by which a function is changing at one given point. 
 
 

 

For functions that act on real numbers, it is the slope of the tangent line at a point on a 
graph:  
 
 
 

The dotted line is a tangent at a point on the cost function. 

The cost function represents the aggregate difference between 

the expected and the actual output from the deep neural network. 
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In a typical classification problem, where we are trying to predict the output classes based 
on the training data, we should be able to define the model's accuracy based on the number 
of correct predictions. In that case, it will not be possible to understand the effect of various 
weight values on the classification output. Instead, the Deep neural network is trained to 
produce a cost value that is a quadratic function of the input variables. With this, tuning 
various weight and bias values has a small gradient effect on the prediction confidence for a 
particular class. 
 

The gradient-based learning can be visualized with an object that is rolling downhill in the 
direction of the lowest point in the valley. Gravity is the driving force that always moves 
the object in the direction of the lowest point. The gradient descent algorithm works in a 
similar manner. The slope is calculated at a random point initially; if the slope is negative, 

the weights and biases are modified in the same direction. Let's consider  as a small  

movement for the cost value in the direction of (w1,b1) and  as the small movement in 

the (w2,b2) direction. We can define the change in the value of cost function as:  
 
 
 

 

The goal is to choose values of (wi,bi) so that  is a negative value. In order to meet 

this goal, let's define  as a vector of changes in (wi,bi):  
 
 

 

Let's now define a gradient vector of the cost function as a vector of partial derivatives:  
 
 
 

 

We can now represent the change in the value of the cost function as:  
 
 
 

The gradient vector, , establishes a relationship between changes in weight bias values 
(wi,bi) and the changes in the value of the cost function, C. This equation allows choice of all 
the weights and biases, , so that we get a negative value for . As a special case, if we  
choose , where  is the learning rate (small value that defines the step size for the 

gradient descent). With this, the change in the value of the cost function becomes:  
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Since the square value of  is always going to be ≥ 0,  will always be ≤ 0. That means 
cost, C, is always going to decrease, which is the intended behavior of the gradient descent. 

We change the value of weights and biases as (wi,bi) = (wi,bi) -  . This rule is used in an 
iterative manner to reach the minimum cost value with the gradient descent algorithm. 
With gradient descent, we need to carefully choose the value of  so that the function is 
approximated properly. If the value is too great, the descent will miss the minima, and for 
too small a value, the steps will be small and the convergence will take a lot of time and 
computation. Applying the gradient descent to the deep neural network, we need to 
repeatedly apply the following updates and calculate the cost with each iteration leading to 
the minimum value for the cost function. The combinations of weights and biases at the 
minimum cost value is the optimization for the deep neural network and provides the 
required generalization:  
 
 
 
 
 
 
 

 

While this iterative technique works mathematically, it becomes computationally 
demanding as the number of training inputs goes on increasing. As a result, the learning 
time increases. In most practical scenarios, the stochastic gradient descent is utilized. This 
is a variation of gradient descent in which we randomly pick up a small number of inputs. 
The gradient is averaged over these small numbers of input. This speeds up the gradient to 
the minimum cost. 
 

 

Backpropagation 
 
Backpropagation, or backprop, is used to efficiently calculate the gradient of the cost 
function, C. In simple terms, the goal of backprop is to compute the rate of change of the 

cost, C, with respect to the weights, ( ), and the biases, ( ). 
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In order to clarify the intuition behind backprop, let's consider following deep neural 
network:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Imagine that we have made a small change, , in the weight value of some weight, , 

in the network. Due to this weight change, a corresponding change in the activation, , for 

the connected neuron takes place. This change propagates to the output layer and ultimately 

affects the value of the cost function, as denoted by the solid lines in the earlier  

diagram. This change in cost, , can be related to change in weight, , with 

the following equation:  
 
 
 

 

This equation allows us to establish the relationship between a small change, , and the 

overall cost, C, which also leads to computation of . The change in the value of the  

activation function for a connected neuron,  (jith neuron in lth layer), is caused by the 

weight change. This change can be represented as follows:  
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This change in activation changes the activation for all the neurons in the next and 
subsequently connected layers, shown by the solid arrows in the earlier formula. 
The change can be represented as follows:  
 
 
 
 

 

Based on the value of change in the activation value, , we calculated earlier, the equation 

can be rewritten as follows:  
 
 
 
 

 

The chain reaction based on the change in weight for one of the connections propagates 

to the end and affects the cost, C, which can be depicted as follows:  
 
 
 
 

 

This is the equation for backpropagation, which gives the change in rate for cost, C, with 
respect to the weights in the network. 
 

 

Non-linearities 
 
Let's consider two types of feature spaces, where x1 and x2 are independent variables and 
y is a dependent variable that takes a values based on x1 and x2:  
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In the first instance, the input features are linearly separable with a straight line that 
represents the separation boundary. In other words, the space is linearly separable. 
However, in the second instance, the features space is inconsistent and cannot be separated 
with a line. We need some type of nonlinear or quadratic equation in order to derive the 
decision boundary. Most of the real-world scenarios are represented with the second type of 
feature space. 
 
The deep neural networks receive data at the input layer, process the data, map it 
mathematically within the hidden layers, and generate output in the last layer. In order for 
the deep neural network to understand the feature space and model it accurately for 
predictions, we need some type of non-linear activation function. If the activation functions 
on all the neurons are linear, there is no significance for the deep neural networks. All the 
linear relationships across layers can be aggregated in single linear function that eliminates 
the need for multiple hidden units. In order to model the complex feature spaces, we 
require non-linearities within the nodes' activation functions. In the case of the more 
complex data input, such as images and audio signals, the deep neural networks model the 
feature space with weights and biases on the connectors. 
 

The non-linear activations define whether a neuron fires or not based on the input signal and 

the applied activation function. This introduces enough non-linearity across the layers of a deep 

neural network in order to model hundreds and thousands of training data samples. The typical 

nonlinear functions that are deployed in the deep neural networks are: 
 

 Sigmoid function: This is a mathematical function that takes the shape of 'S' and 

ranges between 
0

 and 1. This takes a mathematical form of . 

 Tanh function: This is a variation of the sigmoid for which the values range from 

-1 to 1. This nonlinear function takes the mathematical form of . 

 Rectified linear unit (RELU): This function outputs 0 for any negative value of x 

and equals the value of x when it is positive: . 
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Dropout 
 
Dropout is a popular regularization technique used to prevent overfitting. When the deep 
neural network memorizes all the training data due to the limited size of the samples and a 
network of right depth is utilized for training, it does not generalize well enough to produce 
accurate results with the new test data. This is termed overfitting. Dropout is used primarily 
for preventing overfitting. This is a simple technique to implement. During the training 
phase, the algorithm selects the nodes from the deep neural network to be dropped 
(activation value set to 0). With each epoch, a different set of nodes is selected based on a 
predefined probability. For example, if a dropout rate of 0.2 is selected, during each of the 
epochs, there is 20% chance that the node will not participate in the learning process. The 
network with dropout can be visualized as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

By dropping out the nodes, a penalty is added to the loss function. Due to this, the model is 
prevented from memorizing by learning interdependence between neurons in terms of 
activation values as well as corresponding connecting weights. As a result of the dropout 
where the activation on the dropped-out units is 0, we are going to have a reduced value on 
the subsequent nodes in the network, we need to add a multiplication factor of 1 - 
drop_out_rate (1 - 0.5 in our case) to the nodes that are participating in the training process. 
This process is called inverted dropout. With this, the activation on the participating node  
is . In order to further optimize the 
dropout process, on the same training example, multiple iterations of the dropout with 
different nodes randomly eliminated can be applied. This technique also helps to 
eliminate the memorizing effect of the deep neural network and generalizes the training 
model further. Since the number of units in the neural network are reduced, each epoch 
through the network is optimized in terms of the time it takes through the iteration, 
including the backpropagation. 
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However, with the tests on multiple datasets and neural network sizes, it is observed that 
the number of iterations required for convergence are doubled with dropout (at a 50% 
dropout rate) and the overfitting zone is eliminated, as shown in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Building data preparation pipelines 
 
The deep neural networks are best suited for supervised learning problems where we have 
access to historical datasets. These datasets are used for training the neural network. As 
seen in diagram 5.1, the more data we have at our disposal for training, the better the deep 
neural network gets in terms of accurately predicting the outcome for the new and 
unknown data values by generalizing the training datasets. In order for the deep neural 
networks to perform optimally, we need to carefully procure, transform, scale, normalize, 
join, and split the data. This is very similar to building a data pipeline in a data warehouse 
or a data lake with the help of the ETL (Extract Transform and Load with a traditional data 
warehouse) and ELTTT (Extract Load and Transform multiple times in modern data 
lakes) pipelines. 
 
We are going to deal with data from a variety of sources in structured and unstructured 
formats. In order to use the data in deep neural networks, we need to convert it into a 
numerical representation and make it available in multi-dimensional arrays. DataVec is a 
popular Apache 2.0 library for generic machine-learning operations that we listed earlier. 
DataVec supports many data sources out-of-the-box. These data sources cover the majority 
of the types typically used within the data science community. 
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The data sources and types supported by DataVec are listed in the following table:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A generic machine learning pipeline consists of standard steps, such as data extraction 
from source, ingestion, preparation, model training and retraining, model deployment, and 
predictions (class prediction or regression value). The pipeline can be visualized as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are more and more devices and systems generating data in digital formats. These 
data assets are typically pushed into data lake structures that are based on distributed 
computing frameworks. Many organizations are also adopting a cloud-first strategy. The 
majority of the data loads are computation is moving to cloud infrastructure and 
platforms. For the machine learning, and specifically for the use cases based on deep 
neural networks, we need to carefully define the data ingestion and processing pipelines. 
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The DataVec API has libraries that make it easy to get the data in the format that the neural 
networks can understand. The primary component is the vectorization and hence the API is 
called DataVec. This is a process by which the data attributes are converted into numerical 
formats and regularized for the specific use case requirements. DataVec has a similarity in 
dealing with input and output data. The structures are defined to suit parallel processing 
and to work seamlessly with distributed file systems, such as HDFS. 
 

The Hadoop Distributed File System (HDFS) is a distributed file system 
designed to run on commodity hardware. It has many similarities with 
existing distributed file systems. However, the differences from other 
distributed file systems are significant. HDFS is highly fault-tolerant and is 
designed to be deployed on low-cost hardware. HDFS provides high 
throughput access to application data and is suitable for applications that 
have large datasets. 

 

There are three primary entities in HDFS, as well as DataVec, for storing and loading 

the data for processing. 
 

 InputFormat: This defines the structural semantic of the data. It confines to a 

predefined schema. The validators are implemented for validation based on the 

InputFormat. The input formats are defined in such a way that they can be 

easily split for distributed processing. The most commonly used input formats 

are: 

 FileInputFormat: This is a file-based format and treats a file as an 

independent and unique object. The format is tied with an input 

directory in which the data file is present. This format can also read 

and process all the files in a directory. Once all the files are loaded, 

the splits are created based on the underlying distributed file 

system rules.  
 TextInputFormat: The Hadoop MapReduce framework utilizes 

this as the default format. The best-suited and default format is a 

comma-separated data structure that typically contains a newline 

character as a record separator.  
 SequenceFileInputFormat: This format is used for reading the 

sequence files. 
 

 InputSplit: This object is created from the InputFormat and represents the data 

logically. The splits are divided into records. The records can be independently 

processed in a distributed manner by Hadoop.  
 RecordReader: This object reads the records defined by the InputSplit. It 

generates key-value pairs based on the indexing of the datasets. This makes it 

easy for the Mapper to read in sequences of available data chunks for 

processing. 
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These concepts are also implemented in the DataVec API for facilitating distributed parallel 
processing. DataVec also supports the OutputFormats that are largely interoperable. The 
vector formats most commonly generated with DataVec are ARFF and SVMLight. The 
framework also provides extensibility for incorporating custom input formats. Once the 
formats are defined with the DataVec interfaces, the framework handles those in the same 
way as the predefined formats. Vectorization of the datasets is the central focus for the 
DataVec library. 
 

The numerical vectors are the only suitable input formats as well as the processing formats 
for the deep neural networks. The API also supports transformation libraries for 
massaging the data and filtering out the insignificant records and attributes. Once the data 
is ingested it is available for utilizing in training and testing the models. Normalization is 
one of the important preparation steps in order to optimize the learning process. 
 

This step is important when the neural networks are deep within multiple 
hidden layers and the data input features vary in the scale. This variance 
results in slow convergence and takes a very long time for the deep neural 
network to learn. One of the most common normalization technique is 0-1 
range normalization. In this, the input values are normalized between 0 
and 1 without affecting the data quality or losing any data. 

 

Let's demonstrate normalization using the Weka framework: 
 

1. Open the Weka explorer and select the iris.atff file. This is a simple dataset 

with four features and a class output variable with three possible output values:  
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2. Review the attributes and their original value distribution:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Apply the normalization filter. Choose the filter under filters | unsupervised 

| attribute | Normalize and apply the filter to the selected dataset:  
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4. Check the attribute values after normalization. The values are all in the 

range between 0 and 1:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

These normalized values in the range of 0 and 1 produce the same training model and 
hence the output. However, with normalization, we optimize the learning performance for 
the deep neural network. Here is the Java code for applying normalization in the data 
preparation pipeline using the deeplearning4j library: 
 

package com.aibd.dnn; 

 
import org.datavec.api.records.reader.RecordReader;  
import org.datavec.api.records.reader.impl.csv.CSVRecordReader; 

import org.datavec.api.split.FileSplit; import 

org.datavec.api.util.ClassPathResource;  
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator; 

import org.nd4j.linalg.dataset.DataSet;  
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;  
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerMinMaxScaler; 

 
public class Normalizer { 

 

 
public static void main(String[] args) throws Exception { 

int numLinesToSkip = 0; 

 
char delimiter = ','; 
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System.out.println("Starting the normalization process"); 

RecordReader recordReader = new  
CSVRecordReader(numLinesToSkip,delimiter); 

 
recordReader.initialize(new FileSplit(new 

ClassPathResource("iris.txt").getFile()));  
int labelIndex = 4;  
int numClasses = 3; 

 
DataSetIterator fulliterator = new  

RecordReaderDataSetIterator(recordReader,150,labelIndex,numClasses); 

 
DataSet dataset = fulliterator.next(); 

 
// Original dataset  
System.out.println("\n{}\n" + dataset.getRange(0,9)); 

 
NormalizerMinMaxScaler preProcessor = new NormalizerMinMaxScaler(); 

System.out.println("Fitting with a dataset...............");  
preProcessor.fit(dataset);  
System.out.println("Calculated metrics");  
System.out.println("Min: {} - " + preProcessor.getMin());  
System.out.println("Max: {} - " + preProcessor.getMax()); 

 
preProcessor.transform(dataset);  
// Normalized dataset  
System.out.println("\n{}\n" + dataset.getRange(0,9));  

}  
} 

 

Here is the output from the program: 
 

===========Original Values =======  
[[5.10, 3.50, 1.40, 0.20],  
[4.90, 3.00, 1.40, 0.20],  
[4.70, 3.20, 1.30, 0.20],  
[4.60, 3.10, 1.50, 0.20],  
[5.00, 3.60, 1.40, 0.20],  
[5.40, 3.90, 1.70, 0.40],  
[4.60, 3.40, 1.40, 0.30],  
[5.00, 3.40, 1.50, 0.20],  
[4.40, 2.90, 1.40, 0.20]] 

 
===========Normalized Values =======  
[[0.22, 0.62, 0.07, 0.04],  
[0.17, 0.42, 0.07, 0.04],  
[0.11, 0.50, 0.05, 0.04],  
[0.08, 0.46, 0.08, 0.04], 
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[0.19, 0.67, 0.07, 0.04],  
[0.31, 0.79, 0.12, 0.12],  
[0.08, 0.58, 0.07, 0.08],  
[0.19, 0.58, 0.08, 0.04],  
[0.03, 0.38, 0.07, 0.04]] 

 

 

Practical approach to implementing neural 

net architectures 
 
While the deep neural networks are good at generalizing the training data with multi-
layered iteratively-generated models, the practical application of these algorithms and 
theory requires careful consideration of various approaches. This section introduces general 
guiding principles for using the deep neural networks in practical scenarios. At a high level, 
we can follow a cyclic process for deployment and the use of deep neural networks, as 
depicted in this diagram:  
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We explain the preceding diagram as follows: 
 

 Define and realign the goals: This is applicable not only to the deep neural 

networks but in general use of the machine learning algorithms. The use-case-

specific goals related to the choice error metric and threshold target value for the 

metric need to be set as the first step. The goal around the error metric defines the 

actions in the subsequent stages of architectural design and various design 

choices. It is unrealistic to set the goal of zero error for most of the practical use 

cases. This is due to the stochastic nature of most of the real scenarios where the 

training data is often insufficient and cannot model the environment with 

certainty.  
 Set the end-to-end pipeline: Once the goals are determined and the expected 

threshold metrics are set up, the next step is to set up the end-to-end pipeline. 

While the pipeline is going to be different based on the use case and available 

data assets, in this section we will learn the generic guidelines. When the use case 

is to implement supervised learning with fixed and small numbers of input 

parameters in vector form (for example, defining the housing price based on 

various factors, such as the square foot area, number of rooms, location, start with 

a feed-forward network). Initialize this network with fully connected nodes. In 

case of a matrix structure data such as image pixels, use a convolutional neural 

network architecture. When the input is a sequence of data that depends on the 

previous value chain, use a recurrent network topology. Early stopping and 

dropout can be used as the strategies when the training set contains a large 

number of examples and input features.  
 Performance tuning: Once we have the basic pipeline setup completed, we need 

to evaluate the performance of the model. There is a decision point between 

trying out a set of new models or model parameters, or adding more data to the 

training set. As a general guiding principle, the initial model should be tested 

through multiple iterations by adding more data and evaluating its impact on 

the model performance. Measure the model performance on the training set. If 

the model is not performing well on the training set, the first step is to increase 

the number of hidden units in the network. With this, the model is able to 

identify minor and deeper insights in the training data. The performance needs 

to be evaluated based on multiple tests by setting different values for the 

learning rate. Despite this, if the model's performance on the training data does 

not improve, there may be an issue with the quality of the training data. The 

datasets need to be carefully evaluated and cleansed before running further 

optimizations. 
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Once the model is performing well on the training data, we need to test the 
performance with the test data. If the model is performing well within the set 
threshold in the first step, the model is well generalized and good to be utilized 
with real data. If the model does not perform well on the test data, we need to 
gather more data and train the model again for better generalization. As a rule of 
thumb, the marginal addition of data does not improve the performance by a 
great deal. We need to consider adding data in multiples of the original dataset in 
order to achieve significant performance gain and reduce generalization error. 

 

 Incremental changes: The summary-level goal for deploying the deep neural 

networks is to minimize the error in the real data when the model is deployed. In 

order to achieve that, we need to make incremental changes to the configuration 

parameters. This is termed hyperparameter tuning. Some of the 

hyperparameters which typically result in quick gains are number of hidden 

units, learning rate, convolution kernel width, implicit zero padding, weight 

decay coefficient and dropout rate. Apart from these, different volumes of the 

training data are randomly tested for incrementally optimizing the model 

performance. We will cover this topic in detail in the next section.  
 Deploy and evaluate: Once the threshold goals for the model's performance are 

achieved, the model can be deployed in the real environment. Due to the 

stochastic nature of most of the environments, the model performance needs to 

be constantly evaluated, especially for mission-critical applications. At this 

stage, we also need to consider strategies for automated hyperparameter-tuning 

based on the historical trends with the model's deployment in production. With 

increasing degrees of historical data on the model's performance with different 

values of manually-, as well as automatically-selected hyperparameter values, it 

is also possible to treat the hyperparameter values, the volume of the training 

data as an input set of the dependent variables, and the model's performance as 

the dependent variable. A simplified technique, such as Bayesian regression, can 

be used for further optimization at runtime in an automated manner. 
 

In the next section, we will take a look at some of the guiding principles for tuning 
the runtime parameters for the deep neural networks. 
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Hyperparameter tuning 
 
Imagine a sound system that has a high quality speaker and mixer system. You must have 
seen a series of buttons on the console that independently control a specific parameter of 
sound quality. The bass, treble, and loudness are some of the controls that need to be 
properly set for a great experience. Similarly, a deep neural network is only as good as the 
setting of various controlling parameters. These parameters are called hyperparameters, 
and the process of controlling various parameters at a value that gets the best performance 
in terms of training/execution time as well as accuracy and generalization of the model. 
Similar to the sound equalizer example, multiple hyperparameters need to be tuned 
together for optimum performance. There are two strategies typically used when choosing a 
combination of hyperparameters: 
 

 Grid search: The hyperparameters are plotted on a matrix and the combination 

that gets the best performance is selected for the model that is deployed in the 

real scenario. With grid search, the number of iterations to the yield ratio is 

poor.  
 Random search: In the case of random search, the hyperparameter values are 

selected at random. In this case, with the same number of iterations as the grid 

search, there is a better chance of reaching the optimum values for the 

hyperparameters. The difference between grid search and random search can 

be depicted with the diagram as follows:  
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A variation of the random search technique can be deployed in order to reduce the number 
of iterations through the search space. The technique is broadly categorized as Coarse to 
Fine search. In this case, the random search is run for a few iterations and once a region 
with higher optimization combination is identified, the search space is limited to a smaller 
zone of hyperparameter values. With this technique, the search is confined to a region and 
hence optimized. The coarse-to-fine technique can be visualized as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

During initial search iterations, the entire space is searched. As the optimum 
hyperparameter values are found, the search space is restricted to a fine zone. With this, 
the hyperparameters are finely tuned with a relatively smaller number of iterations. With 
these techniques for searching for the right set of hyperparameters, let's now look at some 
of the most commonly used hyperparameters with deep neural networks. 
 

 

Learning rate 
 
In the Gradient-based learning section of this chapter, we established the equations for weight 
and bias updates for the deep neural network as follows:  
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In these equations, the learning rate is denoted by . The learning rate for the gradient 
descent algorithm defines the size of the step that algorithm takes with each training set 
instance. If the learning rate is too high, the average loss across the gradient descent 
steps will be high. In this case, the algorithm may miss the global minima. An extremely 
low learning rate will result in slow convergence, as depicted in this diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If there is an opportunity to tune only one hyperparameter, this parameter needs to be 
tuned. As a standard, the value of the learning rate needs to be less than 1 and greater than 

10-6. Another widely used strategy with the learning rate is to adapt to a decreasing 
learning rate with time (training iterations). During the initial iterations, the learning rate is 
kept constant and once the model is close to convergence (when the change in the value of 
loss function degrades to a minimum), the learning rate is modified with a small fraction of 
the original learning rate. Typically, a 0.001 fraction of the initial learning rate is 
recommended for optimum convergence to global minima. Another strategy for quicker 
convergence using parallel processing and train with mini batches. These batches 
independently tune the learning rate hyperparameter with small batches defined by a factor 
between 1 and 100. When the mini batch factor is 1, the algorithm behaves as the gradient 
descent algorithm. As an example, when the factor value is 20, the training data samples are 
at 5% and are distributed for independent tuning of the learning rate, . 
 

 

Number of training iterations 
 
This hyperparameter is useful for avoiding overfitting. As the model converges (the loss 
function value plateaus at a point and does not change with epochs), it tends to overfit the 
training data and moves towards a non-generalized zone in which the test samples do not 
perform as well as the training data. Setting the number of training iterations carefully 
around the plateau region ensures early stopping and hence a robust model that 
generalizes well. 
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While the hyperparameters are tuned and their effect on the overall cost function is 
evaluated, the early stopping can be disabled. However, once all the other hyperparameters 
are fully tuned, we can dynamically set the number of training iterations based on the 
plateau region for the loss function. 
 

Stopping immediately after convergence is not a good strategy. It is 
recommended to continue the iterations for about 10% of the total epochs 
that resulted in near convergence. Controlling the number of training 
iterations is a good strategy to reduce the computation requirement for the 
model. 

 

 

Number of hidden units 
 
The performance of the deep neural network can be tweaked by selecting and changing the 

number of hidden units, nh, in each of the layers. As a general guideline, it is recommended 

to select a larger-than-required nh value initially. This ensures enough generalization for the 

network. However, the higher the value of nh, the greater the computational requirement 
for training the deep neural network. This hyperparameter can also be tuned at the level of 

a layer. Each individual layer can have a different and optimal value for nh based on the 
results from multiple iterations on the test data. In such cases, the first layer that is 
connected to the input layer is recommended to be overcomplete (having more nodes than 
the optimum value). This strategy helps to generalize the data better than having a lean first 
layer and more populated layers toward the output layer. 
 

 

Number of epochs 
 
One iteration through the entire dataset forward and backward in the deep neural network 
is called as an epoch. With each epoch, the network typically uses a backpropagation 
algorithm to adjust weights and biases. It is important to choose the right number of epochs. 
If the number of epochs is too high, the network will potentially overfit the data and not 
generalize on the new set of input. 
 

If the number of epochs is too low, the network will underfit the data and will not perform 
well, even on the training data. There is no rule of thumb for selecting the number of 
epochs for a deep neural network. The number depends on the diversity of the dataset and 
the volume of the data. A recommended strategy is to start with a high number of epochs, 
and once the loss function does not vary significantly between multiple epochs, the training 
can be stopped. 
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Experimenting with hyperparameters 

with Deeplearning4j 
 
Let's build a simple neural network to demonstrate the effects of various hyperparameters 
on model performance. We will create a simple neural network that can add two numbers 
based on the randomly generated training data. The training data has two independent 
variables, x1 and x2, and an output variable, y1 = x1 + x2. Here is a pictorial view of the 
network we will generate with the deeplearning4j library:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Here is the utility code for generating the sample data: x1 and x2 as the input 

independent variables, and y as the output (dependent) variable: 
 

// Method to generate the training data based on batch size passed as 
parameter 

 
private static DataSetIterator generateTrainingData(int batchSize, 

Random rand){ 

 
// container for the sum (output variable) 

double [] sum = new double[nSamples]; 
 

// container for the first input variable 
x1 double [] input1 = new double[nSamples]; 

 
//container for the second input variable 

x2 double [] input2 = new double[nSamples]; 
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// for set size of the sample in configuration, generate random  
// numbers and fill the containers  
for (int i= 0; i< nSamples; i++) {  

input1[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) * 

rand.nextDouble();  
input2[i] = MIN_RANGE + (MAX_RANGE - MIN_RANGE) * 

rand.nextDouble();  
// fill the dependent variable y 
sum[i] = input1[i] + input2[i];  

}  
// Format in the deeplearning4j data structure  
INDArray inputNDArray1 = Nd4j.create(input1, new 

int[]{nSamples,1}); INDArray inputNDArray2 = Nd4j.create(input2, 

new int[]{nSamples,1}); INDArray inputNDArray = 

Nd4j.hstack(inputNDArray1,inputNDArray2); INDArray outPut = 

Nd4j.create(sum, new int[]{nSamples, 1}); DataSet dataSet = new 

DataSet(inputNDArray, outPut); List<DataSet> listDs = 

dataSet.asList(); Collections.shuffle(listDs,rand);  
return new ListDataSetIterator(listDs,batchSize);  

} 

 

Here is the code for the method that generates the multi-layer neural network 
with configurable hyperparameters: 
 

/** Method for generating a multi-layer network  
* @param numHidden - the int value denoting number of nodes in the hidden 
unit  
* @param iterations - number of iterations per mini-batch  
* @param learningRate - The step size of the gradient descent algorithm  
* @param numEpochs - number of full passes through the data 

 
* @param trainingDataIterator - the iterator through the 
randomly generated training data  
* @return the model object (MultiLayerNetwork)  
* */  
private static MultiLayerNetwork generateModel(int numHidden, 

int iterations, double learningRate, int numEpochs, 

DataSetIterator trainingDataIterator ) { 

 
int numInput = 2; // using two nodes in the input layer 

int numOutput = 1; // using one node in the output layer 

MultiLayerNetwork net = new MultiLayerNetwork(new  
NeuralNetConfiguration.Builder()  

.seed(SEED)  

.iterations(iterations)  
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)  

.learningRate(learningRate)  

.weightInit(WeightInit.XAVIER)  

.updater(Updater.NESTEROVS) 
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.list()  
.layer(0, new DenseLayer.Builder().nIn(numInput).nOut(numHidden)  

.activation(Activation.TANH)  

.build())  
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.MSE)  

.activation(Activation.IDENTITY)  

.nIn(numHidden).nOut(numOutput).build())  
.pretrain(false).backprop(true).build()  

);  
net.init();  
net.setListeners(new ScoreIterationListener(1)); 

 
//Train the network on the full dataset, and evaluate in 

periodically double startTime = System.currentTimeMillis();  
for( int i=0; i<nEpochs; i++ ){  

trainingDataIterator.reset();  
net.fit(trainingDataIterator);  

}  
double endTime = System.currentTimeMillis(); 

System.out.println("Model Training Time = " + (endTime - 

startTime)); return net;  
} 

 

This model can be tested by passing different values of the hyperparameters, as follows: 
 

public static void main(String[] args){ 

 
//Generate the training data  
DataSetIterator iterator =  

generateTrainingData(batchSize,randomNumberGenerator); 

 
// Test 1: ------------------------------------------------------ 

 
//Set the values of 

hyperparameters int nHidden = 10;  
int iterations = 1; 

 
double learningRate = 0.01; 

int nEpochs = 200; 
 

double startTime = System.currentTimeMillis(); 

MultiLayerNetwork net =  
generateModel(nHidden,iterations,learningRate,nEpochs,iterator); 

 
double endTime = System.currentTimeMillis(); 

double trainingTime = (endTime - startTime); 

 
// Test the addition of 2 numbers  
INDArray input = Nd4j.create(new double[] { 0.6754345, 

0.3333333333333 }, new int[] { 1, 2 });  
INDArray out = net.output(input, false); 
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double actualSum = 0.6754345 + 0.3333333333333; double error = 

actualSum - out.getDouble(0); System.out.println("Hidden Layer 

Count, Iterations, Learning Rate,  
Epoch Count, Time Taken, Error");  

System.out.println(""+nHidden + "," + iterations + "," +  
learningRate + "," + nEpochs + "," + trainingTime + "," + error );  

// ------------------------------------------------------------- 

 

With this code, the output will be printed on the console as follows: 
 

Hidden Layer Count, Iterations, Learning Rate, Epoch Count, Time 

Taken, Error  
------------------------------------------------------------------------  
10,1,0.01,200,11252.0,-3.5079920391032235  
10,1,0.02,200,1,3781.0,-2.8320863346049325  
10,1,0.04,200,1,3152.0,-9.223153362650587  
10,1,0.08,200,1,3520.0,NaN  
5,1,0.01,200,2960.0,-0.725370417017652 

 

Alternatively, the deeplearning4j library provides a visualization interface with the 

UI library. The UI library can be included as Maven dependency, as follows: 
 

<dependency>  
<groupId>org.deeplearning4j</groupId> 

<artifactId>deeplearning4j-ui_2.10</artifactId> 

<version>${dl4j.version}</version> 

</dependency> 

 

The user interface can be quickly enabled by adding the following lines of code: 
 

//Initialize the user interface backend  
static UIServer uiServer = UIServer.getInstance(); 

 
//Configure where the network information (gradients, score vs. time) is 

to be stored.  
static StatsStorage statsStorage = new InMemoryStatsStorage(); 

 
// Once the MultiLayerNetwork object is initialized, register 
the StateStorage instance as a //listener. 

 
net.setListeners(new StatsListener(statsStorage)); 
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With this simple code snippet, the framework enables a UI on port 9000 on the localhost:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The network structure can be visualized with the Model view user interface:  
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Distributed computing 
 
As we have seen in figure 5.1, the performance of the neural network improves with an 
increasing volume of training data. With more and more devices generating data that can 
potentially be used for training and model generation, the models are getting better at 
generalizing the stochastic environment and handling complex tasks. However, with more 
data and more complex structures for the deep neural networks, the computational 
requirements increase. 
 
Even though we have started leveraging GPUs for deep neural network training, the 
vertical scaling of the compute infrastructure has its own limitations and cost implications. 
Leaving the cost implications aside, the time it takes to train a significantly large deep 
neural network on a large set of training data is not reasonable. However, due to the nature 
and network topology of the neural networks, it is possible to distribute the computation on 
multiple machines at the same time and merge the results back with a centralized process. 
This is very similar to Hadoop, as a distributed computing batch processing engine, and 
Spark, as an in-memory distributed computing framework. With deep neural networks, 
there are two approaches for leveraging distributed computing: 
 

 Model Distribution: In this approach, the deep neural network is broken into 

logical fragments that are treated as independent models from a computational 

perspective. The results from these models are combined by a central process, as 

depicted in this diagram:  
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 Data Distribution: In this approach, the entire model is copied to all the nodes 

participating in the cluster and the data is distributed in chunks for processing. 

The master process collects the output from the individual nodes and 

produces the final outcome, shown as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The data distribution approach is very similar to Hadoop's MapReduce framework. 
The MapReduce job creates the input splits based on predefined and run-time 
configuration parameters. These chunks are sent to the independent nodes for 
processing by the map tasks in a parallel manner. 
 
The output from the map tasks is shuffled for relevance (simple sort) and is given as input 
to the reduce tasks for generating intermediate results. The individual MapReduce chunks 
are combined to produce the final result. The data distribution approach is more naturally 
suitable for Hadoop and Spark frameworks and it is a more widely researched approach at 
this time. The deep neural networks that leverage data distribution primarily deploy a 
parameter-averaging strategy for training the model. 
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This is a simple but efficient approach for training a deep neural network with 
data distribution:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Based on these fundamental concepts of distributed processing, let's review some of the 

popular libraries and frameworks that enable parallelized deep neural networks. 
 

 

Distributed deep learning 
 
With an ever-increasing number of data sources and data volumes, it is imperative that 
the deep learning application and research leverages the power of distributed computing 
frameworks. In this section, we will review some of the libraries and frameworks that 
effectively leverage distributed computing. These are popular frameworks based on their 
capabilities, adoption level, and active community support. 
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DL4J and Spark 
 
We have coded the examples in this chapter with deeplearning4j library. The core 
framework of DL4J is designed to work seamlessly with Hadoop (HDFS and MapReduce) 
as well as Spark-based processing. It is easy to integrate DL4J with Spark. DL4J with Spark 
leverages data parallelism by sharding large datasets into manageable chunks and 
training the deep neural networks on each individual node in parallel. Once the models 
produce parameter values (weights and biases), those are iteratively averaged for 
producing the final outcome. 
 
 

API overview 
 
In order to train the deep neural networks on Spark using DL4J, two primary 

wrapper classes need to be used: 
 

 SparkDl4jMultiLayer: A wrapper around DL4J's MultiLayerNetwork  

 SparkComputationGraph: A wrapper around DL4J's ComputationGraph 
 

The network configuration process for the standard, as well as the distributed, 
mode remains same. That means, we configure the network properties by creating 
a MultiLayerConfiguration instance. The workflow for deep learning on Spark with 

DL4J can be depicted as follows:  
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Here are the sample code snippets for the workflow steps: 
 

1. Multilayer network configuration: 
 

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()  
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT ).iterations(1) 

 
.learningRate(0.1)  
.updater(Updater.RMSPROP) //To configure: .updater(new 

RmsProp(0.95))  
.seed(12345)  
.regularization(true).l2(0.001)  
.weightInit(WeightInit.XAVIER)  
.list()  
.layer(0, new  

GravesLSTM.Builder().nIn(nIn).nOut(lstmLayerSize).activation(Activa  
tion.TANH).build())  

.layer(1, new  
GravesLSTM.Builder().nIn(lstmLayerSize).nOut(lstmLayerSize).activat  
ion(Activation.TANH).build())  

.layer(2, new  
RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).activatio  
n(Activation.SOFTMAX) //MCXENT + softmax for classification  

.nIn(lstmLayerSize).nOut(nOut).build())  
.backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttL 

ength).tBPTTBackwardLength(tbpttLength)  
.pretrain(false).backprop(true)  
.build(); 

 

2. Set up the runtime configuration for the distributed training: 
 

ParameterAveragingTrainingMaster tm = new 

ParameterAveragingTrainingMaster.Builder(examplesPerDataSetObject)  
.workerPrefetchNumBatches(2) //Async prefetch 2 

batches for each worker  
.averagingFrequency(averagingFrequency)  
.batchSizePerWorker(examplesPerWorker)  
.build(); 

 

3. Instantiate the Multilayer network on Spark with TrainingMaster: 
 

SparkDl4jMultiLayer sparkNetwork = new SparkDl4jMultiLayer(sc, 

config, tm); 
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4. Load the shardable training data: 
 

public static JavaRDD<DataSet> 

getTrainingData(JavaSparkContext sc) throws IOException {  
List<String> list = getTrainingDatAsList(); // arbitrary 

sample method  
JavaRDD<String> rawStrings = sc.parallelize(list); 

Broadcast<Map<Character, Integer>> bcCharToInt =  
sc.broadcast(CHAR_TO_INT);  

return rawStrings.map(new StringToDataSetFn(bcCharToInt));  
} 

 

5. Train the deep neural network: 
 

sparkNetwork.fit(trainingData); 

 

6. Package the Spark application as a .jar file: 
 

mvn package 

 

7. Submit the application to Spark runtime: 
 

spark-submit --class <<fully qualified class name>> --num-executors 

3 ./<<jar_name>>-1.0-SNAPSHOT.jar 

 

The DeepLearning4j official website provides extensive documentation for 
running the deep neural networks on Spark: https://deeplearning4j. 

org/spark. 
 
 

 

TensorFlow 
 
TensorFlow is the most popular library created and open sourced by Google. It uses data-
flow graphs for numerical computations and deals with Tensor as the basic building block. 
A Tensor can simply be considered as an n-dimensional matrix. TensorFlow applications 
can be seamlessly deployed across platforms and it can run on GPUs and CPUs, along with 
mobile and embedded devices. TensorFlow is designed as a large-scale distributed training 
that supports new machine learning models, research, and granular-level optimizations. 
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TensorFlow is quick to install and start experimenting with. The latest 
version of TensorFlow can be downloaded from https://www. 
tensorflow.org/. The site also contains extensive documentation 
and tutorials. 

 

 

Keras 
 
Keras is a high-level neural network API, written in Python and capable of running on top 

of TensorFlow. For more information, refer to https://keras.io/. 
 

TensorFlow and Keras hold the top two spots in terms of adoption and mention by 
researchers in scientific papers. The stack ranking of the frameworks and libraries as 
per arxiv.org is as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Source: arXiv (Oct 2017) 
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Frequently asked questions 
 

Q: What is the difference between machine learning and deep learning? 
 
A: Deep learning is a specialized implementation of machine learning as an abstract 
concept. Machine learning algorithms are primarily the functions that draw lines through 
the data points in the case of supervised learning algorithms. The feature space is mapped 
as a multi-dimensional representation. This representation generalizes the datasets and can 
predict the value or the state of the actor for new environment states. Deep learning 
algorithms also model the real-world data within the context. However, they take a layered 
approach in creating the models. Each layer in the network specializes in a specific part of 
the input signal, starting from the high-level, more generic features in the initial layers, to 
the deeper and granular features in the subsequent layers toward the output layer. These 
networks are capable of training themselves based on some of the popular algorithms, 
such as backpropagation. Another difference between deep learning and machine learning 
is the performance with respect to the addition of data. As seen in figure 5.1, the machine 
learning algorithms plateau at a certain data volume threshold. However, the deep 
learning algorithms keep improving with the addition of training data. Typically, deep 
learning algorithms need more time and computation power to train compared to the 
traditional machine learning models. 
 

Q: What is the difference between epoch, batch size, and iterations for a deep 

neural network? 
 
A: We come across these terminologies when the data size is high. An epoch is one forward 
and backward pass through the entire training dataset. In most of the real-world scenarios, 
the training dataset is so high that it is computationally very difficult to pass the entire data 
through one epoch. In order to make the training through the deep neural network 
computationally feasible, the entire dataset is divided into training batches. The number of 
training examples in one batch is called the batch size. The number of batches to complete 
one epoch is called an iteration. For example, if the training data size is 10,000 and the 
batch size is 2,000, one epoch will be completed in five iterations. 
 

Q: Why do we need non-linear activation functions in deep neural networks? 
 
A: Within the real-world, stochastic environments, and feature spaces, nonlinearities are 
more common than linear relationships. The neural networks learn by learning about the 
features with a layered structure where each layer stores a specific feature set from the 
training data. With a linear activation function applied at all the nodes within different 
layers, the linearity can be aggregated in one layer and there is no point in having a multi-
layered network. Without a multilayered network, it is not possible to model the stochastic 
input and generalize the model. 
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Q: How do we measure the performance of a deep neural network? 
 

A: As a general principle, the performance of the deep neural network is a factor of how 
well it is able to generalize the real-world data once the network is deployed in production 
use. There are times when the model performs very well on the training data but does not 
perform well on the test data due to overfitting. While there are many parameters on which 
the deep neural network needs to be evaluated, three primary metrics help us in 
understanding the model performance at a broad level: 
 

 Receiver operating curve (ROC): Based on the predicted data points, this is a 

plot between the false positive rate on the x axis and the true positive rate on the 

y axis. Typically, the ROC curve takes the following shape when plotted with a 

test with perfect discrimination. The closer the curve stays to the upper-left 

corner, the greater the accuracy and hence the performance of the network:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Precision and recall: Precision defines the ratio of the number of correct 

classifications to the total number of training input. This is a general indication of 

how often the model is correct. Recall measures the utility of the model within 

the search space in terms of finding the correct output. These scores are always 

seen in combination and they constitute the F1 score for the model. If one of 

these parameters is low, the overall F1 score is also low. 
 

Q: What are some of the implementation areas of deep neural networks? 
 

A: Deep learning can be applied in variety of fields, such as automatic speech recognition, 
image recognition, natural language processing, medical image processing, 
recommendation systems, and bioinformatics. 
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Summary 
 
In this chapter, we took our understanding of the ANNs further, to the deep neural 
networks that contain more than one, and up to hundreds and thousands of, hidden layers. 
The learning based on these deep neural networks is called deep learning. Deep learning is 
evolving as one of the most popular algorithms for solving some of the extremely complex 
problems within a stochastic environment. We have established the fundamental theory 
behind the working of deep neural networks and looked at the building blocks of gradient 
based-learning, backpropagation, nonlinearities, and the regularization technique- 
dropout. We have also reviewed some of the specialized neural network architecture's 
CNNs and RNNs. 
 
We have also studied practical approaches for building data preparation pipelines and 
looked at the examples of applying regularization using the Weka library along with the 
DataVec library. We have studied some practical approaches for implementing neural 
network architectures. We have also reviewed a set of hyperparameters that affect the 
performance of the deep neural networks, and defined best practices for tuning those 
hyperparameters. 
 
We experimented with the deeplearning4j library to demonstrate hyperparameter tuning 
and how to visualize the neural network with the deeplearning4j UI library. The deep 
neural networks are computationally heavy and hence need more processing power as we 
we add more data, and consequently more hidden layers and nodes within each hidden 
unit. It is imperative that we leverage the distributed computing frameworks for deep 
learning. We reviewed some of the basics of distributed computing and how to integrate 
deeplearning4j with Spark. 
 

In the next chapter, we are going to transform from the area of artificial intelligence to 
Machine Learning. We will understand the basics of NLP, along with the mathematical 
intuition and practical guidelines with the implementation of NLP-based systems. 
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 
Natural Language Processing 

 
 

Machine learning, or artificial intelligence, is based on data that can be structured or 
unstructured. Natural language processing (NLP) is an area of algorithms that is focused 
on processing unstructured data. This chapter is focused on unstructured data with a 
natural language text format. Organizations always have large corpuses of unstructured 
text data, either in the form of word documents, PDFs, email body, or web documents. With 
advances in technology, organizations have started relying on large volumes of text 
information. For example, a legal firm has lots of information in the form of bond papers, 
legal agreements, court orders, law documents, and so on. Such information assets are 
made up of textual information that is domain-specific (legal in this case). It is imperative 
that in order to utilize these valuable textual assets, and convert the information into 
knowledge, we require intelligent machines to be able to understand the text as-is, without 
any human intervention. NLP for big data uses tons of text data from various sources to 
determine relationships and patterns across contents received from those sources. It helps in 
identifying trends which will be utilized in use cases like recommendation engines. This 
chapter introduces the basic concepts behind NLP with practical examples. 
 
We can divide NLP into two types of approaches, supervised NLP and unsupervised NLP. 
The supervised learning NLP approach involves using supervised learning algorithms such 
as Naive Bayes and Random Forests. In these algorithms, models are created based on the 
predicted output given to them for training an input set. That means supervised learning 
approaches are not self-learning but they train and fine-tune models based on the target 
output provided to them. Unsupervised learning algorithms do not rely on the fact that the 
target output is provided to them for model training. They draw deductions from input 
records given to them as a result of multiple iterations over data learning from the output 
of previous iterations, and tuning weights and parameters to optimize results. Recurrent 
neural nets (RNN) is one of the common unsupervised learning algorithms used in natural 
language processing. We will explore all these techniques in this chapter. 
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Overall, we will cover the following topics: 
 

 Natural language processing basics  
 Text preprocessing  
 Feature extraction  
 Applying NLP techniques  
 Implementing sentiment analysis 

 

 

Natural language processing basics 
 
Before we state some of the high-level steps involved in NLP, it is important to establish a 
definition of NLP. In simple terms, NLP is a collection of processes, algorithms, and tools 
used by intelligent systems to interpret text data written in human language for actionable 
insights. The mention of text data makes one fact about NLP very evident. NLP is all about 
interpreting unstructured data. NLP organizes unstructured text data and uses 
sophisticated methods to solve a plethora of problems, such as sentiment analysis, 
document classification, and text summarization. In this section, we will talk about some 
of the basic steps involved in NLP. 
 

In the subsequent sections, we will take a deep dive into those steps. The following diagram 
represents some of the basics hierarchical steps involved in NLP:  
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Let us look at each of these steps briefly: 
 

 Type of machine learning: NLP can be performed either using supervised 

learning algorithms or as unsupervised learning algorithms. Supervised learning 

algorithms include Naive Bayes, SVM, and Random Forest. Unsupervised 

learning algorithms include Feed Forward Neural Networks (Multi Layer 

Perceptron) and Recurrent Neural Network (RNN). One important thing to note 

here is that the preprocessing and feature-extraction steps are same for both 

classes of algorithms. What differs is how you train your model. Supervised 

learning requires labeled output as their input, and unsupervised learning would 

predict the outcome without any labeled output.  
 Tex preprocessing: This step is required because raw natural text cannot be used 

in NLP systems. This will result in bad or not-very-accurate output. Some of the 

common text preprocessing steps are removing stop words, replacing capital 

letter words, and removing special characters. Another common step in text 

preprocessing is part of-speech tagging, which is also called annotation. Text 

normalization in the form of stemming and lemmatization is also applied.  
 Feature extraction: For any ML algorithm to work on text, these texts have to be 

converted into some form of numerical input. Feature extraction employs 

common techniques of converting input text to numerical input in the form of 

vectors.  
 Model training: Model training is process of establishing or finding a 

mathematical function that can be used to predict the outcome based on the given 

input. The process of finding a function involves multiple iterations and 

parameter tuning.  
 Model verification: This step is the process of verifying models resulting from 

the model training process. Generally, you divide your training dataset into an 

80:20 ratio. 80% of data is used for model training and 20% of the data is used for 

validating the correctness of the model. In the case of discrepancies, you fine-

tune your model creation steps and re-run the validations. 
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 Model deployment and APIs: After the models have been verified, you deploy 

your models so that they can be used to predict the outcomes in the context of 

enterprise applications. You can save these models on a storage location where 

they can be read in-memory and can be applied to a dataset to predict its 

outcome. In distributed processing, they are generally saved in a Hadoop-

distributed file system so that Hadoop batch processes can read and apply those 

models. In the case of web applications, they are stored in the form of Python 

pickle files, and these pickle files are read and processed upon each prediction 

request. Although, for applications to use this, you would require API layers to 

be exposed on top of it. These API layers can be restful APIs or come in the form 

of packaged jars deployed to the location where applications are hosted. Once the 

APIs are exposed, they can be used by a variety of web applications, mobile 

applications, or analytics or BI engines. 
 

 

Text preprocessing 
 
Preprocessing the data is the process of cleaning and preparing the text for classification 
and derivation of meaning. Since our data may have a lot of noise, uninformative parts, 
such as HTML tags, need to be eliminated or re-aligned. At the word level, there might be 
many words that do not make much impact on the overall semantic of the textual context. 
Text preprocessing involves a few steps, such as extraction, tokenization, stop words 
removal, text enrichment, and normalization with stemming and lemmatization. In addition 
to these, some of the basic and generic techniques that improve accuracy involve converting 
the text to lower case, removing numbers (based on the context), removing punctuation, 
stripping white spaces (sometimes these add to noise in the input signal), and eliminating 
the sparse terms that are infrequent terms in the document. In the subsequent sections, we'll 
analyze some of these techniques in detail. 
 

 

Removing stop words 
 
Stop words are words that occur more frequently in the sentence and make the text heavier 
and less important for the analysis, they should be excluded from the input. Having stop 
words in your text confuses your algorithm as these stop words do not have contextual 
meaning and increase dimensional features of your term vectors. Therefore, it is imperative 
that these stop words be removed for better model accuracy. Examples of stop words are I, 
am, is, and the. One of the ways to remove the stop words is to have a precompiled list of 
the stop words and then remove those stop words from the document (text used to train the 
model). 
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With Spark, we can use the StopWordsRemover library, which has its 
own list of default stop words for many natural languages. We can also 
provide a list of stop words with the stopWords parameter. Another way 
to remove the less significant words from the document is based on their 
frequency of occurrence; if the word's frequency is low, we can remove 
those words, this is also known as pruning. 

 

Here is a sample code for using the Spark library. With this library, the process of stop 
words removal is parallelized and we can quickly perform a stop words removal on a large 
volume of data in a distributed manner: 
 

import java.util.Arrays;  
import java.util.List; 

 
import org.apache.spark.ml.feature.StopWordsRemover; 

import org.apache.spark.sql.Dataset;  
import org.apache.spark.sql.Row; import 

org.apache.spark.sql.RowFactory; import 

org.apache.spark.sql.types.DataTypes; import 

org.apache.spark.sql.types.Metadata; import 

org.apache.spark.sql.types.StructField; 

import org.apache.spark.sql.types.StructType; 

 
StopWordsRemover remover = new StopWordsRemover()  

.setInputCol("raw")  

.setOutputCol("filtered"); 

 
List<Row> data = Arrays.asList(  

RowFactory.create(Arrays.asList("I", "am", "removing", "the", "stop",  
"words")),  

RowFactory.create(Arrays.asList("from", "a", "large", "volume",  
"of","data"))  
); 

 
StructType schema = new StructType(new 

StructField[]{ new StructField(  
"raw", DataTypes.createArrayType(DataTypes.StringType), 

false, Metadata.empty())  
}); 

 
Dataset<Row> dataset = spark.createDataFrame(data, schema); 

remover.transform(dataset).show(false); 
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Stemming 
 
Different forms of a word often communicate essentially the same meaning. Consider an 
example of a search engine when a user searches shoe or when they search for shoes. The 
intent of the user is the same and the search result is still going to be shoes from different 
brands. But the presence of both words can confuse models. So for better accuracy, we 
need to convert these different forms of the word in its row format. Stemming is 
converting a word in a text into its raw format. For example, introduction, introduced, and 
introducing all turn into introduce after stemming. The purpose of this method is to 
remove various suffixes, to reduce the number of words. Also, this helps the model to 
avoid confusion while getting trained. Many stemming algorithms are available, such as 
porter stemming, snowball stemming, and Lancaster stemming. Most of the stemming 
algorithms in the following sections are available in multiple natural languages. 
 
 

Porter stemming 
 
Porter stemming is one form of the stemming algorithm that removes suffixes from base 
words or terms in the English dictionary. The whole purpose of Porter Stemmer is to 
improve the performance of the NLP model training exercise. It does so by removing 
suffixes from a word and bringing it to its base form. This way, the number of terms is 
reduced and the memory footprint and complexity of your term space is also minimized. 
Porter is not dictionary-based. It does not use any stem dictionary to identify suffixes that 
need to be removed. It is based on a set of generic rules. Some people see this as a 
drawback as its working is pretty straightforward and does not take care of the lower-level 
contextual nitty-gritty of English words. Porter stemming is used for its simplicity and 
speed. Porter stemming has five steps that are applied on the word until one of them 
satisfies. For example, consider step 1 in porter stemming, which is as explained in the 
following blocks: 
 

SSESS -> SS - This rule converts SSESS suffix of the word into SS. 

For example, prepossess - > preposs 
 

IES -> I - This rule converts IES suffix of the word into I. 

For example, ties -> ti 
 

SS -> SS - If the word has SS as suffix this won’t change. 

For example, Success -> Success 
 

S -> - If the word has S as suffix this would remove the suffix. 

For example, Pens -> Pen 
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Please refer to http://www.cs.toronto.edu/~frank/csc2501/Readings/ 

R2_Porter/Porter-1980.pdf for a detailed explanation of the 

porter stemming algorithm. 
 
 

 

Snowball stemming 
 
This is also known as Porter2. The Porter2 algorithm is implemented as the English 
Stemmer (based on Snowball). This algorithm was developed as a framework to use for 
languages other than English. This is better in accuracy than porter algorithms. The 
snowball rule example is given as follows: 
 

ied or ies -> replace by i if preceded by more than one letter, otherwise 

by ie.  
ties -> tie,  
cries -> cri  
So as we can see with porter ties we stemmed into ti whereas with snowball 

it becomes tie. 

 

For more details, refer to http://snowballstem.org/algorithms/ 

english/stemmer.html. 
 
 
 

 

Lancaster stemming 
 
A very aggressive stemming algorithm, sometimes to a fault. With porter and snowball, the 
stemmed representations are usually fairly intuitive to a reader, not so with Lancaster, as 
many shorter words will become totally obfuscated. The fastest algorithm here, it will 
greatly reduce your working set of words, but if you want more distinction, this is not the 
tool to use. The Lancaster rule example is given in the following block: 
 

ies -> y - This rule converts ies suffix of the word into y.  
cries -> cry  
So with Lancaster stemming as we see cries stemmed into cry which 

more better stemmed. 
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Lovins stemming 
 
In 1968, Lovins JB published this stemming algorithm. The approach taken by Lovins is bit 
different, but it does start with removing suffixes from the word. It comes to the conclusion 
in a two-step process. It first removes the longest possible suffix from a word. It is a single-
pass algorithm that removes the single largest suffix from a word. Secondly, it applies set of 
rules on the resulting longest suffix to transform it into a word. This algorithm is rules- and 
dictionary-based. It is faster and usually is less memory intensive. It is able to convert 
words such as getting into get or words such as mice to mouse. Sometimes this algorithm 
can be inaccurate due to many suffixes not available in its dictionary. Moreover, it 
frequently fails to form a word from a stemmed word or even if a word is formed, it may 
not have the same meaning as the original word. 
 
 

Dawson stemming 
 
This stemmer extends the same approach as the Lovins stemmer with a list of more than a 
thousand suffixes in the English language. Here is the generic algorithm for the Dawson 
stemmer: 
 

1. Get the input word  
2. Get the matching suffix  

2a. The suffix pool is reverse indexed by length  
2b. The suffix pool is reverse indexed by the last character  

3. Remove longest suffix from the word with exact match.  
4. Recode the word using a mapping table  
5. Convert stem into a valid word. 

 

The advantages of the Dawson stemmer are as follows: 
 

 It covers a wider range of suffixes and hence produces a more accurate stemming 

output  
 It is a single-pass algorithm, which makes it efficient 
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Lemmatization 
 
Lemmatization is a bit different from stemming. Stemming generally removes end 
characters from a word with the expectation that they will get the correct base word. 
However, sometimes it results in removing suffixes that add meaning to a word. 
Lemmatization tries to overcome this limitation of stemming. It tries to find out the base 
form of the word, called the lemma, based on a vocabulary of words that it has and a 
morphological analysis on words. It uses the WordNet lexical knowledge dictionary to 
get the correct base form of a word. However, this has its limitation as well, for example, 
it requires part-of-speech tagging otherwise it will treat everything as a noun. 
 

 

N-grams 
 
N-gram is a continuous sequence of N-words or tokens in a given sentence or continuous 
sequence of text. N is defined as an integer value starting from 1. So, N-Gram could be 
Uni-Gram(N=1), Bi-Gram(N=3) or Tri-Gram(N=3). N-gram algorithms or programs 
identify all continuous adjacent sequences of words in a given sentence tokens. It is a 
Windows-based functionality starting from the left-most word position and then moving 
windows by one step. Let's see it with an example sentence, This is Big Data AI Book. See 
the following example of Uni-Gram, Bi-Gram, and Tri-Gram examples:  
 
 
 
 
 
 
 
 
 
 
 

 

N-grams is used for developing efficient features that are passed to supervised machine 
learning models, such as SVMs and Naive Bayes, for training and prediction. The idea is 
to use tokens, such as Bi-Grams, instead of just Uni-Grams so that these machine learning 
models can learn efficiently. 
 
 
 
 
 
 
 
 

[170]  



Natural Language Processing Chapter 6  

 

Using N-grams tends to capture the context in which words are used together in a given 
document. As shown in the previous example, Tri-Grams can give your machine learning 
algorithm more context so that the next set of words can be predicted better. However, 
what should be the optimal value of N, is something that needs to be determined based on 
your dataset and after doing sufficient data exploration and analysis. A larger value of N 
does not always mean a better result. You should make very informed decisions about the 
value of N. 
 

 

Feature extraction 
 
As mentioned earlier in this chapter, the NLP system does not understand string values. 
They need numerical input to build models, sometimes they are also called numerical 
features. Feature extraction in NLP is converting a set of text information into a set of 
numerical features. Any machine learning algorithm that you are going to train would 
need features in numerical vector forms as it does not understand the string. There are 
many ways text can be represented as numerical vectors. Some such ways are One hot 
encoding, TF-IDF, Word2Vec, and CountVectorizer. 
 

 

One hot encoding 
 
One hot encoding is the binary sparse vector representation of text. In this encoding, the 
resulting binary vector is all zero-value except at the position or index of the token where 
it is one. Let's look at it with an example. Suppose there are two sentences: This is Big  
Data AI Book. This is book explains AI algorithms on Big Data. Unique 

tokens (nouns) for earlier sentences would be {data,AI,book,algorithms}. The one 

hot encoding representation for these tokens would be like the following:  
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The Encoded Sparse Vector Representation would look like the following:  
 
 
 
 
 
 
 
 
 

TF-IDF 
 
The TF-IDF method of feature extraction uses a scalar product of term frequency (TF) and 
inverse document frequency (IDF) to calculate the numerical vector of a token or term. TF-
IDF not only calculates the importance of a word in a specific document but also measures 
its importance in other documents of a corpus. Moreover, it tries to normalize any word 
that is overly frequent in the entire corpus. 
 

TF, or Term Frequency, is a term’s occurrence in a document. We can use the 

HashingTF library in Spark to compute the term's frequency. HashingTF creates the 
sparse vector corresponding to each document representing index and frequency. For 
example, if we consider the extraction of the feature using HashingTF 

extraction method text string, then the TF of every word in the earlier document 
using HashingTF would be the following:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TF Using HashingTF 
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The output of HashingTF:  
 
 
 
 
 
 
 

 

In the preceding screenshot, we can see the first array is the extracted features from the 
document, and the second array is the Array[SparseVector], which represents the index 
and frequency. For an instance, the extraction word occurs twice in the document so we 

can see the frequency of the word is 2. With HashingTF, tokenized word array may not be 
in the same sequence as the vector array. 
 
TF measures the importance of a word in a particular document only and not with respect 
to the entire corpus of documents. Moreover, overly frequent words in a large document 
may not be that important with respect to the entire corpus. This can hamper the prediction 
output as words that appear less frequently may be of higher importance with respect to the 
entire corpus. This is where IDF comes into the picture; it represents the inverse of the share 
of the documents in which the regarded term can be found. The lower the number of 
containing documents relative to the size of the corpus, the higher the factor. The reason 
why this ratio is not used directly but instead its logarithm, is because otherwise the 
effective scoring penalty of showing up in two documents would be too extreme. The 
following is the sample example on how to calculate TF-IDF together:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Code to calculate IDF 
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The IDF code output is as follows:  
 
 
 
 
 
 
 
 

The goal of TF-IDF is to find words of higher relevance. The algorithm keeps track of the 
local relevance of a word in a document using TF calculations and the global relevance of a 
word in the entire training corpus using IDF calculations. Finally, both the calculations are 
multiplied to get the final weights of a word. However, we encourage you to get a feel for 
how this can be applied to your NLP system as TF-IDF ranking behavior may not give 
relevant results in your use case. You can apply multiple adjustments to the corpus to get 
the desired behavior. The following is the mathematical formula for TF-IDF: 
 

The formula to calculate Term Frequency (TF)  
 
 
 
 
 

 

Where  is the term or word in a document, .  is the count of term, , in a document, 

.  is the count of all terms in a document. 
 

The formula to calculate Inverse Document Frequency (IDF):  
 
 

 

Where  is term frequency in a document and  is the total number of documents in a 

corpus. 
 

The TF-IDF weight formula is:  
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CountVectorizer 
 
CountVectorizer and CountVectorizerModel works on count of words(tokens). It uses words 

in text documents to build vectors containing count of tokens. It has provisions of using 
dictionary of words to identify tokens that can be taken as input to algorithms. If dictionary is 

not available CountVectorizer uses its own estimator to build the vocabulary. Based on that 
vocabulary it generates CountVectorizerModel, a sparse representations of training 
documents. This model acts as input to NLP algorithms like LDA. 
 
CountVectorizer counts the word frequencies for the document, whereas TF-IDF gives us 
the importance of the word with regards to the whole corpus. CountVectorizer is one of the 
tools used to convert the text to a vector that can passed as a feature to the machine learning 
model. Similar to TF-IDF, this model also produces sparse representations for the 
documents over the vocabulary. For example, if we consider the extraction of the 

feature using countvectorizer extraction method text string, then the output 

would look something like this:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Code to calculate CountVectors 

 

The output of the CountVector code:  
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We can see in the earlier example that the first words array is the extracted features from 
the document, similar to TF-IDF, but the second features array is the 
Array[SparseVector], which represents the index and word frequency that is ordered 
from highest to lowest. Also, here 3 is the vocabulary size, which means 
CountVectorizer picks and is equal to the distinct words in the document, which is 3 in 
our case. You can customize this in Spark. 
 

 

Word2Vec 
 
In a typical feature extraction from text, numerical vectors are created based on unique 
labels given to them. However, these uniquely-labeled sparse vectors do not represent the 
context in which each word has appeared. In other words, it does not specifically state or 
represent the relationship a given word exhibits with other words in a corpus. That means 
unsupervised learning algorithms that learn from data processing cannot be leveraged 
much. These algorithms cannot leverage relationships or contextual information about the 
word. Therefore, a new class of algorithms for feature extraction is developed that preserves 
the context or relationship information among words. This new class of algorithms is called 
Word-Embedding feature-extraction algorithms. These classes of algorithms represent 
sparse vectors into continuous vector space models (VSM). 
 

In VSM, similar words are mapped to nearby points so that they form a cluster of similar 
words. Word2Vec is a predictive method based on word-embedding algorithms that can 
be implemented in two ways, the continuous bag of words model (CBOW) and the Skip-
Gram model. 
 
 

CBOW 
 
Most of the prediction models are based on the words or contexts that have appeared in 
past words. Based on their learning from past words, they predict the next word. CBOW, in 
contrast to this, uses N words before and after the word in question to predict the outcome. 
It uses a continuous representation of a bag of words to predict the outcome. However, 
order is of no significance here. CBOW takes context in the form of a window of words and 
predicts the word. 
 
 
 
 
 
 
 
 

 

[176]  



Natural Language Processing Chapter 6  

 

The following figure represents how CBOW works:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Word2Vec: CBOW 

 

Based on the previous diagram, CBOW can be formalized as:  
 
 
 
 
 
 

The previous formula is based on a window of n words around a target word. t represents the 

time step. The word window spans across the previous words and the next words. 
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Skip-Gram model 
 
The Skip-Gram model works opposite of the CBOW model. It predicts the context based on 
the current word. In other words, it uses a central world to predict words appearing before 
and after the main word. The following figure represents the Skip-Gram model:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Word2Vec: Skip-Gram Model 

 

Based on the previous diagram, Skip-Gram can be formalized as:  
 
 
 
 
 

 

The skip-gram model calculates and sums up the logarithmic probabilities of the 
previous and next, n, words surrounding the target word, . 
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The following is code to calculate Word2Vec using the Skip-Gram model in Spark:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Word2Vec: Skip-Gram code in Spark 

 

The Word2Vec Skip-Gram Spark code output is as follows:  
 
 
 
 
 
 
 

 

Applying NLP techniques 
 
Generally, for any class of NLP problems, you first apply text preprocessing and feature 
extraction techniques. Once you have reduced the noise in the text and are able to extract 
features out of text, you perform various machine learning algorithms to solve different 
NLP classes of NLP problems. In this section, we will cover one such problem, called text 
classification. 
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Text classification 
 
Text classification is one of the very common use cases of NLP. Text classification can be 
used for use cases such as email SPAM detection, identifying retail product hierarchy, and 
sentiment analysis. This process is typically a classification problem wherein we are trying 
to identify a specific topic from a natural language source of a large volume of data. Within 
each of the data groups, we may have multiple topics discussed and hence it is important 
to classify the article or the textual information into logical groups. Text classification 
techniques help us to do that. 
 

These techniques require a good deal of computing power if the data volume is huge and it 
is recommended to use a distributed computing framework for text classification. As an 
example, if we want to classify the legal documents that exist in a knowledge repository on 
the internet, we can use text classification techniques for the logical separation of various 
types of documents. The following illustration represents a typical text classification 
process that is done in two phases:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let's now look at how text classification can be performed using Spark. We will divide our 
code into four parts: text preprocessing, feature extraction, model training/verification, and 
prediction. We will use the Naive Bayes' algorithm for model training and prediction. But 
before we deep dive into the code, let's walk you through how NB works. We will also give 
you a brief overview of another algorithm, Random Forest, which can be used in text 
classification. 
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Introduction to Naive Bayes' algorithm 
 
The Naive Bayes (NB) classifier is a very powerful algorithm for the classification task. NB is 

very good in cases where we use natural language processing for text analytics. As with the 

name, Naive means independent or no relation, and the NB algorithm assumes that there is no 

relation between features. As its name suggests, it works on Bayes' theorem. 
 

So what is Bayes' theorem? Bayes' theorem finds out the probability of an event in the 
future based on events that have already occurred. This type of probability is also called 
conditional probability. This probability is context-based and context is determined by a 
knowledge of events that have already occurred. 
 

The following is mathematical expression of Bayes' theorem:  
 
 
 

 

For any given two events, A and B, Bayes’ theorem calculates P(A|B) (the probability 
of event A occurring when event B has happened) from P(B|A) (the probability of 

event B occurring, given that event A has already occurred). 
 

Naive Bayes tries to classify data points into classes. It calculates the probability of 
each data point belonging to a class. Then each of the probabilities are compared to get 
the highest probability, and the second highest probability is determined. 
 
The highest probability class is considered the primary class, and the second highest 
probability is considered the secondary class. When you have multiple classes - for 
example, suppose we are classifying fruits as either apple, banana, orange, or mango, then 
we have more than two classes where we are classifying a fruit - it is known as MultiNomial 
Naive Bayes, and if we would have only two classes - for example, email as either spam or 
non-spam - it would be Binomial MultiNomial Naive Bayes. The NB algorithm would be 
clearer with the following example: 
 

A pathology lab is performing a test of a disease, D, with two results, Positive or Negative. They 

guarantee that their test result is 99% accurate: if you have the disease, you will test positive 99% of the 

time. If you don’t have the disease, you will test negative 99% of the time. If 3% of all the people have 

this disease and test gives the positive result, what is the probability that you have the disease? 
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For solving the preceding problem, we will have to use conditional probability. The 
following mathematical calculation shows how the NB conditional probability would be 
applied mathematically: 
 

Probability of people suffering from Disease D, P(D) = 0.03 = 3% 

Probability that test gives “positive” result and patient have the disease, 
P(Pos | D) = 0.99 =99%  
Probability of people not suffering from Disease D, P(~D) = 0.97 = 97% 

Probability that test gives “positive” result and patient does have the 
disease, P(Pos | ~D) = 0.01 =1%  
For calculating the probability that the patient actually have the disease 

i.e, P( D | Pos) we will use Bayes theorem:  
P( D | Pos) = (P(Pos | D) * P(D)) / P(Pos)  
We have all the values of numerator but we need to calculate P(Pos):  
P(Pos) = P(D, pos) + P( ~D, pos)  

= P(pos|D)*P(D) + P(pos|~D)*P(~D)  
= 0.99 * 0.03 + 0.01 * 0.97  
= 0.0297 + 0.0097  
= 0.0394  

Let’s calculate, P( D | Pos) = (P(Pos | D) * P(D)) / P(Pos) 
= (0.99 * 0.03) / 0.0394  
= 0.753807107 

 

The preceding example shows that there is approximately a 75% chance of a patient having 
the disease. 
 
 

Random Forest 
 
Random Forest is the class of algorithms that comes under the supervised learning algorithm 
category. It is based on forests of trees, which is similar to decision trees in certain contexts. 
Random Forest algorithms can be used for both classification and regression problems. A 
decision tree gives the set of rules that are used in building models, which can be executed 
against a test dataset for the prediction. In decision trees, we first calculate the root node. To 
calculate the root node, we use information gain. For example, if you want to predict whether 
your friend will accept a job offer or not. You need to feed the training dataset of the offers they 
have accepted to the decision tree. Based on this, the decision tree will come up with a set of 
rules that you will be using in the prediction. So let's say a rule can be if salary > 50K, then your 
friend will accept the offer. A decision tree algorithm can overfit as it is very flexible. To avoid 
this model overfitting in a decision tree, we can perform the pruning. The following is the 
pseudocode for the Random Forest algorithm: 
 

1. Randomly select k features from total m features. Where k << m.  
2. Among the k features, calculate the node, d, using the best split point. 
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3. Split the node into daughter nodes using the best split.  
4. Repeat steps 1 to 3 until l number of nodes has been reached.  
5. Build the forest by repeating steps 1 to 4 for n number times to create n number 

of trees. 
 

Once we have trained the model using the previous steps, for prediction we need to pass 
the test features through all rules created by the different trees in the forest. If we want to 
understand by example, suppose you want to purchase a mobile phone and you have 
decided to ask your friends which phone is best for you. In this case, your friends might ask 
you some random question about the features you like and suggest a suitable phone. Here, 
each friend is the tree, and with the combination of all the friends, we form the forest. 
 

Once you collect the suggestions from your friends (trees, in terms of the Random Forest 
algorithm), you will count which type of phone has the most votes, and you will might 
purchase that one. Similarly, in Random Forest, each tree will predict a different target 
variable that we will sum with respect to that key. The key with the highest count, 
predicted by the maximum number of trees, is the final target variable. 
 
 

Naive Bayes' text classification code example 
 

The following code represents how to perform text classification using the NB algorithm: 
 

import org.apache.spark.ml.{Pipeline, PipelineModel}  
import org.apache.spark.ml.classification.{NaiveBayes, 

NaiveBayesModel} import org.apache.spark.ml.feature.{StringIndexer, 

StopWordsRemover, HashingTF, Tokenizer, IDF, NGram}  
import org.apache.spark.ml.linalg.Vector 

import org.apache.spark.sql.Row 

 
//Sample Data  
val exampleDF = spark.createDataFrame(Seq( (1,"Samsung 

80 cm 32 inches FH4003 HD Ready LED TV"), (2,"Polaroid 

LEDP040A Full HD 99 cm LED TV Black"), 

(3,"Samsung UA24K4100ARLXL 59 cm 24 inches HD Ready LED TV Black")  
)).toDF("id","description") 

 
exampleDF.show(false) 

 
//Add labels to dataset  
val indexer = new StringIndexer()  

.setInputCol("description")  

.setOutputCol("label") 

 
val tokenizer = new Tokenizer() 
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.setInputCol("description")  
.setOutputCol("words") 

 
val remover = new StopWordsRemover()  

.setCaseSensitive(false)  

.setInputCol(tokenizer.getOutputCol)  

.setOutputCol("filtered") 

 
val bigram = new  
NGram().setN(2).setInputCol(remover.getOutputCol).setOutputCol("ngrams") 

 

 
val hashingTF = new HashingTF()  

.setNumFeatures(1000)  

.setInputCol(bigram.getOutputCol)  

.setOutputCol("features") 

 
val idf = new IDF().setInputCol(hashingTF.getOutputCol).setOutputCol("IDF") 

 
val nb = new NaiveBayes().setModelType("multinomial")  
val pipeline = new  
Pipeline().setStages(Array(indexer,tokenizer,remover,bigram,  
hashingTF,idf,nb))  
val nbmodel = pipeline.fit(exampleDF)  
nbmodel.write.overwrite().save("/tmp/spark-logistic-regression-model") 

 
val evaluationDF = spark.createDataFrame(Seq( 

(1,"Samsung 80 cm 32 inches FH4003 HD Ready LED TV") 

)).toDF("id","description") 

 
val results = nbmodel.transform(evaluationDF)  
results.show(false) 

 

The following screenshot represents the results output:  
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Implementing sentiment analysis 
 
In the following code snippet, we have implemented sentiment analysis based on the NLP 
theory we discussed in this chapter. It uses SPARK libraries on Tweeter JSON records to 
train models for identifying sentiments like happy or unhappy. It looks for keywords like 
happy in the twitter messages and then flags it with value 1 indicating that this 
message represents a happy sentiment. Other messages are flagged with value 0 which 
represents unhappy sentiment. Finally TF-IDF algorithm is applied to train models: 
 

import org.apache.spark.ml.feature.{HashingTF, RegexTokenizer, 

StopWordsRemover, IDF}  
import org.apache.spark.sql.functions._  
import org.apache.spark.ml.classification.LogisticRegression 

import org.apache.spark.ml.Pipeline 

import org.apache.spark.ml.classification.MultilayerPerceptronClassifier  
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator  
import scala.util.{Success, Try}  
import sqlContext.implicits._ 

 
val sqlContext = new org.apache.spark.sql.SQLContext(sc) 

 
var tweetDF = sqlContext.read.json("hdfs:///tmp/sa/*")  
tweetDF.show() 

 

 
var messages = tweetDF.select("msg")  
println("Total messages: " + messages.count()) 

 
var happyMessages =  
messages.filter(messages("msg").contains("happy")).withColumn("label",lit(

" 1"))  
val countHappy = happyMessages.count()  
println("Number of happy messages: " + countHappy) 

 
var unhappyMessages = messages.filter(messages("msg").contains(" 

sad")).withColumn("label",lit("0"))  
val countUnhappy = unhappyMessages.count()  
println("Unhappy Messages: " + countUnhappy) 

 
var allTweets = happyMessages.unionAll(unhappyMessages)  
val messagesRDD = allTweets.rdd 

 
val goodBadRecords = messagesRDD.map(  

row =>{  
val msg = row(0).toString.toLowerCase()  
var isHappy:Int = 0 
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if(msg.contains(" sad")){  

isHappy = 0  
}else if(msg.contains("happy")){  

isHappy = 1  
}  
var msgSanitized = msg.replaceAll("happy", "") 

msgSanitized = msgSanitized.replaceAll("sad","") 

//Return a tuple  
(isHappy, msgSanitized.split(" ").toSeq)  

}  
) 

 
val tweets = spark.createDataFrame(goodBadRecords).toDF("label","message") 

 
// Split the data into training and validation sets (30% held out for 
validation testing)  
val splits = tweets.randomSplit(Array(0.7, 0.3))  
val (trainingData, validationData) = (splits(0), splits(1)) 

 
val tokenizer = new  
RegexTokenizer().setGaps(false).setPattern("\\p{L}+").setInputCol("msg").s

e tOutputCol("words") 

 
val hashingTF = new  
HashingTF().setNumFeatures(1000).setInputCol("message").setOutputCol("feat

u res") 

 
val idf = new IDF().setInputCol(hashingTF.getOutputCol).setOutputCol("IDF") 

 
val layers = Array[Int](1000, 5, 4, 3)  
val trainer = new MultilayerPerceptronClassifier().setLayers(layers) 

 
val pipeline = new Pipeline().setStages(Array(hashingTF,idf,trainer))  
val model = pipeline.fit(trainingData) 

 
val result = model.transform(validationData)  
val predictionAndLabels = result.select("message","label","prediction")  
predictionAndLabels.where("label==0").show(5,false)  
predictionAndLabels.where("label==1").show(5,false) 
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The output is as follows:  
 
 
 
 
 
 
 
 
 
 
 
 

 
The result after implementing sentiment analysis 

 

The previous implementation is very basic form of NLP based sentimental analysis and 
should be seen as a just simple example to understand sentimental analysis. There are more 
advanced techniques that can be applied on this example to make it more adaptable 
towards enterprise grade applications. 
 

 

Frequently asked questions 
 

Q: What are some of the common use cases of natural language processing? 
 
A: Natural Language processing is branch of Machine learning algorithms that process text 
data to produce meaningful insights. A few of the common use cases of NLP are answering 
questions asked by the user, sentimental analysis, language translation to a foreign 
language, search engines, and document classifications. The key point to understand here is 
that if you want to perform analytics/machine learning on data represented by 
text/sentences/word format, NLP is the way to go. 
 

Q: How is feature extraction relevant to NLP? 
 

A: Machine learning algorithms work on mathematical forms. Any other forms, such as 
Text, need to be converted into mathematical forms to apply machine learning algorithms. 
Feature extraction is converting forms, such as texts/images, into numerical features, such 
as Vectors. These numerical features act as an input to Machine learning algorithms. 
Techniques such as TF-IDF and Word2Vec are used to convert text into numerical 
features. In a nutshell, feature extraction is a mandatory step to perform NLP on text data. 
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Summary 
 
In this chapter, we reviewed one of the most important techniques for the evolution of 
intelligent machines to understand and interpret human language in its natural form. We 
covered some of the generic concepts within NLP with sample code and examples. It is 
imperative that the NLP technique and our understanding of the text gets better with 
more and more data assets used for training. 
 

Combining NLP with an ontological worldview, intelligent machines can derive meaning 
from the text based assets at the internet scale and evolve to a know-everything system that 
can complement the human ability to comprehend vast amounts of knowledge, and use it at 
the right time with the best possible actions based on the context. 
 

In the next chapter, we are going to look at fuzzy systems and how those systems combined 
with NLP techniques can take us closer to creating systems that are very close to the human 
ability to derive meaning from vague input, rather than exact input as required by 
computers. 
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 
Fuzzy Systems 

 
 

In the previous chapter, we saw an overview of the theory and techniques for building 
intelligent systems that are capable of processing natural language input. It is certain that 
there will be a growing demand for machines that can interact with human beings via 
natural language. In order for the systems to interpret the natural language input and react 
in the most reasonable and reliable way, the systems need a great degree of fuzziness. The 
biological brain can very easily deal with approximations in the input compared to the 
traditional logic we have built with computers. As an example, when we see a person, we 
can infer the quotient of oldness without explicitly knowing the age of the person. For 
example, if we see a a two-year-old baby, on the oldness quotient, we interpret the baby as 
not old and hence young. We can easily deal with the ambiguity in the input. In this case, 
we do not need to know the exact age of the baby for a fundamental and very basic 
interpretation of the input. 
 

This level of fuzziness is essential if we want to build intelligent machines. In real-world 
scenarios, we cannot depend on the exact mathematical and quantitative input for our 
systems to work with, although our models (deep neural networks, for example) require 
actual input. The uncertainties are more frequent and the nature of real-world scenarios are 
amplified by the incompleteness of contextual information, characteristic randomness, and 
ignorance of the data. The human reasoning levels are capable enough to deal with these 
attributes in the real world. A similar level of fuzziness is essential for building intelligent 
machines that can complement human capabilities, in real sense of the term. 
 

In this chapter, we are going to understand the fundamentals of the fuzzy logic theory 
and how it can be implemented for building the following: 
 

 Adaptive network-based fuzzy inference systems  
 Classifiers with fuzzy c-means  
 Neuro-fuzzy-classifiers 
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We will be covering the following topics in the chapter: 
 

 Fuzzy logic fundamentals  
 ANFIS network  
 Fuzzy C-means clustering  
 NEFCLASS 

 

 

Fuzzy logic fundamentals 
 
Let's quickly understand how human interactions are seamless, even with a degree of 
vagueness within our statements. A statement such as John is tall does not have any 
indication of John's exact height in inches or centimeters. However, within the context of the 
conversation, two people communicating with each other can understand and infer from it. 
Now, consider that this conversation is taking place between two teachers in a school about 
a second grade student, John. Within this context, the statement John is tall means a certain 
height and we are really good at understanding and inferring contextual meaning from this 
vague information. The fundamental concept of fuzzy logic originates from the fact that 
with an increase in the complexity of the environmental context, our ability to make precise 
and exact statements about the state diminishes, yet in spite of that, the human brain is 
capable of drawing precise inferences. Fuzzy logic represents a degree of truth instead of 
the absolute (mathematical at times) truth. Let's represent the difference between traditional 
logic and fuzzy logic with a simple diagram:  
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While the traditional computing frameworks are better suited for traditional logic, the 
intelligent systems we intend to build need to adapt to fuzzy input based on context. The 
computing frameworks need to transition from absolute truth, yes/no, to partial  
truth, extremely tall, very tall, and so on. This is very similar to the human reasoning 

paradigm in which the truth is partial and falseness is a diminishing degree of truth. 
 

 

Fuzzy sets and membership functions 
 
In our example, all the possible answers to the question of the height of a person constitute 
a set. Since there is enough uncertainty within each of the values, it is termed a fuzzy set. 
In this case, the fuzzy set is =k, {"Very tall", "Somewhat tall", "Moderately tall"}. Each member 
of the set has a mathematical value that represents the level or degree of membership. In 
our example, the set can be represented, along with the degree of membership, as 
{"Extremely tall":1.0, "Very tall":0.8, "Somewhat tall":0.6, "Moderately tall":0.2}. The input can 
be plotted on a curve that represents the values in the fuzzy set along with the degrees of 
membership:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let's define some standard terminology around fuzzy sets. A fuzzy set is typically marked 
with character 'A', which represents the data space parameter X (measure of tallness, in this 

case). The fuzzy set, A, is defined using a membership function, μA (X), which associates 
each value within A with a real number between 0 and 1, denoting the grade of 
membership within A. 
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The membership space is also termed the universe of discourse, which simply refers to all 
the possible values within set A. Within the value space, the membership function needs to 
satisfy only one condition: that the degree of membership for all the fuzzy set members 
should be between 0 and 1. Within this constraint, the membership functions can take any 
form (Triangular, Sigmoid, Step, Gaussian, and so on) depending on the dataset and the 
predicament context. Here is a representation of the member functions for our dataset that 
denotes tallness for a person:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The linguistic variables (NT/ST/VT/ET) can be related to the numerical variables (actual 
height of a person in inches) with a level of approximation or fuzziness. 
 

 

Attributes and notations of crisp sets 
 
A crisp set is a collection of entities that can be clearly separated as members versus non-
members, for example, a set of living objects versus non-living objects. In this case, the 
container fully includes or fully excludes the elements. There are several ways in which 
crisp sets can be defined: 
 

 A set of even numbers greater than 0 and less than 10 

 A = {2,4,6,8}  
 A set of elements that belong to another set, P and Q 

 A = {x | x is an element belonging to P and Q} 
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 µA(X)= 1 if ( x ∈ A), 0 if (x ∉ A) 
 

 Φ: Represents a null or empty set  
 Power set P(A) = {X | x ⊆ A}: This is a set containing all the possible subsets of 

A  For the crisp sets A and B containing a super-set of elements within X:  
 x ⊂ A ==> x belongs to A  

 x ∉ A ==> x does not belong to A  

 x ⊂ X ==> x belongs to the entire universe X  

 Consider crisp sets A and B on X space 

 A ⊂ B ==> A is completely part of B (if x ∈ A then x ∈ B) - 

implicit reasoning  

 A ⊆ B ==> A is contained in or equivalent to 

B  A = B ==> A ⊂ B or B ⊂ A 
 

 

Operations on crisp sets 
 

Similar to the mathematical numerals, we can perform certain operations on crisp sets: 
 

 Union: A ∪ B = {x | x ∈ A OR x ∈ B}  

 Intersection: A ∩ B = {x | x ∈ A AND x ∈ B }  

 Complement: Ā = { x | x ∉ A, x ∈ X }  

 Difference: A - B = A | B = {x | x ∉ A and x ∉ B} ==> A - (A ∩ B) 
 

This is how we we represent these operations:  
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Properties of crisp sets 
 

Crisp sets demonstrate certain properties, as follows: 
 

 Commutivity: 

 A∪B=B∪A  

 A∩B=B∩A  

 Associativity: 

 A∪(B∪C)=(A∪B)∪C  

 A∩(B∩C)=(A∩B)∩C  

 Distributivity: 

 A∪(B∩C)=(A∪B)∩(A∪C)  

 A∩(A∪C)=(A∩B)∪(A∩C)  

 Idempotency: 

A∪A=A   
A∩A=A   

 Transitivity: 

If A ⊆ B ⊆ C then A ⊆ C  
 

 

Fuzzification 
 
Digital computers are designed and programmed to primarily work with crisp sets. This 
means they are able to apply logical operations and computational reasoning based on 
the classical sets. In order to make intelligent machines, we require a process called 
fuzzification. With this process, the digital inputs are translated into fuzzy sets. 
 

Membership of the fuzzy sets corresponds to a certain degree of certainty for the fuzzy 
set. Fuzzification is a process by which we move gradually from precise symbols to 
vagueness for the element representations, which translates measured numerical values 
into fuzzy linguistic values. Consider a set of numbers that are close to integer value 5: 
 

Aclassic = {3,4,5,6,7} 
 

Afuzzy = {0.6/2, 0.8/3, 1.0/4, 1.0/5, 1.0/6, 0.8/7, 0.6/8} 
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Fuzzification is a process for defining the membership degree of the set members. In the 
case of the classic set, the membership degree is 1 or 0. Whereas in the fuzzy set, the 
membership degree varies between 0 and 1. The following diagram illustrates a dataset 
representation for Poorness of Grades. Assume that a student gets grades from 0 to 100 on 
the exam. 0 is the minimum and hence the poorest grade, and 100 is the maximum and 
hence not a poor grade at all:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If a student scores 30 in the exam, with traditional logic, they have received poor grades, 
since the poorness of grades is a step function that treats all the grades below 40 as poor and 
higher than 40 as not-poor. In the case of fuzzy logic, if a student gets 30, they have a 0.8 
degree of a poor grade and if the student scores 70, they have a 0.2 degree of a poor grade. 
The fuzzy sets do not need to be distinct and they can union, intersect, complement, and 
differentiate with each other:  
 
 
 
 
 
 

µA∩B(x) = min (µA(x), µB(x)) ∀x ∈ X 
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µA∪B(x) = max (µA(x), µB(x)) ∀x ∈ X  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The fuzzy function can take any complex form based on the contextual data-based 
reasoning. Membership for elements in a fuzzy set that follows the fuzzy function can 
be ensured in multiple ways, depending on the context: 
 

 Membership as similarity  
 Membership as probability  
 Membership as intensity  
 Membership as approximation  
 Membership as compatibility  
 Membership as possibility 

 

Membership functions can be generated in two ways: 
 

 Subjective: Intuition/expertise/knowledge  
 Automatic: Clustering/neural nets/genetic algorithms 
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Defuzzification 
 
Defuzzification is a process by which the actionable outcomes are generated as 
quantifiable values. Since computers can only understand the crisp sets, it can also be seen 
as a process of converting fuzzy set values based on the context into a crisp output. 
Defuzzification interprets the membership value based on the shape of the membership 
function into a real value. The defuzzified value represents the action to be taken by the 
intelligent machine based on the contextual inputs. There are multiple defuzzification 
techniques available; the one that is used for a given problem depends on the context. 
 
 

Defuzzification methods 
 

We have the following defuzzication methods: 
 

 Center of sums method  
 Center of gravity (COG)/ centriod of area (COA) method  
 Center of area / bisector of area (BOA) method  
 Weighted average method 

 Maxima methods: 

 First of maxima method (FOM)  
 Last of maxima method (LOM)  
 Mean of maxima method (MOM) 

 

 

Fuzzy inference 
 
Fuzzy inference is the actual process that brings everything together to formulate 
the actions for the intelligent machines. The process can be depicted as follows:  
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In traditional systems, the inputs are received as crisp sets. The crisp input are fuzzified as 
membership functions and the input fuzzy sets are aggregated with 
union/complement/differentiation techniques. Once the aggregated membership function 
is obtained, we apply the knowledge base, rules, and utilize historical datasets before 
defuzzifying the input set into an actionable output value. 
 
Modern intelligent systems need to work with fuzzy input directly; the fuzzification process 
is part of the environmental context. The machines need to interpret natural language input 
to create a seamless experience for end users. A fuzzification unit needs to support the 
application of various fuzzification methods to convert the crisp input into fuzzy sets. 
 

 

ANFIS network 
 
In earlier chapters, we saw the theory and practical applications of ANNs. When we 
combine the general theory of ANNs with fuzzy logic, we are able to get a neuro-fuzzy 
system that is a very efficient and powerful mechanism for modeling the real world input 
into intelligent machines, and producing output that are based on the adaptive judgement 
of a machine. This brings the computational frameworks very close to how a human brain 
would interpret the information and is able to take action within split seconds. Fuzzy 
logic itself has the ability to interpenetrate between human and machine interpretations of 
the data, information, and knowledge. However, it does not have an inherent capability to 
translate and model the process of transformation of human thought processes into rule 
based, self-learning, fuzzy inference systems (FIS). 
 

ANNs can be utilized for automatically adjusting the membership functions based on the 
environmental context and training the network interactively in order to reduce the error 
rate. This forms the basis of Artificial Neuro-Fuzzy Inference Systems (ANFIS). ANFIS can 
be considered as a class or type of adaptive networks that are equivalent to fuzzy inference 
systems that use the hybrid learning algorithm. 
 

 

Adaptive network 
 
This is a type of feed-forward neural network with multiple layers that often uses a 
supervised learning algorithm. This type of network contains a number of adaptive nodes 
that are interconnected, without any weight value between them. Each node in this network 
has different functions and tasks. A learning rule that is used affects parameters in the node 
and reduces error levels at the output layer. 
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This neural network is usually trained with backpropagation or gradient descent. Due 
to the slowness in convergence, a hybrid approach can also be used, which accelerates 
the convergence and potentially avoids local minima. 
 

 

ANFIS architecture and hybrid learning algorithm 
 
At the core of the ANFIS architecture is the adaptive network that uses the supervised 
learning algorithm. Let's understand this with a simple example. Consider that there 
are two inputs, x and y, and an output, z. We can consider the use of two simple rules in 
the method of if-then as follows: 
 

Rule 1: If x is A1 and y is B1 then z1 = p1x + q1x + r1 

 

Rule 2: If x is A2 and y is B2 then z2 = p2y + q2y + r2 

 

A1, A2 and B1, B2 are the membership functions of each input x and y. p1, q1, 

r1 and p2, q2, r2 are linear parameters of the fuzzy inference model. 
 
 

 

Let's illustrate this with a diagram:  
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The ANFIS architecture in this case can be considered a five-layer neural network. The 
first and fourth layers contain an adaptive node and the other layers contain fixed nodes, 
as we have already seen in the previous chapters on ANNs. The network is illustrated in 
the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Layer 1: This layer consists of two adaptive nodes that adapt to a function 

parameter based on the input values (x and y). The output from each of these 

nodes denotes the degree of membership corresponding to the input value 

(refer the ANFIS premise in the previous diagram). The membership function, 

as we have seen in the previous sections, can take any form (Gaussian, bell 

function, and so on). The parameters in this layer are termed premise 

parameters: 

 z1 = p1x + q1y + r1  
 z2 = p2x + q2y + r2 

 

 Layer 2: The nodes in this layer are fixed nodes that are non-adaptive in nature 

and resemble a hidden layer node in a neural network. The output from these 

nodes is obtained by multiplying the signal coming from the adaptive nodes and 

delivered to the next layer nodes. The nodes in this layer represent the firing 

strength of each of the rules that are inherited by the adaptive nodes in the 

previous layer. 
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 Layer 3: The nodes in this layer are also fixed nodes. Each node is a calculated 

value of the ratio between the nth rule's firing strength and the sum of all the 

rules' firing strength. The overall result represents the normalized firing 

strength.  
 Layer 4: The nodes in this layer are the adaptive nodes. In this layer, the 

normalized firing strength from the previous layer nodes is multiplied with 

the output from the rule functions ( p1x + q1x + r1 and p2y + q2y + r2). The output 

parameters from this layer are called consequent parameters.  
 Layer 5: This is the output layer and has one fixed output node resembling the 

ANN. This node performs the summation on the signals from the previous layer. 

This is the overall output of the ANFIS network. This represents the quantitative 

actionable outcome from the fuzzy system. This output can be utilized in the 

control loop and back-propagated for training and optimization, eventually 

minimizing the error. 
 

With this network topology in place, we can apply a hybrid learning algorithm in order to 
optimize the output and reduce the error. The hybrid algorithm also ensures that we are 
able to converge quicker and avoid local minima. The hybrid algorithm is a two-step 
process that essentially tweaks the parameters for the first and fourth adaptive layers 
based on the rule set. 
 

During the forward pass, the parameters for the first layer (premise parameters) are kept 
constant and the parameters for the fourth layer (consequent parameters) are adjusted 
based on the recursive least square estimator (RLSE) method. 
 

Note that the consequent layer parameters are linear and we can accelerate 
the convergence rate in the learning process. Once the consequent 
parameters values are obtained, the data is passed through the input space 
and the aggregated membership functions, and the output is generated. 
The output is then compared with the actual output. 

 
When the backward pass is executed, the consequent parameters obtained from the first 
step are kept constant and the premise parameters are tweaked with the learning method 
of gradient descent or backward propagation. The output is once again generated with the 
changed values for the premise parameters and compared with actual output for further 
tuning and optimization. Use of this hybrid algorithm, which combines RLSE and gradient 
descent, ensures faster convergence. 
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Fuzzy C-means clustering 
 
In Chapter 3, Learning from Big Data, we saw the k-means clustering algorithm, which is an 
iterative unsupervised algorithm that creates k clusters for a dataset based on the distance 
from a random centroid in the first iteration step. The centriods are calculated in each 
iteration to accommodate new data points. This process is repeated until the centriods do 
not change significantly after a point. As a result of the k-means clustering algorithm, we 
get discrete clusters with data points. Each data point either belongs to a cluster or it does 
not. There are only two states for a data point in terms of cluster membership. However, in 
real-world scenarios, we have data points that may belong to multiple clusters with 
different degrees of membership. The algorithms that create fuzzy membership instead of 
crisp membership for the data points within a cluster are termed soft-clustering 
algorithms. C-means clustering is one of the most popular algorithms, which is iterative in 
nature and very similar to the k-means clustering algorithm. 
 

Let's consider a dataset S that contains N data points. The goal is to cluster these N 
data points into C clusters: 
 

S = {x1, x2, x3, ...., xN} 
 

We are going to have C cluster membership functions (indicated by μ): 
 

μ1 = [μ1(x1), μ1(x2), μ1(x3), .....μ1(xn)] 
 

μ2 = [μ2(x1), μ2(x2), μ2(x3), .....μ2(xn)] 
 

. 
 

. 
 

μc = [μc(x1), μc(x2), μc(x3), .....μc(xn)] 
 

For each of the clusters that are represented by the membership functions, we are going to 

have a centroid data point, denoted by Vi, corresponding to a fuzzy cluster Cli (i = 1,2,3, ... 
C). With this background information and these notations, the optimization objective for 
the C-means clustering algorithm is defined as: 
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Ns is the total number of input vectors; m represents the fuzziness index for the ith 

cluster (the higher the value of m, the higher the fuzziness). The fuzzy C-means 

algorithm minimizes Jm by selecting Vi and μi where i = 1,2,3,...C by an iterative process. 

With these notations and the algorithm objective, here is the flowchart that represents 
the fuzzy C-means algorithm:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The flowchart is explained as follows: 
 

 Initialization (Select the membership functions such that):  
 
 

for i = 1, 2, 3, ..........C 
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for k = 1,2,3, ............Ns  
 
 

 

for i = 1,2,3, ..............C 
 

 Compute fuzzy centroids for i = 1,2,3, .......C and k = 1,2,3, ... Ns:  
 
 
 
 
 
 

 

 Compute new fuzzy membership functions:  
 
 
 
 
 
 
 
 

 

 Check for convergence: 
 

 If the membership functions do not change over iterations, the 

iterations can stop and the algorithm has converged 

 Once the algorithm converges, μi represents the fuzzy clusters  
 If the algorithm does not converge and the number of iterations is 

equal to the maximum iterations set as the parameter, we exit the 

loop without finding the optimum fuzzy clusters 
 

The membership values for the data points obtained by the algorithm are not unique since 
there is a dependency on the initial random conditions. There is a possibility of this 
algorithm converging to a local minimum. If we set the threshold for the membership 
values, it is possible to produce hard clusters (same as the k-means clustering algorithm). 
For example, we can set the threshold value to 0.8. If the cluster membership value is 
greater than 0.8, we can consider it as a crisp membership value of 1 and less than 0.8 as 0. 
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Let's implement this algorithm with Spark: 
 

import org.apache.spark.mllib.linalg.Vectors 

import scala.util.Random  
import org.apache.spark.mllib.clustering._  
import org.apache.spark.ml.clustering._  
import org.apache.spark.mllib.clustering.KMeans  
import org.apache.spark.mllib.clustering.FuzzyCMeans  
import org.apache.spark.mllib.clustering.FuzzyCMeans._  
import org.apache.spark.mllib.clustering.FuzzyCMeansModel 

 
val points = Seq(  

Vectors.dense(0.0, 0.0),  
Vectors.dense(0.0, 0.1),  
Vectors.dense(0.1, 0.0),  
Vectors.dense(9.0, 0.0),  
Vectors.dense(9.0, 0.2),  
Vectors.dense(9.2, 0.0)  

)  
val rdd = sc.parallelize(points, 3).cache() 

 
for (initMode <- Seq(KMeans.RANDOM, KMeans.K_MEANS_PARALLEL)) { 

 
(1 to 10).map(_ * 2) foreach { fuzzifier => 

 
val model = FuzzyCMeans.train(rdd, k = 2, maxIterations = 10, runs 

= 10, initMode, seed = 26031979L, m = fuzzifier) 

 
val fuzzyPredicts = model.fuzzyPredict(rdd).collect() 

rdd.collect() zip fuzzyPredicts foreach { fuzzyPredict =>  
println(s" Point ${fuzzyPredict._1}")  
fuzzyPredict._2 foreach{clusterAndProbability 

=&gt; println(s"Probability to belong to cluster  
${clusterAndProbability._1} " +  

s"is ${"%.6f".format(clusterAndProbability._2)}")  
}  

}  
}  

} 
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The program will output this fuzzy clustering: 
 

Iteration - 1 Iteration - 10 
  

   

 

NEFCLASS 
 
In the previous chapters, we learned the general theory of neural networks, which 
resemble the human brain in terms of a network of computation units that are 
interconnected. The neural networks are trained by adjusting the weights on the synapses 
(connectors). As we have seen, the neural network can be trained to solve classification 
problems such as image recognition. The neural networks accept crisp input and adjust 
weights to produce output values (classification into a class). However, as we have seen in 
this chapter, the real-world input have a degree of fuzziness in the input as well as a degree 
of vagueness for the output. 

 

[206]  



Fuzzy Systems Chapter 7  

 

The membership of the input and output variables in a specific cluster or a type is 
represented with a degree instead of a crisp set. We can combine the two approaches 
to formulate a neuro-fuzzy-classifier (NEFCLASS), which is based on fuzzy input and 
utilizes the elegance of a multi-layer neural network in order to solve the classification 
problem. In this section, we will understand the algorithm and intuition behind it. 
 

At a high level, NEFCLASS consists of input, rule, and output layers. The neurons in these 
layers are hence called input neurons, rule neurons, and output neurons. Here is the generic 
structural representation of the NEFCLASS network:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Layer 1 processes input data. The activation function in this layer is typically an identity 
function. The neurons in the hidden Layer 2 represent fuzzy rules that contain fuzzy sets 
in premise and conclusion sides (input and output, for simplicity). 
 

In mathematics, an identity function, also called 
an identity relation, identity map, or identity transformation, is  
a function that always returns the same value that was used as its 
argument. In equations, the function is given by f(x) = x. 
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Typically, the fuzzy sets with triangular membership functions are used and a fuzzy set 
with a singleton membership function is used in the conclusion part. The premises of 
fuzzy rules become weights for the rule neurons in Layer 2. Finally, the conclusion of a 
rule is the connection from the rule neuron to the output layer. When we calculate the 
activation from the rule neurons in Layer 2, we use T-norm as the minimization function:  
 

W(x,R) represents the weight of connection between 
input neuron, x, and the rule neuron, R  

 

The weights for the rule neurons, given by the earlier formula, are shared for each fuzzy 
input value and one fuzzy set is used. From the rule neuron layer (Layer 2) to the 
classification layer (Layer 3), only one connection is attached. This represents the 
connection between the rule and the class. 
 

The final layer is the output layer, which calculates the activation value for the given 
class on the basis of the activation of rules that indicate a given class as output. In this 
case, we use the maximum function indicated in the following:  
 
 
 

 

After calculation of the activation in output neurons, the neuron with highest activation is 

chosen as a result of classification. 
 

 

Frequently asked questions 
 

Q: Why do we need fuzzy systems? 
 

A: In our quest to build intelligent machines, we cannot continue to model the world with 
crisp or quantitative and definite inputs. We need to model systems like the human brain, 

which can easily understand and process input, even if they are not mathematical and contain 
a degree of vagueness. We need fuzzy systems in order to interpret real-world input and 
produce prescribed actions based on the context. Fuzzy systems can fuzzify and defuzzify the 

input and facilitate inseparability between natural events and computers. 
 
 
 
 
 
 
 
 

 

[208]  



Fuzzy Systems Chapter 7  

 

Q: What are crisp sets and fuzzy sets? How are they different from one another? 
 

A: Crisp sets have two possibilities for members. A particular element/data point/event is a 
member or a non-member of the crisp set. For example, days in a week from Monday to 
Sunday are members of the days of the week crisp set. Anything else apart from the seven 
days is not a member of the set. Members of fuzzy sets, on the other hand, belong to the 
fuzzy set with a degree of membership. This is how our natural language conversations 
happen. When we say a person is tall, we do not mention the exact height of the person. At 
that point, if tallness is considered as a membership function, a person with a certain height 
belongs to the fuzzy set with a degree. 
 

Q: Do fuzzy sets support all the operations that are supported by crisp sets? 
 

A: Yes, the fuzzy sets support all the operations supported by crisp sets, such as union, 

intersection, complement, and differentiation. 
 

 

Summary 
 
In this chapter, we understood the fundamental theory of fuzzy logic. It is imperative that 
as we build intelligent machines with ever-growing volumes of data that is available from 
discrete sources in structured, unstructured, and semi-structured forms, machines need 
the ability to interface with the real world in the same way as human beings do. We do not 
need explicit mathematical input to make our decisions. In the same way, if we are able to 
interpret natural language and apply fuzzy techniques to computation, we will be able to 
create smart machines that really complement humans. 
 

The mathematical theory of fuzzy systems is decades old. However, with the advent of 
massive data storage and processing frameworks, practical implementations are 
possible especially with the convergence of fuzzy logic and deep neural networks, and a 
truly intelligent, self-learning system will be a reality very soon. This chapter has created 
the foundation for modeling and bringing our systems even closer to the human brain. 
 

In the next chapter, we are going to visit genetic algorithms, where the AI systems derive 
inspiration from the natural process of evolution in cases where the brute-force approach 
is not computationally viable. 
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Big Data mining tools need to be empowered by computationally efficient techniques to 
increase their degree of efficiency. Using genetic algorithms over data mining creates great 
robust, computationally efficient, and adaptive systems. In fact, with an exponential 
explosion of data, data analytics techniques go on taking more time and inversely affect the 
throughput. Also, due to their static nature, complex hidden patterns are often left out. In 
this chapter, we want to show how to use genes to mine data with great efficiency. To 
achieve this objective, we are going to explore some of the basics of genetic programming 
and the fundamental algorithms. We are going to begin with some of the very basic 
principles of natural (biological) genetics and draw some parallels when it comes to 
applying the general theory to computer algorithms. We will cover the following: 
 

 Genetic algorithm structure  
 KEEL framework  
 Encog machine learning framework  
 Weka framework  
 Attribute search with genetic algorithms in Weka 

 

The genetic algorithms derive a lot of inspiration from nature and the following quotation 
is appropriate as we research nature for the evolution of intelligent machines: 
 

"Nature has all the answers within itself. We need a state of mind that is tuned in 

harmony with Nature to find answers to all the questions that bother humanity." 
 

—Gurunath Patwardhan (Vishnudas) 
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Life on our planet has evolved over a period of millions of years in a peculiar way by 
keeping some of the basic fundamentals constant. At the core of the process of evolution of 
various creatures, natural phenomena, and everything that we can tangibly perceive, there 
is a universal consciousness that operates within the framework of certain laws. Our quest 
to develop intelligent systems that match human intelligence cannot be complete if we do 
not derive meaning from universal consciousness and try to mimic some of the complex 
algorithms that nature is leveraging for boundless time. One such phenomenon is gene 
theory, which is one of the basic principles of biology. The core principle of this theory is 
that traits are passed from parents to offspring through gene transmission. Genes are 
located on chromosomes and consist of DNA. While the natural laws of biological evolution 
are very interesting to study, they are out of the scope of this book. We will be looking at 
generic principles of genetic evolution and how we can apply those to mimick a computer 
algorithm that helps us in reasonably mining huge volumes of data and derive actionable 
insights for intelligent machines. 
 

The core principles that define genetic theory and sustain natural evolution generation 
after generations are: 
 

 Heredity: This is a process by which offspring in the next generation receive 

selected characteristics from both parents. For example, there is a chance that 

the next generation of tall parents will be tall.  
 Variation: In order to sustain evolution, there has to be a level of characteristic 

variation between reproducing partners. A new set of combinations and traits 

will not evolve if there is a lack of variation.  
 Selection: This is a mechanism by which members of the population that 

demonstrate prominently better characteristics are selected as the ones that 

participate in the matching process and give birth to the next generation. 

Nature's selection criteria is subjective and context dependent and differs from 

species to species.  
 Reproduction: In this process, the characteristics from the parents are carried 

forward into the next generation by a process of cross-selection and matching. In 

simple terms, some characteristics from each of the two parents are selected and 

prominently transferred while the same attribute is dormant for the other 

parent. While nature's algorithm for the selection of characteristic is not entirely 

random, it is far from being fully understood. This is nature's way of creating 

further variation with every generation. 
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 Mutation: This is an optional but essential step in natural evolution. In certain 

minimum cases, nature makes a modification in the chromosomal structure (at 

times due to some external stimulus and most of the time without a known or 

obvious trigger) to modify the characteristic behavior of the offspring entirely. 

This is another way by which nature introduces an even larger degree of 

variation and diversity since the natural selection process can only have so much 

variation. 
 

Let's define the premise of the genetic algorithms that draw motivation from the natural 
process of evolution. We need intelligent computer programs that evolve within the search 
space of possible solutions in an optimal and self-evolving manner. As is typically the 
case, the search space is huge and it is computationally impossible to apply brute force in 
order to fetch the solution in a reasonable time. The genetic algorithms provide a quick 
breakthrough within the search space with a process very similar to the natural evolution 
process. In the next section, we will define the structure of a generic genetic algorithm and 
how it simplifies and optimizes solution discovery within the search space. Before we get 
there, here is some of the terminology that we are going to use: 
 

 Generation: A generation is an iteration of the genetic algorithm. Initial random 

generation is called generation zero.  
 Genotype: It defines the structure of a solution produced by the genetic 

algorithm. For example, #ff0000 is the hexadecimal representation of the red color, 

which is the genotype for the color red.  
 Phenotype: This represents the physical/tangible/perceived characteristic 

corresponding to the genotype. In the previous example, the color red is the 

manifestation or phenotype for genotype #ff0000.  
 Decoding: This is a process that translates the solution from genotype to 

phenotype space.  
 Encoding: This is a process that translates the solution from phenotype to 

genotype space.  
 Population: This represents a subset of all possible solutions to the given 

problem.  

 Diversity: It defines the relative uniqueness of each element of the selected 

population. A higher level of diversity is considered to be good for the 

convergence of the genetic algorithm. 
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Genetic algorithms structure 
 
In this section, let's understand the structure of a genetic algorithm that finds the 
optimum solution for a problem where the search space is so huge that brute force cannot 
solve it. The core algorithm was proposed by John Holland in 1975. In general, Genetic 
Algorithm provides an ability to provide a good enough solution fast enough to be 
reasonable. The generic flow of a Genetic Algorithm is depicted in the diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let's try to illustrate Genetic Algorithm with a simple example. Consider that you have to 
find out a number (integer) in millions of values (the solution space). We can follow the 
steps in the algorithm and reach the target solution much quicker than application of a 
brute force method. Here is the implementation of the algorithm in Java: 
 

1. Define the GA class with a simple constructor to initialize the population: 
 

public GA(int solutionSpace, int populationSize,int 

targetValue, int maxGenerations, int mutationPercent) {  
this.solutionSpace = solutionSpace; // Entire solution space in 

which the algorithm needs to search  
this.populationSize = populationSize; // Size of the random 
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sample from the solution space  

this.targetValue = targetValue; // Value of the target solution 

this.maxGenerations = maxGenerations; // Maximum number of  
generations (iterations) of the GA  

this.mutationPercent = mutationPercent; // This field 

defines the percentage of new generation members to be mutated  
population = new int[this.populationSize]; // Initialize the 

first generation  
for(int i=0; i< this.populationSize; i++) {  
population[i] = new Random().nextInt(this.solutionSpace);  

}  
} 

 

2. Create a fitness function that defines the level of fitness for a particular 
solution in terms of its closeness to the actual solution. The higher the fitness 
value of a solution, the greater the chance of it getting retained in 
subsequent generations of the GA. In this case, we are making the fitness 
inversely proportional to the distance from the target value: 

 
private int getFitness(int chromosome) {  

int distance = Math.abs(targetValue - chromosome); 

double fitness = solutionSpace / new 

Double(distance); return (int)fitness;  
} 

 

3. Select the next generation from the pool based on the fitness value. The higher 

the fitness, the more changes there are to make it to the next generation: 
 

private ArrayList <Integer> getSelectionPool() {  
ArrayList <Integer> selectionPool = new ArrayList 

<Integer>(); for(int i=0; i<this.populationSize; i++ ) {  
int memberFitnessScore = getFitness(this.population[i]); 

//System.out.println("Member fitness score = " +  
memberFitnessScore);  

Integer value = new Integer(this.population[i]); 

for(int j=0; j<memberFitnessScore; j++) {  
selectionPool.add(value);  

}  
}  
return selectionPool;  

} 
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4. In each generation, apply a minor mutation that changes the child element by 
a small margin. This includes variation and increases the chances of 
successfully finding the solution in a short amount of time: 

 
for (int g=0; g<algorithm.maxGenerations; g++) { 

System.out.println("********** Generation " + g + "  
************");  

ArrayList <Integer> pool = algorithm.getSelectionPool(); 

Random randomGenerator = new Random();  
int[] nextGeneration = new int[algorithm.populationSize]; 

for(int i=0; i<algorithm.populationSize; i++) {  
if(pool.size() == 0)  
break;  

int parent1RandomIndex =  
randomGenerator.nextInt(pool.size());  

int parent2RandomIndex =  
randomGenerator.nextInt(pool.size());  

int parent1 = pool.get(parent1RandomIndex).intValue(); 

int parent2 = pool.get(parent2RandomIndex).intValue(); 

if(parent1 == algorithm.targetValue || parent2 ==  
algorithm.targetValue) {  

System.out.println("Found a match !!! ");  
System.exit(1);  

}  
int child1 = (parent1 + parent2) > algorithm.solutionSpace 

? algorithm.solutionSpace - (parent1 + parent2) : (parent1 + 

parent2);  
int child2 = Math.abs(parent1 - parent2);  
if (child1 == algorithm.targetValue || child2 == 

algorithm.targetValue) {  
System.out.println("Found a match !!! "); 

System.exit(1);  
}  
double mutatioRate = 0.001;  
float randomizer = new Random().nextFloat(); 

if(randomizer < mutatioRate) {  
System.out.println("Mutating....");  
child1 += new Random().nextInt(1);  
child2 -= new Random().nextInt(1);  

}  
if(algorithm.getFitness(child1) >  

algorithm.getFitness(child2))  
nextGeneration[i] = child1;  

else  
nextGeneration[i] = child2;  

}  
algorithm.population = nextGeneration; 
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Here are the program outputs in multiple runs. As we can see, we need to tune various 
parameters for the optimum performance of the algorithm:  
 
 
 
 
 
 
 
 
 
 
 

 

As we can see, implementing the Genetic Algorithm is simple and the core principles can be 
applied to more complex problems such as human gene profiling, signal processing, image 
processing, and so on. Based on the basic concepts we have covered so far in this chapter, 
there are lots of frameworks and models developed in order to leverage the evolutionary 
algorithms (EAs) for various data mining and related problems. In the next sections, we are 
going to review some of these frameworks at a high level. 
 

 

KEEL framework 
 
KEEL (Knowledge Extraction based on Evolutionary Learning) is a framework that can be 
used for various tasks, which translates data into information into knowledge assets. KEEL 
specifically assesses evolutionary algorithms for data mining based on regression, 
classification, unsupervised learning, and so on. The ultimate feat of machine intelligence 
will be when the computer programs are able to read the text and interpret and 
understand it the way human beings do. With this capability, combined with exponentially 
growing brute force computing power, we will be able to create a knowledge system that 
will possess supernatural powers when it comes to applying that knowledge to various 
problems like Genome decoding, studies of antibodies and so on that have plagued 
humanity for centuries. 
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The KEEL framework and similar frameworks are taking us a step closer to that goal with 
the fundamental idea of automatically discovering knowledge from datasets using 
evolutionary algorithms. Although EAs are powerful for solving a wide range of scientific 
problems, they can only be used with extensive programming expertise, and carefully 
tuning the parameters and experimenting with outcomes over a long stretch of time. 
KEEL empowers the user to use EAs quite easily without the need for extensive 
programming, allowing them to focus on the core data mining and extraction problems 
while providing a toolkit for ease of use. KEEL provides an extensive library of EAs along 
with easy-to-use software that comes in handy for considerably reducing the level of 
experience and knowledge required by researchers in evolutionary computing. 
 

KEEL is a Java-based desktop application that facilitates the analysis of the behavior of 
evolutionary learning in different areas of learning and preprocessing tasks, making 
the management of these tasks easy for the user. The latest available version (3.0) of 
KEEL consists of the following modules:  
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 Data Management: This is the core component for making the data available for 

analysis and running experiments using various algorithms and visualization 

techniques. It allows data imports from various sources, exporting the data to 

outbound systems and storage, visualizing the data and making edits 

(transformations based on use cases), and most importantly, making partitions 

if the data volume is large so that it can be distributed to various nodes if a 

compute and storage cluster is utilized (for example, the Hadoop framework). 

The application includes pre-loaded datasets for quick experimentation. Here is 

the view into data management within KEEL:  
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 Experiments: This section allows users to create experiments based on the 
imported datasets. There are some predefined experiments that the user can start 
with and they can build their own experiments based on the use cases and the 
available algorithms within KEEL. The framework provides various easy-to-use 
options such as type of validation, type of learning 

(Classification/Regression/Unsupervised Learning), and so on:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The experiments can be configured with an intuitive user interface that allows users to 
select the datasets along with the algorithm used during data preprocessing, processing, 
and post processing. Multiple pathways can be configured within the same experiment, 
leveraging various algorithms for comparison. The algorithms can be tuned by setting 
the relevant parameters, as seen in the following screenshot: 
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Once the experiments are configured and executed, the KEEL framework generates a 
directory structure and the files required for running them on the local machine, as well as a 
distributed computing environment. For example, the Java class can be embedded to run as 
a user defined function (UDF) within any of the Hadoop ecosystem components in order 
to leverage a parallel processing paradigm. The KEEL framework also allows extending the 
core libraries and algorithm coverage by providing APIs for extension. 
 

The KEEL philosophy tries to include the fewest possible constraints for 
the developer, in order to simplify the inclusion of new algorithms within 
this tool. In fact, each algorithm has its source code in a single folder and 
does not depend on a specific structure of classes, making the integration 
of new methods straightforward. 

 
 
 
 

 

[220]  



Genetic Programming Chapter 8  

 

Encog machine learning framework 
 
Encog is an advanced ML framework that supports a variety of algorithms including 
Neural Networks and Genetic algorithms. It supports Java and .NET APIs along with a 
workbench that has an easy to use user interface for running various tests and experiments 
with the datasets. The training algorithm implementations are multi-threaded and support 
multi-core hardware. In this section, we are going to see general use of the Encog 
framework and specifically its support for genetic programming (GP) to implement genetic 
algorithms (GAs). 
 

 

Encog development environment setup 
 
The core libraries for the Encog framework can be acquired from the Git repository 
and built as a Maven project within your development environment as follows: 
 

https://github.com/encog/encog-java-

core mvn package 

 

 

Encog API structure 
 

The core API is a simple object-oriented paradigm with three core functional blocks: 
 

 Machine learning methods: Each model type in Encog is represented as a 

machine learning method. These machine learning methods implement 
the org.encog.ml.MLMethod interface as a marker interface. This super-class 
does not contain any method or define any behavior for the inheriting interfaces 
and only tags them as a machine learning method. A MLMethod is an algorithm 
that accepts data and provides some sort of insight into it. This could be a neural 
network, support vector machine, clustering algorithm, or something else 
entirely:  

 MLRegression: Used to define regression models, the ones that 

produce numerical output  
 MLClassification: Used to define classification models, the ones 

that classify the input variables into one of the output classes  
 MLClustering: Used to define clustering algorithms that take input 

data and place them into several clusters: 
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Here is the class diagram of the interfaces which are the fundamental building blocks of 

Encog framework:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Encog Datasets: Encog needs data to fit various machine learning methods. The 

data is accessed using a variety of dataset classes. The Encog data handling 

objects work with the following interfaces: 

 MLData: Used to hold a vector that will be input or output either 

to or from a model.  
 MLDataPair: Used as input MLData vectors for supervised 

learning. A training set is built with this data type.  
 MLDataSet: Provides a list of MLDataPair objects to trainer 

functions. 
 

We can create new versions of any of these three interfaces. Encog also provides basic 
implementations of these classes such as BasicMLData, BasicMLDataPair, and 
BasicMLDataSet. 
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Encog supports an extensive implementation of evolutionary algorithms that support 
genetic programming. Here is a snapshot of various available classes:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

With these APIs, implementation of genetic algorithms is extremely easy with Encog using 
a level of abstraction. Here is some pseudocode for the implementation of genetic 
algorithms with Encog: 
 

Population pop = initPopulation(); // Initialize the initial  
population (generation 0)  

CalculateScore score = new ScorererClass(pop.solutionSpace); // This is  
the implementation of  
// the scorer class 

 
genetic = new TrainEA(pop,score); // Train  

the model with  
genetic.addOperation(0.9,new SpliceNoRepeat(POPULATION_SIZE)); // apply  

crossover operation  
genetic.addOperation(0.1,new MutateShuffle()); // apply  

mutation  
while (solutionCount < MAX_SAME_SOLUTION) { //  

iterate over generations  
genetic.iteration(); // next  

generation 
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double thisSolution = genetic.getError(); // 

solution from next generation  
}  

 

The Encog framework also provides an analyst workbench that is a handy user interface 
for running quick experiments with various datasets. The workbench uses the Encog core 
libraries and visualizes the output from various algorithms and test cycles. Here is a quick 
snapshot of the Encog workbench:  
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Introduction to the Weka framework 
 
One of the handy tools in evaluating various data science algorithms is Weka (Waikato 
Environment for Knowledge Analysis). This is a suite of machine learning software 
written in the Java programming language. Weka is very popular since it can be 
extended to leverage additional algorithms and data mining techniques. In this section, 
we will be introduced to the generic concepts of Weka and specifically look at using it for 
the implementation of genetic algorithms. 
 

Weka provides a great and intuitive visual user interface for data mining, analysis, and 
predictive modeling. Some of the features that make Weka a popular choice for the 
community are the following: 
 

 Weka is available as a free tool to use under the GNU General Public license  
 Weka is written in the Java programming language and compiles to byte code, 

which is easily portable across platforms  
 Weka contains a rich library of machine learning algorithms and it can further be 

extended within the framework by creating hooks using the simple-to-use APIs  
 The simple-to-use GUI makes it easy to train and compare various classifiers, 

clusters, and regression outputs 
 

Here is a conceptual view of the Weka framework:  
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Weka supports ARFF (Attribute-Relation File Format), CSV (Comma Separated Values), 
and data formats for the datasets. 
 

An ARFF (Attribute-Relation File Format) file is an ASCII text file that 
describes a list of instances sharing a set of attributes. ARFF files were 
developed by the Machine Learning Project at the Department of 
Computer Science of The University of Waikato for use with the Weka 
machine learning software. 

 

ARFF files have two distinct sections. The first section is the header information, which is 
followed by the data information. The header of the ARFF file contains the name of the 
relation, a list of the attributes (the columns in the data), and their types. 
 

An example header on the standard and typically used IRIS dataset looks as follows: 
 

% 1. Title: Iris Plants Database 
 
%  

% 2. Sources:  
% (a) Creator: R.A. Fisher  
% (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)  
% (c) Date: July, 1988  
%  
@RELATION iris 

 
@ATTRIBUTE sepallength NUMERIC 

@ATTRIBUTE sepalwidth NUMERIC 

@ATTRIBUTE petallength NUMERIC 

@ATTRIBUTE petalwidth NUMERIC 

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica} 

 

The data of the ARFF file looks as follows: 
 

@DATA  
5.1,3.5,1.4,0.2,Iris-setosa  
4.9,3.0,1.4,0.2,Iris-setosa  
4.7,3.2,1.3,0.2,Iris-setosa  
4.6,3.1,1.5,0.2,Iris-setosa  
5.0,3.6,1.4,0.2,Iris-setosa  
5.4,3.9,1.7,0.4,Iris-setosa  
4.6,3.4,1.4,0.3,Iris-setosa 
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Lines that begin with % are comments. 

The @RELATION, @ATTRIBUTE, and @DATA declarations are case 

insensitive. 

 

Two of the advantages of Weka is that it includes a rich library of various algorithms for 
regression and classification, and there is an easy way to compare the algorithms based on 
the available dataset(s). 
 

The latest version of Weka (3.8) can be downloaded 

from https://www.cs.waikato.ac.nz/ml/weka/downloading.html. 
 
 

 

When we launch Weka, there are five possible applications to choose from: 
 

 Explorer: This application provides an environment for exploring datasets with 

Weka.  
 Experimenter: An environment for performing experiments and conducting 

statistical tests between learning schemas.  
 Knowledge Flow: This environment supports the same features as explorer, but 

with a drag-and-drop interface. It supports incremental learning.  
 Workbench: This is an all-in-one application that combines all the others within 

the perspectives that the user can select.  
 Simple CLI: Provides a simple command-line interface that allows direct 

execution of Weka commands for operating systems that do not provide their 

own command line interface. 
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Here is a consolidated view of the initial launch screen in Weka:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The visualizations allow us to explore the datasets visually with some basic options 
provided in the launch Visualization menu. In the Tools section, Package manager 
provides a graphical interface to Weka's package management system. This is one of the 
key benefits of Weka, that it can be very easily extended to include additional packages 
seamlessly. 
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Another handy tool provided by Weka is ARFF-Viewer. With this, we can quickly view the 
structure and contents of a data file in .arff format. Weka provides some of the pre-
loaded datasets in its installation. Let's review one of the datasets that we will be using as 
an example to show some of the explorer features of Weka. Weka contains a diabetes 
dataset that has a set of independent variables and one dependent variable that defines 
whether a person is diabetic or not. Here is a snapshot of the .arff file viewer:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1. From the file selection menu, Select the .artf data file from available data files  
2. Show all the fields (independent variable) in the dataset along with their 

data types and the output class (dependent variable)  
3. Show the header properties of the file # of records, number of attributes, and 

the number of output classes 
 
 
 
 
 
 
 

 

[229]  



Genetic Programming Chapter 8  

 

Weka Explorer features 
 
While an introduction to the entire tool is out of scope for this book, we will review 

the Explorer section of the Weka toolkit. 
 
 

Preprocess 
 
This section allows us to choose and modify the data being acted upon. Weka allows 
users to select a data file in a large set of supported formats. The following is a screenshot 
of Weka Explorer:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As you can see in the preceding screenshot, there are multiple choices for selecting the 

dataset from: 
 

 Open file...: This option displays a file selection box to select the data file from 

the local disk or the network location.  
 Open URL: This option displays a URL input box that accepts the HTTP URL 

endpoint for the dataset.  
 Open DB: This option allows users to connect to a database and fetch the dataset. 

The database can be accessed via JDBC protocol provided that the network 

location for the database is accessible to the machine on which Weka is running.  
 Generate: Allows the user to generate artificial data from various data 

generators. 
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Let's open the dibetes.arff file from the available datasets. It opens the following 

user interface:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1. Filter: The preprocesses section allows filters to be defined so that they transform 
the data in various ways. The filter box is used to set up the filters that are 
required. Weka provides a consistent user interface for the selection of filters and 
any other object types that are applied on the data. Once the filter is selected, the 
Apply button filters on the data based on the criteria specified in the filter.  

2. Current relation: Once the data is loaded, the preprocesses panel shows a variety 
of information about the dataset:  

 Relation: The name of the relation as given in the file it was loaded 

from (@Relation in the ARFF file)  
 Instances: The number of records in the data  
 Attributes: The number of attributes (features) in the data 
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3. Attributes: This section shows all the attributes in the same sequence as they are 
present in the data file.  

4. Selected Attribute: This section displays details about the selected attribute such 
as name, type, the % missing values, % unique values, along with 
minimum/maximum/mean and standard deviation for the attribute. 

 
5. Visualization: This section shows the output class as a function of the selected 

attribute. The Visualize All button shows histograms for all the attributes in the 
data in a separate window, as follows:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6. Status bar: This is a placeholder for the information and log entry based on the latest 
activity within the explorer 
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Classify 
 
This section allows us to train different algorithms for the classification of the data into an 
output class. Weka provides a way to perform quick comparisons between various 
classification techniques. This facilitates the selection of the right algorithm, along with 
optimal parameters to be applied to the actual problem space. The following is a 
screenshot of the Classify section in Weka:  
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The following are the classifiers in the Classify section: 
 

1. Selecting a classifier: This section has a text field that displays the name of the 
currently selected classifier.  

2. List of classifiers: Clicking on the Choose button opens a list of available 
classifiers to select from. Weka provides a wide range of classifiers that can be 
seamlessly used. This can be extended very easily with the extension APIs 
and libraries provided by the Weka framework.  

3. Test options: The results of applying a chosen classifier will be tested according to 
the options provided for testing. There are four primary test modes:  

 Use Training Set: The classifier is evaluated on how well it predicts the 

class of the instances it was trained on.  
 Supplied Test Set: The classifier is evaluated on how well it predicts 

the class of a set of instances loaded from a file.  
 Cross Validation: The classifier is evaluated by cross-validation, using 

a number of folds that are entered in the Folds text field.  
 Percentage Split: The classifier is evaluated on how well it predicts a 

certain percentage of the data that is held out for testing. The amount 

of data held out depends on the value entered in the % field. 
 

4. Classifier Output: Depending on the classifier used, the output displays a 
variety of information:  

 Run Information: A list of information giving the learning scheme 

options, relation name, instances, attributes, and test mode that 

were involved in the process.  
 Classifier Model: A textual representation of the classification model 

that was produced on the full training data.  
 Summary: A list of statistics summarizing how accurately the classifier 

was able to predict the true class of instances under the chosen test 

mode.  

 Detailed Accuracy by Class: A more detailed pre-class break down of 

classifier's prediction accuracy.  
 Confusion Matrix: Shows how many instances have been assigned to 

each class. 
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Here is the classification output on logistic regression for the diabetes database: 
 

=== Run information === 

 
Scheme: weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -

num-decimal-places 4  
Relation: pima_diabetes  
Instances: 768  
Attributes: 9  

preg  
plas  
pres  
skin  
insu  
mass  
pedi  
age  
class  

Test mode: split 80.0% train, remainder test 

 
=== Classifier model (full training set) === 

 
Logistic Regression with ridge parameter of 1.0E-

8 Coefficients...  
Class  

Variable tested_negative  
============================  
preg -0.1232  
plas -0.0352  
pres 0.0133  
skin -0.0006  
insu 0.0012  
mass -0.0897  
pedi -0.9452  
age -0.0149  
Intercept 8.4047 

 

 
Odds Ratios...  

Class  
Variable tested_negative  
============================  
preg 0.8841  
plas 0.9654  
pres 1.0134  
skin 0.9994  
insu 1.0012  
mass 0.9142 
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pedi 0.3886  
age 0.9852 

 

 
Time taken to build model: 0.06 seconds 

 
=== Evaluation on test split === 

 
Time taken to test model on test split: 0 seconds 

 
=== Summary === 

 
Correctly Classified Instances 125 81.1688 %  
Incorrectly Classified Instances 29 18.8312 %  
Kappa statistic 0.5384  
Mean absolute error 0.2942  
Root mean squared error 0.3768  
Relative absolute error 65.6566 %  
Root relative squared error 80.6233 %  
Total Number of Instances 154 

 
=== Detailed Accuracy By Class === 

 
TP Rate FP Rate Precision Recall F-Measure MCC ROC 

Area PRC Area Class  
0.914 0.408 0.828 0.914 0.869 0.547 0.836 0.884  

tested_negative  
0.592 0.086 0.763 0.592 0.667 0.547 0.836 0.773  

tested_positive  
Weighted Avg. 0.812 0.306 0.807 0.812 0.804 0.547 0.836 0.849 

 
=== Confusion Matrix === 

 
a b <-- classified as  

96 9 | a = tested_negative  
20 29 | b = tested_positive 
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5. Results List: Once we run multiple tests with different classifiers within a 

session, the list is available for comparative analysis. Weka provides various 

options for the visualization of the generated classification models as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this section, we have provided a brief introduction to the Weka framework and its 
intuitive graphical user interface. In the next section, we will use Weka to analyze a 
genetic algorithm and demonstrate how to use it for attribute search within the datasets. 
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Attribute search with genetic algorithms in 

Weka 
 
Once again, let's select the diabetes dataset in the Preprocess menu and navigate to the 
Select Attributes menu. In the Search Method selection box, select Genetic Search. The 
configuration parameters for the Genetic Search can be set by right-clicking the Search 
Method text. As seen earlier in this chapter, we can tune various parameters of the 
algorithm and experiment with optimum performance. Here is a screenshot representing 
Genetic Search with Weka:.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Once we click on the Start button, the algorithm searches through the training data and 
selects the relevant attributes with GA. Here is the output from the GA execution on the 
diabetes dataset: 
 

=== Run information === 

 
Evaluator: weka.attributeSelection.CfsSubsetEval -P 1 -E 1  
Search: weka.attributeSelection.GeneticSearch -Z 20 -G 20 -C 0.6 -M 0.033 - 
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R20-S1  
Relation: pima_diabetes  
Instances: 768  
Attributes: 9  

preg  
plas  
pres  
skin  
insu  
mass  
pedi  
age  
class  

Evaluation mode: evaluate on all training data 

 
 

 
=== Attribute Selection on all input data === 

 
Search Method:      

Genetic search.      
Start set: no attributes  
Population size: 20    
Number  of generations: 20  
Probability of crossover: 0.6 

Probability of mutation: 0.033 

Report  frequency: 20    
Random  number seed: 1   

Initial population     
merit scaled subset     
0.0147 0 3      
0.07313  0.06963 4 8    
0.13 0.1374 2 3 6     
0.04869  0.04051 5     
0.1413 0.15086 1 2 3 6 7 8  
0.14492  0.15517 2 3567 8 

0.08319  0.08162 6     
0.03167  0.02022 3 4    
0.02242  0.0092 7      
0.12448  0.13082 2 3578  
0.07653  0.07368 1 8    
0.10614  0.10896 2 4 7    
0.11629  0.12106 5 6 8    
0.0147 0 3      
0.1258 0.13239 1 2     
0.13042  0.1379 1 2 4 5 8  
0.08771  0.087 5 6 7    
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0.13219 0.14001 2 4 5 6  
0.10947 0.11294 2 7  
0.11407 0.11842 1 2 4 7 

 
Generation: 20  
merit scaled subset  
0.16427 0.18138 2 6 8  
0.16427 0.18138 2 6 8  
0.16108 0.17237 2 5 6 8  
0.15585 0.1576 1 2 6 8  
0.16427 0.18138 2 6 8  
0.14809 0.13569 2 4 5 6 8  
0.16427 0.18138 2 6 8  
0.14851 0.13688 2 3 5 6 8  
0.16427 0.18138 2 6 8  
0.10004 0 1 3 6 8  
0.14851 0.13688 2 3 5 6 8  
0.16427 0.18138 2 6 8  
0.1465 0.13119 2 5 6  
0.16108 0.17237 2 5 6 8  
0.16108 0.17237 2 5 6 8  
0.14851 0.13688 2 3 5 6 8  
0.14851 0.13688 2 3 5 6 8  
0.16427 0.18138 2 6 8  
0.15585 0.1576 1 2 6 8  
0.16427 0.18138 2 6 8 

 
Attribute Subset Evaluator (supervised, Class (nominal): 9 class):  

CFS Subset Evaluator  
Including locally predictive attributes 

 
Selected attributes: 2,6,7,8 : 4  

plas  
mass  
pedi  
age 

 

As we can see, it is very easy to extend Weka and use it to deploy genetic algorithms 

and experiment with various parameters. 
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Frequently asked questions 
 

Q: What is the significance of genetic algorithms to data mining? 
A: With a growing number of data sources and hence an increase in volume, it is difficult 
to derive actionable insights from these data assets in reasonable time, despite 
exponentially growing computation power. We need smart algorithms to search through 
the solution space. Nature provides inspiration with the evolution of life on Earth. With the 
use of genetic algorithms we can greatly optimize the search and other data mining 
activities. Q: What are the basic components of a GA?  
A: Population initialization, fitness assignment, selection, crossover, mutation, and survivor 
selection are the basic components of a GA. We need to tune the parameter values for these 
components in order to find the solution in an optimized manner. 
 

 

Summary 
 
In this chapter, we have introduced the concept of genetic algorithms (GAs) and 
programming constructs related to GAs. These algorithms derive inspiration from the 
natural process of evolution. Living species evolve by inheritance, variation in partner 
selection, and hence attributes of the offspring and occasional (random) mutation in the 
genetic code (DNA structure). The same concepts are applied in the GAs in order to search 
the best possible solution from a vast space of possible options. The algorithm is best 
applied to problems where brute force is insufficient and cannot reach a solution within a 
reasonable time. 
 

We have seen the structure of GAs in general and implemented a solution for a simple 
problem in Java. We have reviewed some of the features of the KEEL framework and how it 
is very easy to translate data into knowledge. KEEL is a Java-based desktop application that 
facilitates the analysis of the behavior of evolutionary learning in different areas of learning 
and preprocessing tasks, making the management of these tasks easy for the user. 
 

We have also briefly seen the Encog framework and the API structure, and how it is very 
easy to extend the framework. We have also explored the Weka framework and the GUI for 
comparing various algorithms. Weka provides an easy-to-use and rich user interface and 
comes packaged with sample datasets. In the end, we realized a quick attribute search 
using genetic algorithms with Weka. 
 

In the next chapter, we are once again going to seek further inspiration from nature, from 
the intelligent behavior of living creatures, and how some of their concepts can be used 
to create intelligent machines of the future. 
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 
Swarm Intelligence 

 
 

At some point in time, all of you must have observed the behavior of ants. The way they 
move in a coordinated line one behind another, the way they collect and carry foods (larger 
than their size) to their nests, the way they form bridges to cover larger gaps. All these 
behaviors are remarkable considering the fact that the brains in these small creatures are 
nowhere close to the human brain in terms of number of neurons and hence the 
connections. This type of ordering is inherent to the natural processes and governed 
remarkably. One important point to note here is that these insects are very small and it is 
not in their individual capacity to achieve such larger goals. However, when they work as a 
group they are able to achieve such bigger goals. In light of that, these insects are also 
called social insects. 
 
Social insects have certain prominent characteristics. They live in colonies, they have 
division of labor, they have strong group interactions (direct or indirect), and they are 
flexible. All these behaviors together are applied to achieve collective intelligence of the 
group. This type of phenomena has prompted researchers to work on a new way of 
achieving artificial intelligence (AI) named as swarm intelligence (SI). The term SI was 
first coined by Gerardo Beni and Jing Wang in the year 1989, in the context of cellular 
robotic systems. It is the field of AI that is inspired by natural behavior and coordinated 
functioning of smaller insects, such as ants, bees, and termites. For any SI system, there 
would be a colony of simple agents (same as an individual ant in an ant colony), which are 
also called boids. Each of these boids would be interacting with their neighbor and their 
environments (contexts) to achieve their individual goals. Together they achieve one larger 
goal of solving the problem at hand. 



Swarm Intelligence Chapter 9  

 

The idea of SI has appealed to researchers and they are exploring it more for applying it in 
solving real-world problems. In today's world, where an influx of information is 
uncontrollable, handling such information diligently is no longer within the capacity of a 
single human brain or single centralized system due to ever increasing volume of data. 
You are always limited by individual capacity of human race or machine hardware. SI is 
emerging as an alternative where information processing is distributed, autonomous, and 
naturally controlled. In the next few sections, you will have more clarity on how SI is 
solving some real-world complex problems. 
 

We will be covering the following topics in this chapter: 
 

 Overview of swarm intelligence  
 Police swarm optimization model  
 Ant colony optimization model  
 Mason library  
 Opt4J library  
 Applications in big data analytics  
 Handling dynamical data  
 Multi-objective optimization 

 

 

Swarm intelligence 
 
Swarm intelligence is inspired by group behavior of species such as ants, termites, and bees. 
In these species, behavior of a group to achieve common bigger goals is beyond the 
capability of individuals who are part of the group. However, each individual in their 
limited capacity as per their capability helps in achieving common behavior of the group. 
As a group, these species behave intelligently without any excessive centralized authority 
or governance. In the computer science field, SI is a collection of algorithms and concepts 
which model and formalize such intelligent group behavior. 
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At a very high level, SI can be seen as a system that focuses on achieving useful smart 
behavior that is the outcome of the cooperative efforts of individuals who are part of a 
group (also called swarm). These individuals are called agents. Each of these agents is 
homogeneous in nature. They work asynchronously and in parallel without any centralized 
control or excessive governance. Overall these agents cooperate with each other either 
knowingly or unknowingly to achieve some specific goal that defines intelligent behavior 
of a group. From the perspective of AI or computer science, we can give the following 
definition to swarm intelligence: 
 

Swarm intelligence is a collection of intelligent systems inspired by the collective 
intelligence of a group. This collective intelligence is achieved through the direct or 
indirect interactions of agents that are homogeneous in nature, yet co-operate with each 
other in their local environment without being aware of global context or pattern. 

 

While building any SI-based system there are three fundamental concepts or properties that 
a proposed system should at minimum comply with. These three basic properties are self-
organization (SO), stigmergy, and division of labor. Let us now look into these properties 
one by one. 
 

 

Self-organization 
 
This is one of the most important characteristics of SI systems. SO is the property of SI 
systems that determines the underlying cooperation among SI agents to achieve a desired 
collective behavior. SO is one global behavior or phenomena that is achieved by interactions 
among its lower level agents or bots. These interactions are dependent on a set of rules that 
are incorporated based on local context or environment in which agents are functioning. 
These agents are not aware of any global patterns or behavior. However, the global 
behavior is emergent out of individual functioning of agents. The key is there is no external 
governing body controlling the agents' local behavior. In a nutshell, global group behavior 
in any SI system is achieved by the self-organizing capabilities of individual agents whose 
functional scope is limited to local environment. There are four basic aspects of SO. They 
are: 
 

 Positive feedback  
 Negative feedback  
 Random behavioral fluctuations  
 Multiple interactions among agents 
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Positive feedback is certain rules that help in building global best behavior of the swarm. 
For example, bee's recruitment or reinforcement of new team members for collecting better 
quality food from a better food source is an example of positive feedback. If a bee colony is 
presented with two food sources that are similar in nature with respect to food quality and 
are at the same distance then bees would try to collect food from both sources 
simultaneously. However, if one food source quality is inferior then bees would exploit 
the better food source first based on positive feedback received on that food source. 
 

The other behavior that can emerge from positive feedback is that suppose a better quality 
food source is presented to bees in the middle of collecting food from another source, then 
the bee colony may abandon that food source completely or partially. They would recruit or 
reinforce more bees to collect food from newly identified or better food sources. This 
behavior that increases the survival chances for the entire community is a result of SO. Each 
individual bee type knows its role and responsibilities and performs actions that lead to 
completion of their given set of tasks. 
 

A similar behavior of SO is also observed in ants. The ant colony as a whole is always 
striving to construct a nest that is safe from harsh environments and organize individual ant 
activities so as to locate the source of food that is nearest among all the available food 
sources. The ants apply a very unique and smart algorithm for locating the nearest and 
most abundant food source. Once the shelter (colony) is established, the most important 
aspect for the colony's survival is to find the nearest and most abundant source of food. 
 
The worker ants (on their own and in a self-organized) manner, start moving out in 
multiple batches in independent directions. While exploring various places, they secrete a 
chemical called pheromones. While they are still exploring the food source, the quantity of 
pheromones is constant and is an indication that the search is still going on. As soon as a 
source is found, the ant traverses the path back to the colony. However, this time it secretes 
a varied amount of pheromones. The greater the amount of pheromone, the bigger and 
abundant the source of food. This signal is sufficient for other ants in the colony to start 
traversing the same path immediately (once again in a self-organized manner). There is no 
central command and control mechanism that keeps track of all the ants that are out on a 
specific path. However, the overall goal achievement (finding food in this case) is not 
dependent on the central command as far as the ants who are self-organizing. If the food 
source vanishes all of a sudden, the ants have a fallback plan based on the secondary food 
sources found by another set of ants and based on the level of pheromone on the alternate 
path. 
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As is evident, SO for fulfilling the individual responsibility is the key to survival for ants. 
The AI systems take a lot of inspiration from these examples and should be built with self-
organizing agents with a specific job responsibility within the context of the applications 
environment. The important aspect though is that the individual agents operate without a 
leader or a centralized control based on a simple rule for its actions within the 
environment. These simple rules, when operating in harmony, result in intelligent behavior 
that is way beyond the combined sum of all individual agents' capabilities. 
 

 

Stigmergy 
 
The rules need to be reactive to the changes in the environmental state and the agent should 
be able to adapt to the changes autonomously and continue to perform its function. This 
behavior is called stigmergy. Without this property, the agent cannot be self-organizing 
and will require a centralized controlling agent. With stigmergy, the agent is made aware of 
the context within which it is operating even if the environment changes from the agents' 
previous interaction with it. 
 
Take, for example, an ant moving on a path to the food source and there is some water 
poured on the path. As soon as the ant encounters water on the way, it starts looking for 
an alternate path based on the pheromone signal. It may also traverse its way back to the 
colony and then start over again on another path autonomously (without any central 
control). At the same time, the ant leaves traces for other ants to know that on a particular 
path to the food source, there is trouble on the way. Other ants immediately adapt to the 
change in environment based on the previous ants' experience and modify their 
trajectories based on the simple rules. The ants interact with each other without any 
explicit communication, but only with the modifications in the environmental state. 
 

At this point, the ants apply laws of reinforcement learning that we explored in the 
previous chapter. On the way to the food source and back, the ant is constantly adapting 
to the environment based on the reward for each individual action and state of the 
environment. The goal for the individual agent (an ant, in this case) is to maximize the 
reward (locate the food source or fetch food back to the colony) autonomously. 
 

 

Division of labor 
 
This is the most fundamental aspect of SI. The individual agent within the swarm is 
extremely limited in its capability to achieve the goal for the entire swarm. The natural 
system applies division of labor with individual agents performing a set of very 
specific responsibilities that contribute to the overall success of the swarm. 
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For example, all the bees in a hive are not doing the same thing. There is a clear division of 
labor within the bee hive based on the type of the bee. The Queen bee is responsible for 
laying eggs, the male drones are responsible for reproduction, and the worker bees build 
the hive and work to get food for the entire population. They also take care of the Queen 
bee and the drones by feeding them. In AI systems each individual agent needs to be 
programmed to have its own rules based on the environmental context to perform a specific 
set of duties. With the division of labor, the parallel processing systems can efficiently work 
and distribute the work loads without missing the sight of the overall reward and the goal. 
 

With this background with SI, let us look at some of the advantages of collective intelligence 
for maximizing the rewards. 
 

 

Advantages of collective intelligent systems 
 

Collective intelligent systems have the following advantages: 
 

 Flexibility: The agents have their individual rules for operation within the 

context of its environment. The agent responds to changes in the environment 

and then the entire population demonstrates flexibility in order to adapt to the 

change in environment.  
 Robustness: Since the agents are individually a very small unit within the whole, 

even if one agent fails, the community does not suffer and the overall goal can 

possibly be achieved.  
 Scalability: Since the individual agents are small units of independent work, it is 

possible to scale from hundreds to thousands to millions of such intelligent 

agents based on the use case and achieve exponentially higher returns and 

cumulative intelligence.  
 De-centralization: Since there is no central control in the colony, the agents can be 

deployed onto the edge of the computation (realistic scenario in case of IoT use 

cases). Unlike a distributed computing framework where a central node server 

needs to be incrementally powerful, in the case of SI, there is no need for a 

centralized control since the agents work based on rules within the environment.  
 Self-organization: The possible solutions that deploy algorithms based on SI can 

evolve and adapt to the changes in the environment and emerge without being 

predefined. 
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 Adaptation: The agents and system as a whole can adapt and adjust to the 

predefined environment along with the new changes in the environment. 

The adaptation is also a unique feature of the individual agent instead of 

being centrally controlled.  
 Agility and speed: The intelligence system based on swarm algorithms 

demonstrate agility and improved speed with every interaction with the 

environment. 
 

While designing the systems based on SI, there are certain guiding principles that need to 
be followed for developing self-sufficient systems. 
 

 

Design principles for developing SI systems 
 
The design principles to be taken into consideration for developing SI systems are as 
follows: 
 

 Proximity principle: The individual agents within the swarm should be able to 

communicate back to the population center in a reasonable time while exploring 

the search space individually. For example, an ant in search of food should be 

able to report back to the colony, as soon as a food source is found. This reporting 

needs to happen in a time-sensitive manner for the food source to be relevant. 

The proximity principle defines an implicit demographic boundary for the 

members.  
 Quality principle: While the independent agents get to a solution independently 

within the search space, the swarm should be able to determine the quality of the 

solution and move in that direction. Once again, if multiple ants find a food 

source each they come back with different levels of pheromones on the way in 

proportion to the quality and quantity of the food source. This helps the group as 

a whole to decide which food source to go to. However, there is no central 

command that determines the quality standard and decides the path. On the 

other hand, the agents communicate and collaborate to reach the right source of 

food. 
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 Diverse response principle: While the agents are solving a common problem, 

they should not be focused on a small region within the overall search space. 

They must be enabled for exploration while exploiting the previously understood 

patterns. The swarm should look to diversify with a certain threshold that 

defines the survival boundary of an individual agent.  
 Adaptability principle: The swarm as a whole should be able to adapt to the 

changes in environment. The agents should organize themselves in tune with 

the changing environment. 
 

With the basic understanding of the SI fundamentals, let us understand two of the 
algorithms that can be used for building artificial agents that work in a size-able group to 
perform collectively large tasks. 
 

 

The particle swarm optimization model 
 
The particle swarm optimization (PSO) model is inspired by flocking of birds and the 
schooling movement of fish. The goal of the PSO model is to find an optimum solution 
(food source or a place to live) within a dynamic space. The swarm starts at a random 
location and a random velocity and is based on the collective behavior by exploring and 
exploiting the search space. The unique feature of PSO is that the agents operate in a 
formation that optimizes the search and also minimizes the collective effort in converging 
to an optimum solution. The agents within a swarm that follows the PSO model follow 
some of the guideline principles: 
 

 Separation: Each individual agent is programmed in a way that it is able to keep 

a sufficient distance with the flock-mates so that they do not run into each other 

and at the same time, maintain a separate existence space for itself to be part of a 

formation in search of an optimum solution. The agent follows the nearest 

neighbor in order to adjust its position and velocity in order to ensure the right 

level of separation.  
 Alignment: Each individual agent aligns with the swarm's overall pattern 

formation and the average group velocity within the search space. 
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As a general principle, each member in the swarm that follows the PCO model 
communicates its experience continuously to the group as a whole and to the nearest 
neighbors in particular. The agent has a view of the nearest members and their behavior 
and learning pattern. The agent either influences the movement (position and velocity) of 
the neighboring agents based on the observations and suitability of its experience within the 
search space for local optimal solution or adjusts its movement based on a better experience 
for the nearest members. The core principle is alignment with nearest neighbors and hence 
the entire swarm as a whole in the interest of the larger goal. Originally, the PSO was 
proposed as an optimization algorithm within real-value continuous search space and it is 
now expanded to also deal with binary or discrete search use cases. The core algorithm is 
defined by the velocity and position equations as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.1 Velocity function in PSO  

 
 
 
 
 
 
 
 
 
 

Figure 9.2 Position function in PSO 

 

In order to define the velocity (rate of change of location for an individual agent) two 
parameters play a major role. The best position across a timeline for the individual agent is  
represented by and , which represent the position of the best agent within a 

swarm's global position within the environmental context. When these two parameters 

contribute to overall velocity of the swarm, it is the optimum velocity for searching the 

solution within the space provided that the environment is deterministic. 
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However, in case of a stochastic environment the factors R1 and R2 play a role for adjusting 
to the changes in the state of the environment. These parameters introduce the required 
randomness in the swarm in order to explore the search space in an efficient manner. c1 
and c2 are the cognitive and social parameters that represent relative importance of a 
particular agent with respect to the best position of the swarm. The relative values of these 
parameters constantly move an individual agent to the best position within the swarm 
even if the environment undergoes a change. The effect of relative difference between c1 
and c2 can be represented as follows: 

 

c1 c2 Exploration level 
   

High High High exploration in distant regions 
   

Small Small Refined search and lower level of exploration 
   

High Small Bias towards a particular agent's global best position 
   

Small High Bias towards a swarm's global best position 
   

 

 

The velocity function has three distinct components: 
 

 Inertia ( ): Inertia is the resistance of any physical object to any change in its 

state of motion. This includes changes to the object's speed, direction, or state of 

rest. 
 

The velocity in time t+1 is a function of time t. Which means the swarm is not 
allowed to change the velocity abruptly. Instead, there is a gradual change in 
velocity depending on the environmental change or if the swarm needs to 
change the velocity in order to navigate effectively through the search space. 
Due to this inertia, we observe that the swarm of birds continue in the same 
direction most of the time and move in a formation since velocity of the agent 
in time t+1 is dependent on velocity of the agent at time t. This term is also 
very important for changing the global best agent within the swarm. When 
an agents' fitness function is more optimum compared to a swarm's global 
fitness, the agent takes the position as global best agent within the swarm. 
During the transition, ( ) the social expression in the equation  
becomes zero ( ). At this point the new agent 

becomes the global best particle by moving with the new velocity and hence 

changing the position within the swarm. 
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 Self-knowledge ( ): This component of the velocity function defines 

an agents' individuality within the swarm. This translates into the level of 

attraction for a particle to its own global best value that optimizes the search 

through the solution space.  

 Social-knowledge ( ): This component of the velocity function defines 

adaption to the social behavior among all the agents. With this expression, grade 

of group learning and experience sharing between the individual members is 

defined. 
 

The PSO model can be represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.3 PSO model 

 

 

PSO implementation considerations 
 

We need to have the following PSO implementation considerations: 
 

 PSO stores an agent's best position in a considerable and relevant timeline along 

with the global best position for the swarm. With this, the agent with a maximum 

fitness score has an influence on the overall behavior of the swarm and the 

convergence is fast. 
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 PSO is a simple algorithm to implement since the mathematical equations for 

velocity and position are easy to implement due to inherent simplicity.  
 PSO can adapt to the changes in environment very efficiently by adjusting the 

velocity and positions of the members quickly through each iteration. 
 

 

Ant colony optimization model 
 
The ant colony optimization (ACO) is another widely used and adapted variation of the 
SI algorithms. At its minimum, the objective of the ant colony or the artificial agent 
swarms is to set out in search for an asset (food in case of ants and a package in case of a 
robot colony in a retailer warehouse) in an optimum way so as to traverse minimum 
distance to and from the asset and the base location. This model is useful with surveillance 
drones, autonomous car route planning, and so on. 
 

Let us understand some of the operating principles in an ant colony and get introduced 
to the terminologies so that those can be applied in designing artificial swarms based on 
the ACO model. Here is a figure of an Ant colony and a Food source:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.4 Ant colony representation and terms 

 
 
 
 
 
 
 

[253]  



Swarm Intelligence Chapter 9  

 

In this example, there is food source in the vicinity of the ant colony. There are two paths to 
the food. Path-1 is a long distance to the Food source and Path-2 is the shortest distance. 
The ants begin exploration of the search space independently. Each ant that sets out has a 
task to find the food source. A few ants take the long route and find the food source and on 
the way secrete a pheromone trail. As the ants return to the colony, other ants get a signal 
that the food source is found and they start traversing the path. Meanwhile, the ants on the 
shorter path return faster than the ones on the long path and more ants start traversing the 
short path since the effective time is less. Over a period of time, the ants on the short 
distance accumulate more pheromone on the way, which signals to the colony that the food 
source is more optimum in terms of distance as well as the quality. With time, the 
pheromone on the long distance path evaporates and the path ceases to exist. Eventually, 
the ants stop traversing the long path to the food source and the collective behavior of the 
colony is fully optimized. 
 

When we imitate the concepts of natural ants and their optimization techniques for 
designing artificial agents, the concepts can be enhanced and further optimized based on 
the environment. For example, the natural ants do not have any memory. They operate 
within the set of rules that define their movement and the overall behavior (pheromone 
secretion). The artificial ants (agents) can have limited memory that stores the rewards 
based on the past actions and hence the intelligent behavior can be enhanced. The natural 
ants are subject to ecological modifications and constraints. For example, water drops on the 
way to the food source. The artificial agents are not subject to the ecological modifications 
and normally run within a controlled and predictable environment. The artificial agents 
simulate the patterns from the natural ants by depositing the pheromone on the way in 
order to reinforce the behavior onto the other agents. 
 

The artificial agents also traverse the path with more pheromone concentration and 
supplement it with the memory component for optimum behavior. In the case of artificial 
ants, the pheromone is evaporated quickly in order for the colony to explore further 
optimizations. This is unlike the real ants that are at work with survival as the basic instinct. 
The core intuition while developing the ACO-based agents is based on a fitness function 
that defines the actions for the agents that return maximum pheromone levels on the way. It 
is also seen as a cost optimization problem that reduces the cumulative cost for the colony 
to reach the target within the search space. 
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At the algorithm level, the individual agent works based on a probability rule that helps 
to select components (sequential steps) that utilize the pheromone levels on the way and 
the environmental variations. While the artificial ants move through the solution space 
based on the probability function, it needs to also determine the amount of pheromone for 
it to deposit. The probability rule is called the state transition rule:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.5 Mathematical representation of ACO 

 

In the following equation, α and β are the parameters that control the overall impact of 

pheromone and heuristic approach in deriving the probability function. This is similar to c1 

and c2 values in PSO. The effect of relative difference between α and β can be represented 

as follows: 
 

α β Effect on convergence 

  Pheromone information is important. For an agent, there is a higher 

High Low 
possibility of choosing the actions and positions that are previously taken by 
other agents. This may lead to saturation of many agents in the same region 

  and hence reducing the swarm's potential to explore the search space and 

  hence obtaining sub-optimum results. 
   

  The algorithm behaves as a stochastic multi-greedy algorithm with the 

Low High 
individual members of the colony seemingly in charge of finding the optima 
on their own with low level of co-operation and limited learning from each 

  other's path traversal. 
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In this case, the algorithm operates as a stochastic greedy algorithm with Zero High 
individual members in charge and with zero learning from others' path  

traversal. The node with minimum cost will get a preference and there is no 
weight-age given to the pheromone level on the path.   
In this case, the algorithm operates same as the natural ants where the 

High Zero guiding principle is pheromone only and there is no heuristic information 

utilized in searching through the problem space. 
 

 

MASON Library 
 
Multi-Agent Simulation Of Neighborhoods or Networks (MASON) is a Java-based 
multi-agent simulation library that has a generic API library in order to easily simulate SI 
algorithms in particular and any general algorithm that explores the search space with the 
use of independent agents in general. This library is created by George Mason at the 
University's Center for Social Complexity and Department of Computer Science. It provides 
a fast and portable core written in Java programming language and is supported by 
visualization framework for hypothesis testing and visualization. It is a handy framework 
for modeling new architectures and algorithms. The design goals for the MASON library 
are: 
 

 Provide a large number of simulations and configurable experiments. The library 

is very easy to extend for additional simulations and use cases.  
 High Degree of modularity and flexibility—the framework is built as a layered 

architecture and it deploys object oriented fundamentals for keeping the 

responsibilities of the individual building blocks loosely coupled.  
 Separate visualization tools—the framework has a visualization layer that is 

separate from the code engine and can also be extended based on the use 

case and the context of the application hypothesis that is being tested. 
 

MASON is a multi-purpose event simulator that runs as a single process that efficiently 
supports a large number of agents. The applications of MASON are as diverse as modeling 
social complexity, physical modeling of the search space, and agent interactions with the 
environment, independent and abstract agents that can be programmed to follow basic 
rules, and operate as a member of a swarm. The framework is handy for AI and ML 
research and simulations. 
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MASON Layered Architecture 
 
MASON has implemented a layered architecture with distinct components that are loosely 
coupled and integrated with a generic interface. The following figure shows various 
components within the layered architecture:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.6 Mason library components 

 

Primarily, the MASON library contains two main components, the model library and the 
visualization framework. The visualization support 2D as well 2D rendering. The model 
and the visualizations are totally separated and the models can be independently executed 
and results returned to the console or the output files. The UI is loosely coupled and 
works based on the current states of the objects within the model objects. 
 
Instead of taking a top-down approach that starts with user interface and initiates the 
model, the MASON framework keeps the model and visualization components fully 
independent. This approach gives flexibility to create different visualizations (Java based or 
if required, web based) as required. One of the core features implemented by Mason is 
checkpointing. The model can be serialized to the disk and can be invoked on an entirely 
different platform at a different time and it is initialized to the same state. This facilitates a 
great deal of interoperability and collaboration among research teams. Here is another 
representation of the MASON architecture: 
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Figure 9.7 MASON Architecture (Source: Mason official manual) 

 

The MASON library provides a simple API to create new simulations. In order to create a 
new agent object, it needs to extend the sim.engine.SimState class. The simplest 
skeleton implementation is as follows: 
 

import sim.engine.*; 

 
public class SWARMAgent extends SimState{ 

 
public SWARMAgent(long seed){  

super(seed); 
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}  
// method used for initialization of the model including the 

configurations and the UI  
public void start(){  

super.start();  
} 

 
public static void main(String[] 

args){ doLoop(SWARMAgent.class, 

args); System.exit(0);  
}  

} 

 

MASON creates a global state of the simulation instance as a subclass of SimState. 

The SimState encapsulates an event scheduler (sim.engine.Schedule). The agents 

are scheduled with the instance of the sim.engine.Schedule class to be stepped. 

The scheduler is the representation of time for the simulator. 
 
The Mason library contains a set of pre-built simulations. Let us look at the ant colony 
optimization simulation in the MASON library. This is an implementation of the simple 
scenario we have seen in figure 9.4, Ant colony representation and terms. The search space 
contains two obstacles, a food source and the colony location. Various parameters such as 
number of ants and others are configurable as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.8 Ant Foraging configuration 
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Once the simulation starts, the ants get onto a random path individually and deposit a 
pheromone trail on the way. The high value of evaporation constant ensures that the ants 
explore the search space instead of gravitating to the already explored paths. As soon as 
the first ant finds the food source, it starts traversing back and forth between the food 
source and the base location once again leaving a pheromone trail both ways. The ants are 
programmed to follow the pheromone trail and eventually the model converges and the 
ants get on the optimized shortest path. The following figure shows the ACO simulation:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.9 ACO Simulation in MASON 

 

MASON library has many more simulations pre-built into the package and we can explore 
these and experiment with various options. The API can be used for extending the scope of 
the application with minimum code and leveraging the framework capabilities and the 
visualization layer. In the next section, we will briefly review another framework, Opt4J, 
which is primarily built for evolutionary computing and can also be used for 
experimenting with SI algorithms. 
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Opt4J library 
 
Opt4J is a modular framework for meta-heuristic optimization that can be applied to a range of 

evolutionary algorithms. In the context of this chapter, we are looking at implementing SI 
algorithms such as ACO and PSO using the library. The libraries that deal with optimization 

problems have three primary components at abstract level. Creator, decoder, and evaluator. 

The creator provides random genotypes (please refer to Chapter 8, Genetic Programming, for 
details on genotype and phenotypes) from the search space. They represent agents in case of SI 

algorithms. The agents are created by the creator object. 
 

The Opt4J library provides an org.opt4j.optimizers.mopso.Particle class that 
works as a creator. The agents within the swarm are the instances of this class that are 
actually created by a factory  
class' org.opt4j.optimizers.mopso.ParticleFactory. The decoder transforms a 
genotype to a phenotype. The decoder converts the abstract characteristics into tangible 
objects and associate behavior patterns with those. Based on the phenotype, the evaluator 
defines the quality of the current agent in case of the PSO algorithm, the evaluator function 
returns the velocity and position for the agent and determines if it is the best position and 
velocity within the swarm. Once the core components are defined, the framework can 
handle the optimization problem. The architectural components of the Opt4J libraries are 
as follows (Source: Opt4J documentation):  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.10 Architectural Components of Opt4J (Source: Opt4J documentation) 
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Opt4J provides a simple and intuitive UI for loading the models and also visualizing in a 
limited manner:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.11 Model Visualization with Opt4J 

 

We are at the verge of a data revolution and the data volumes from heterogeneous sources 
are increasing day by day. Even though the parallel processing frameworks along with 
cloud computing are getting better at processing more data, the brute force technique will 
not be able to cope with the growth in data volume. We will need to apply smart techniques 
inspired by nature such as genetic programming, reinforcement learning, and SI to deal 
with big data. In the next section, we will look at some possible use cases in dealing with 
big data and underlying computational assets. 
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Applications in big data analytics 
 
Every passing minute, we are gathering more data across the globe and we now have 
computing power to store and process the data assets. Let us briefly understand the 
fundamental architecture of big data systems. In the current form, the big data computing 
framework is an enormous collection of computation nodes that are distributed across 
the globe. There are two primary distinctions within the deployments. The systems can 
be deployed on-premise for the enterprises and there is a paradigm shift towards cloud 
computing where the compute infrastructure is virtualized and it is geographically 
distributed in various regions. 
 
The independent units of compute are termed as nodes. The nodes are interconnected and 
controlled by a centralized computation unit that keeps track of all the nodes and various 
operations on these nodes. There is a similarity between the natural swarms and the big 
data nodes in that the nodes are independent work units. However, the similarity ends 
there. The nodes in a big data deployment are governed by one or more master nodes and 
worker nodes work in synchronization based on the instructions from the master node. As 
we have seen in this chapter, the natural swarms (ant colonies, and fleet of birds, and so on) 
do not have a central command and the individual members (agents) work in an 
autonomous manner based on the rules and the agents are able to adjust themselves based 
on the stochastic nature of the environment in which they operate. The concepts of SI can be 
applied in securing the big data infrastructure as well as ensuring that the nodes are fully 
balanced. In the mainstream approach, a computation job is first submitted to the master 
node and it in turn breaks it down into multiple chunks to be performed by the data or 
compute nodes. 
 
At this point, the jobs are executed independently by the slave nodes. Based on the resource 
available with the slave nodes, the jobs finish at different times and require varied degrees 
of computation and storage. Eventually it may happen that the core compute load is not 
evenly distributed across nodes. Based on some of the concepts we have learned in this 
chapter, here is a generic (ACO) algorithm based on SI that can be deployed in the 
distributed computing environment. With this algorithm the general process be: 
 

 Reproduction: This is a process by which new artificial ants are generated. The 

controller checks the platform periodically and generates ants based on the load 

on the cluster nodes. If the nodes are overloaded or underloaded, new ants are 

generated for carrying the message across. 
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 Exploration: In this process, the agents are independently in charge of finding the 

nodes that are overloaded. They can trace through the network and check the 

operating parameters and on the way leave a trial of simulated pheromone 

(incremental counter) for the other members of the swarm to get notified about 

the overloaded or underloaded node(s). 
 

The ants in this swarm move forward and backward (same as the natural ants that move 
from the colony to the food source in both directions). For the sake of simplicity in the load 
balancing algorithm, two distinct types of ants move in each direction with independent 
tasks at hand. The forward moving ant is responsible for finding a node that is overloaded 
or underloaded. This agent starts from the same position (node) at which it was born and 
starts exploring the space. The agent that moves backwards carries a signal (quantifiable 
pheromone) and creates a trail on the way that notifies that a particular node is overloaded 
or underloaded. For simplicity, in our model, the agent that moves backwards is generated 
only when a target node (which requires load balancing) is encountered. A forward 
moving agent is generated within the process of the target node when the threshold of 
node activity is reached (high as well as low). 
 

With this background and the basic understanding about the approach, the load balancing 
flow for the distributed computing environment can be broken down into the following 
steps: 
 

 The agents calculate and quantify the load (under and over) on the node at which 

it is currently connected.  
 Start in the direction of a random new node to calculate its suitability for load 

balancing.  
 The backward ant is generated when a candidate node is found. This agent 
updates the pheromone information in order to leave a trail of target nodes.  

 Calculate the collective requirement for load balancing based on the candidate 

nodes found by the agents.  
 Balance the load on the cluster. 
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The load balancing algorithm can be depicted as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.12 Load Balancing Algorithm flowchart 

 

The applicability of SI is even greater in the case of IoT where the computation is moving 
towards the edge and the sensors that collect data can be treated as the members of the 
swarm and perform independent operations for the overall benefit of the system by 
operating based on fuzzy rules instead of hardcoded functions. The edge devices can be 
programmed with capabilities to explore and exploit within their working environment in 
order to collectively achieve some of the predefined goals. 
 
We have so far seen the optimization of big data processing in regards to the volume and 
distributed computing. However, there are two more important aspects of big data, which 
are variety and velocity of the data. Variety and velocity of the data requires dealing with 
the big data multi-dimensional problem. In the next section, we will briefly review 
handling of dynamical data and multi-objective optimization when there is more than one 
objective (as in the case of real scenarios) for the data processing system. 
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Handling dynamical data 
 
With increasing sources of data, there is a quest of finding meaning from it and utilizing it 
for better decision making and deriving autonomous actions. However, as the number of 
dimensions and input variables increase, the search through the solution space becomes 
computationally intensive and application of simply the brute force and distributed 
computing is not sufficient. We can leverage SI algorithms in order to tag the important 
dimensions with higher weights impacting the overall outcome. In this particular scenario, 
the velocity of the data generation adds a level of complexity due to the variation in the 
data that is received. 
 
Some of the challenges that need to be solved when designing the swarm of artificial agents 
are related to the dynamic target space, the state of the environment changes very rapidly 
(even after an optimization is performed and the pheromone level is decided by the 
intelligent agent). Once the swarm finds global optima, the actual value may change 
dynamically. This requires a different set of rules to be built into the agents, which address 
the dynamism of the environment. At this point, the algorithm needs to evolve to consider 
the increased cost of optimization within the dynamic search space and trade it off with the 
quality of the solution that is obtained. The artificial agents require a level of fuzziness built 
in its objective function in order to effectively deal with dynamical data. 
 

 

Multi-objective optimization 
 
So far in this chapter, we have taken the examples of the problem with one objective 
(finding a food source for an ant colony). However, in real-world scenarios, often there is 
more than one objective that needs to be met by the individual agents as well as the 
swarm. For example, in the case of honey bees they need to look for the food source, gather 
the food, and find a safe and viable place for the beehive. One objective is fulfilled at the 
cost of another objective. The agent should be programmed to consider the trade-off in the 
larger interest of the swarm. 
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As far as possible, the optimization function for the agent should bring optimum solution 
for more than one objective, but it is not feasible to mutual exclusivity. In such cases, the 
agent should be able to operate without a central control and decide the objective weightage 
based on the environmental context and should favor the objective that will fulfill the 
swarm's overall objective for an elongated period instead of deciding based on a short-term 
strategy. The goal of the optimization as a whole is to reach Pareto Optimality for the 
swarm: 
 

Pareto optimality is a formally defined concept used to determine when an allocation is 
optimal. An allocation is not Pareto optimal if there is an alternative allocation where 
improvements can be made to at least one participant's well-being without reducing 
any other participant's well-being. If there is a transfer that satisfies this condition, the 
reallocation is called a Pareto improvement. When no further Pareto improvements are 
possible, the allocation is a Pareto optimum. 

 

 

Frequently asked questions 
 
Q: What is the difference between distributed computing paradigm and swarm 
intelligence? In the case of distributed computing, we also divide the work units in chunks 
that are processed by individual nodes. 
 
A: The basic difference between these two types of systems is that the distributed 
computing systems are centrally controlled. There is a master node or processing unit that 
keeps track of all the worker nodes and allocated work units based on their availability. 
The frameworks also maintain a level of redundancy so that the system is reliable in case of 
failure of one of the worker nodes. In case of intelligent swarm behavior demonstrated by 
social creatures, there is not centralized control and all the agents operate independently 
within their operating principles. The agents are self-organizing and collaborate intuitively 
and implicitly instead of an explicit collaboration managed by a central controlling unit. 
 

Q: How do systems based on SI algorithms mimic the natural phenomenon such 
as pheromone generation? 
 
A: Pheromone is a chemical that is secreted by ants on their way to and from the food 
source, which signals to other ants that there is a food source around. This chemical is the 
primary mechanism in which the ants communicate with each other and varying 
concentration of pheromone indicates different things to the ants. In case of artificial agents, 
the agent maintains a quantification of pheromone as a numeric value that is incremented 
to indicate additional pheromones and there is also a process for evaporation that is based 
on a time parameter. In a way, the behavior is simulated to match the natural phenomenon. 
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Q: What are some of the use cases and the real applications of artificial swarm intelligence? 
 

A: The principles of SI can be applied to a diverse set of problems and use cases across 

industries. We have already seen a use case in distributed computing for balancing the load of 

the nodes. We can also deploy SI algorithms in logistic planning and supply chain optimization, 
network and communication routers, intelligent traffic and fleet control, optimizing factory 

operations, and workforce optimization in customer services operations. 
 

 

Summary 
 
In this chapter, we have seen an interesting aspect in building AI. Nature has the best 
algorithm when it comes to harmoniously managing an extremely complex ecosystem that 
has a massive scale. We take inspiration from nature and some of the smallest creatures 
that have tiny brains and hence a very small number of neurons compared to human 
beings. However, these small creatures are able to collectively achieve feats that are far 
bigger than the sum of their individual capabilities. The operating principles of these 
community creatures cannot be ignored when we are on a quest to build AI systems that 
complement and augment human capabilities. 
 
In this chapter, we have seen some of the fundamental concepts of natural swarm 
intelligence and some of the principles we need to consider while developing modern 
systems based on SI. We have tried to represent the collective behaviors in a mathematical 
form and derive some of the patterns in developing the algorithmic behavior for the 
artificial agents with PSO and ACO algorithms. In this chapter, we have reviewed two 
computational frameworks and libraries, MASON and Opt4J, which can be easily leveraged 
for various experiments and advanced analysis. These libraries provide effective 
visualization layers. We have covered a use case for load balancing the servers in a 
distributed computing environment. 
 

In the next chapter, we will once again derive inspiration from nature and look at 
an important algorithm called reinforcement learning. Unlike supervised learning, 
reinforcement learning leverages reward and punishment as the inputs for learning 
behavior for the artificial agents. 
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 
Reinforcement Learning 

 
 

In Chapter 3, Learning from Big Data, we were introduced to two fundamental types of 
machine learning techniques: supervised learning and unsupervised learning. In case of the 
supervised learning, a model is trained based on the historical data (observations) for 
predicting the outcomes based on the new data inputs. In the case of unsupervised learning, 
the model tries to derive patterns within the datasets and define logical grouping 
boundaries in order to separate the solution space. There is a third type of machine learning 
algorithm that is equally important for the evolution of artificial intelligence. 
 

Remember the process of learning to ride a bicycle. We observe another person who is 
riding a bicycle, create a mental model on how to do it, and attempt it ourselves. It is not 
possible to just get the balancing and movement on a bicycle right in the first attempt. We 
(actor) try for the first time (action) on the road (environment) and may fall down (reward). 
We try over and over again with different balance on the left and right side with different 
speed and strategy to pedal and this time may go some more distance (higher reward) and 
finally get the cycling right (goal!). This process when repeated a number of times reinforces 
the right set of actions based on the environmental conditions at a particular point in time in 
order to maximize the reward. 
 

The process we have just visualized is called reinforcement learning. This is the third 
fundamental category of machine learning algorithms, which we are going to study in 
this chapter. In this chapter, we will understand: 
 

 The concept of reinforcement learning algorithms  
 Q-learning  
 SARSA learning  
 Deep reinforcement learning 
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Reinforcement learning algorithms concept 
 
Let's create a simplistic model for reinforcement learning with an introduction of the basic 

terminologies:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

At each step and time (t), the agent: 
 

 Executes action at  

 Receives observation ot  

 Receives a reward rt 

 

At each step and time (t), the environment: 
 

 Receives action at 
 

 Generates observation ot+1 

 Generates scalar reward rt+1 
 

The environment is considered to be non-deterministic (action at based on ot will receive 

reward rt and the same action in the same state may result in different rewards). 
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The agent (intelligent machine) is connected to the environmental context with its 
observation and action. The agent perceives the environment in a unique-to-itself manner 
and decides the action based on some of the popular and evolving techniques. At each 
step in time, the agent receives signals that represent the state of the environment. 
 
The agent responds with an action that is one among several possible options at that point 
in time. The action generates an output that changes the state of the environment. 
Remember the results pyramid from the first chapter? If the agent needs better results it has 
to take the right actions based on the environment and overall goal for its existence. The 
change in state of the environment due to an agent's action is communicated back to the 
agent with a reinforcement signal r. The overall result is a combination of discrete actions 
that the agent needs to choose to maximize or increase the sum of reward (reinforcement 
signal). This is learned over a period of time based on trial and error strategies supported by 
some of the evolutionary algorithms. 
 

With this background, we can clearly see that there are two distinct ways in 
which reinforcement learning can be achieved: 
 

 Use genetic algorithm and programming: In this approach, the agent searches 

within the space of possible pathways to the optimal solution or action based 

on the environmental context. While use of a genetic algorithm model tends to 

eliminate dependence on the brute-force for achieving an agent's overall goal of 

maximizing rewards, this approach at time yields sub-optimized actions for the 

agent.  
 Use statistical techniques and dynamic programming model: This is the 

approach taken by modern computational paradigm of distributed 

computing and parallel processing in development of the agents that 

outperform human intelligence at some challenging tasks (games such as 

Chess and Go). 
 

There is a fundamental difference between reinforcement learning and supervised learning 
models. In the case of supervised learning, we have access to historical data that maps the 
independent variables to the output variable(s). This historical data is used as input for 
training the supervised learning model. The model is then able to predict the output value 
for a new set of input datasets. In the case of reinforcement learning, the agent needs to 
search within the available solution space and does not have access to a historical set of 
actions that have resulted in maximum reward. A hybrid approach in which the starting 
point for the agent is a trained model that eliminates some of the search space and the 
agent can reach the goal (maximizing reward) for a set of environmental transitions in a 
more optimized manner seems to be the preference for building machine intelligence. 
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The state transition for the environment based on the agent's actions can be visualized 
as follows:  
 
 
 
 
 

 

The overall goal for the reinforcement learning algorithm is to derive a policy P to 
maximize the sum of reward for all the actions combined:  
 
 
 
 
 

 

There are two primary strategies that an algorithm needs to apply for reinforcement 
learning. Imagine reinforcement learning as navigating through a maze in which we get 
positive and negative rewards along the way. We derive the navigation policy with 
exploration and trace the path back if the rewards are decreased over multiple actions. This 
technique is called exploration with focus on rewards. However, simply following a path 
of maximum reward within the limited visibility into the maze, we cannot reach the end 
state of finding the optimum path out. 
 

We need to exploit unknown territories at random to venture into new directions. This is 
formally termed as exploitation of the search space. A combination of exploration and 
exploitation steps leads to the overall goal of reinforcement learning. While the agent 
applies exploration and exploitation to meet an overall objective of maximizing the 
rewards, there needs to be a consideration for optimum behavior. There are three 
distinct modes in which the agent can optimize the search through the solution space 
within the visible environment: 
 

 Finite horizon model: At any given point in time the agent cannot have visibility 

of the entire search space. The agent breaks the search for maximum reward for 

the next m steps:  
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The agent does not worry about the steps beyond the mth step in future. In this 
approach, the agent has a non-stationary policy that may be subject to change 
depending on the state of the environment that is encountered. At this point the 
agent takes m-step optimal action, which is the best sequence of actions for m 
steps in reinforcement. On the next step, the agent optimizes for m-1 steps and so 
on to the end of the limited search space. 

 

 Infinite horizon model: The notable difference in this model is that the search 

space and the state transitions are considered to be infinite. The model is 

trained with long-term reward maximization in mind over the entire search 

space. The rewards are discounted in the geometric proportion as per a 

discount factor β with a value range between 0 and 1:  
 
 
 
 
 

 

 Average reward model: In this case, the agent takes actions based on optimum 

value of average reward across action steps. This is a limiting case of the infinite 

horizon model and it is considered to be more conservative in terms of digression 

to an un-optimized solution in the interim. 
 

When the algorithm follows one of the models, the performance is measured with 
three basic criteria: 
 

 Slow and eventual convergence to optimal: The agent that initiates the learning 

slowly and eventually converges to optimum state with action steps for 

maximum reward are less preferred compared to the ones that converge to 90% 

optimal behavior quickly.  
 Measure of speed of convergence to optimal: Since the state of optimal is 

uncertain, the speed of convergence needs to be a relative and subjective 

measure and a function of acceptable differential from global optima or near-

optimality. We can also measure level of performance after a given amount of 

time or action steps. There is normally a period of time during which mistakes 

do not occur and hence the minimum time needs to be carefully selected within 

the context of the environment in which the agent is operating. At times, it 

becomes an inappropriate measure if the agent operates within the environment 

for an elongated amount of time. It is also possible that the agent pays a high 

penalty during the overall learning period. A model that converges quickly to 

the threshold performance and accuracy can be selected with this measure. 
 

 



[273]  



Reinforcement Learning Chapter 10  

 

Reinforcement learning techniques 
 
With this background in reinforcement learning, in the next few sections we are going to 
look at some of the formal techniques for exploration into the search space with the goal 
of maximizing the rewards in an optimal way. 
 

 

Markov decision processes 
 
In order to understand the Markov decision processes (MDPs), let us define two 
environment types: 
 

 A deterministic environment: In a deterministic environment, an action taken 

within a particular state of the environment determines a certain outcome. For 

example, in the game of chess out of all the possible moves at the beginning of the 

game, when we move a pawn from e4 to e5, the immediate next step is certain 

and does not differ across various games. There is also a level of certainty of 

reward in a deterministic environment along with the next possible state(s).  

 A stochastic environment: In the case of a stochastic environment, there is 

always a level of randomness and uncertainty in terms of next state of the 

environment based on the agent's action in the previous state. 
 

As you can sense, most of the real-world environments that the agents are going to be part 
of when building intelligent systems are going to be stochastic in nature. MDPs provide a 
framework that facilitates decision making in a stochastic environment with the overall goal 
of the agent being to find a policy to reach the final intended state based on a series of 
actions within the context. MDPs deviate from simple planning in the sense that the actions 
are determined and adjusted based on the environmental conditions. MDPs provide a 
formal quantification model for the decision making process for the agent in the stochastic 
environment. 
 
The agent takes a step (action a) from a set of all the available actions at time t within its 
current state s. The environment moves to new state s' while on the way giving a reward 

to the agent Ra(s,s'). Due to the stochastic nature of the environment, transition from state s 
to a particular state s' cannot be guaranteed with certainty. This transition is possible with 

a probability value Pa(s,s'). Each action step within state s is independent of previous states 
and actions and satisfies Markov property. 
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A stochastic process has the Markov property if the conditional 
probability distribution of future states of the process (conditional on both 
past and present states) depends only upon the present state, not on the 
sequence of events that preceded it. A process with this property is called 
a Markov process. 

 

The stochastic nature of the environment with state transitions due to a series of actions can 
be visualized as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The MDP has five basic components: 
 

 S: A set of all the possible states of the environment. 

 A: A set of all possible actions for the agent. As represents the set of possible 

actions at state s. 
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 Pa(s,s'): Probability that the action a in state s leads to state s'. In the previous 

diagram, there is a 0.6 probability that action a2 at state s1 will transition the 

environment state to s1. 

 Ra(s,s'): This represents the reward as a result of action a when the environment 
transitions from state s to s' as a result of action a. In the previous diagram, the 

agent receives reward of -2 for action a3 at state s1 and transitioning to state s0x`.  

 ϒ ∈[0,1]: This represents a discount factor, which is the difference between future 

rewards and the current reward for a state transition based on a specific action. 
 

The MDP attempts to find a policy that maximizes the cumulative reward for all the actions 
within a finite set of states. The goal can be achieved with the help of a dynamic 
programming framework. 
 

 

Dynamic programming and 

reinforcement learning 
 
Within the context of reinforcement learning, the dynamic programming approach deals 
with the interactions between a controller or the agent that needs to take actions and the 
process within the environment. This interaction takes place with three types of distinct 
signals: 
 

 State signal: Describes state of the process  
 Action signal: With this, the agent (controller) influences the process  
 Reward Signal: Provides feedback to the controller based on its most recent 

action 
 

The agent moves through the solution space with repetitive iterations of a state-action-
reward-state cycle. A policy defines the overall behavior of the agent. The policy can be 
dynamically aligned based on the nature of the environment (deterministic or stochastic). 
For dynamic programming, the overall goal for the agent is to figure out an optimal policy 
that maximizes the cumulative reward (return) over the course of the agent's existence. We 
will consider the return over infinite-horizon, which leads to a stationary optimal policy in 
which for a given state the choice of optimal actions will always be the same. While DP and 
RL share the same goal over the infinite-horizon, there are some differences between them 
in terms of their applications and algorithms. Before we take a deep dive into DP and RL, 
here is a quick comparison between them: 
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DP and RL apply common iterative strategies such as value iteration, policy iteration, as 
well as search policies in order to achieve their optimization goal. 
 
Let us first consider the DP and RL algorithms in the context of a deterministic environment 

setting. In this environment, when an action at is taken by the agent in state st at time step t, the 

state changes to st+1 according to the transition function f: S x A → S so that, st+1 = f(st, at). At this 

time, the agent receives a scalar reward signal rt+1 according to the reward function ρ: S x A → 

 so that, rt+1 = ρ(st, at). The agent chooses further actions as per policy π: S → A using at = π 

(st). When the transition function f, reward function ρ, current state st, and current action at are 

known, the next state st+1 and next reward rt+1 can be determined. 
 
 

Learning in a deterministic environment with 

policy iteration 
 
Let us understand the agent's learning process based on the dynamic programming model 
in a deterministic environment depicted in the following diagram. Let us imagine an agent 
that is learning to play music on a simple keyboard:  
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In this diagram, P represents the keyboard playing agent and K {0,1,2,3,4,5} represents the 
keys numbered from 0 to 5. In this simple setup, the agent can move forward and backward 
represented by A{-1,1}. Movement to the right side is denoted by a = 1 and left side by a = -
1. Assume that the agent gets a reward for playing a specific note and in this case, when it 
moves from key number 4 to 5, the reward is 5 and when it moves from key 1 to key 0, the 
reward is 1. For all the other transitions, the reward is 0. Assume for simplicity that the keys 
0 and 5 are terminal states for the sound note and once the agent reaches there, the agent 
cannot leave. 
 

In this case, the transition function can be represented as follows:  

 

if 1 ≤ k < 4  
 
 

if k = 0 or k=5 

 

The reward function is represented as follows:  
 
 
 
 
 
 
 
 
 
 
 

 

With this context, the goal of the agent is to gain the highest cumulative reward based on 

the transitions on the keyboard based on any starting position kx. The infinite horizon 

reward is formulated as follows:  
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In this case,  is the discount factor that represents the delayed gratitude acceptance 
for the agent in regards to the rewards. With this, the cumulative reward is bounded if the 
individual action rewards are bounded. The agent only uses feedback from each action 
step in order to maximize overall cumulative reward. 
 
The current action step in this case does not provide any indication of the overall reward 
for the agent. It is imperative to select the right value for , which sets a trade-off between 
quality of the solution in maximizing the reward and the convergence rate. In order to 
derive an optimal policy for the agent, value functions are used. There are two types of 
value functions denoted as Q-functions and V-functions. Q-functions are state-action value 
functions and V-functions are state value functions. 
 

The Q-function Qp: S x A →  of a policy  gives a return when starting from a given state s 

and the given action a and following policy . As a result .  

Here,  is the return from the next step . The Q-function can also be 

represented as a discounted sum of rewards by taking a in s and then following the 

policy :  
 
 
 
 
 

 

When (s0,a0) = (s,a), sk+1 =  for k = 0, and ak = for k ≥ 1, the first term can 

be separated from the cumulative value function.  
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The optimal Q-function is the one that gives maximum Q-value over various transitions 
of the agent to the search space.  
 
 
 
 

The V-function Vp: S →  of a policy p is obtained by starting from a particular key 
and following p. This V-function can be derived from the Q-function of policy p:  

. Again, the optimal V-function is the one that gives maximum V-

value over various transitions and can be computed from optimum Q-function. 
 

When learning in a stochastic environment, the agent cannot move to a state s+1 with a 
certainty when it takes action a+1. In that case, the Q-value and V-value are obtained as a 
probability of the transition that is learned by the agent over multiple iterations through the 
search space. 
 

In the next section, we will explore one of the popular model-free Q-learning algorithms. 
 

 

Q-Learning 
 
Q-learning is a model-free learning algorithm that is useful in situations when the agent 
knows all the possible states and the actions, which leads to these states within the search 
space. Q-learning is able to choose between immediate reward and the long-term reward, 
which enables optimization for reaching the goal of maximizing rewards accumulated over 
the set of actions. 
 

Let us explain this with a simple example. Consider a maze with six locations (L∈ 
{0,1,2,3,4,5}) within it and when the agent comes to location number 5, it finds treasure 
(the end state or the agent's goal). The maze has the following structure. The bi-directional 
arrows indicate possible state transitions and the numbers indicate the reward: 
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The state transitions are represented in a standardized manner in Q-learning as a matrix 
where the rows indicate state and the columns indicate actions. -1 indicates that the action a 
is not possible or blocked in a specific state, 100 indicates the reward of 100 points for a 
state transition. For all the other transitions the reward is 0.  
 
 
 
 
 
 
 
 
 
 
 

 

The agent now needs to build a Q matrix that stores all the learning that the agent does 
with a series of actions and corresponding state transitions. In the Q matrix also, the rows 
represent current state and the columns represent possible actions that lead to the next 
stage. The initial state of the Q matrix is when the agent does not know anything about the 
environment and hence the matrix contains all zero values. In our example, let us assume 
that the agent is aware that there are six possible states of the environment. However, in 
real scenarios, the agent will not have knowledge of all the states and needs to explore the 
search space. In that case, the Q learning algorithm adds columns to the Q matrix as a new 
state is encountered. The transition rule for Q learning is represented as  

. 
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A value assigned within the Q matrix represents a sum of corresponding values in R matrix 
and learning parameter  multiplied by maximum value of Q for all possible actions in the 
next state. As the agent transitions from start position to the goal state, it updates the Q 
matrix and this transition is called one episode. With this context, the Q learning algorithm 
is represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

With this algorithm, the agent's memory is enriched with each episode and it stores more 
information about the state transition rewards. When trained over a reasonable number 
of episodes, the agent can quickly derive the optimal path through the search space.  
The  parameter ranges between 0 and 1. When this parameter is closer to zero, the 
agent prioritizes the rewards during initial episodes. When  is closer to 1, the agent 
considers future rewards with greater weights willing to delay the reward in the interest 
of cumulative gain. 
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Let us use the algorithm for a couple of episodes based on the maze example we have 
seen previously. Here is the initial state of Reward matrix R and Q-matrix Q:  
 
 
 
 
 
 
 
 
 
 
 
 

 

Let us consider that the agent's initial state is 1 and we use an arbitrary value of  as 0.8. As 
we know, from state 1, the possible states to which the agent can go are 3 and 5 and at this 
point let us consider that the agent randomly goes to state 5. In stage 5, the agent has three 
possible state choices: 1, 4, and 5. Let us apply the Q learning equation:  
 
 

 

Q(1,5) = R(1,5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] 
 

= 100 + 0.8 * Max[0,0,0] 
 

= 100 + 0.8 * 0 (Remember the Q matrix is initialized to a zero) 
 

= 100 
 

Since 5 is the goal state, we have finished one episode with a new version of the Q matrix as 
follows:  
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For the next episode, the agent gets into the initial state of 3. Refer to the R matrix, at stage 
3, there are three possible actions: 1, 2, and 4. The agent decides to take action 1, which 
lands it into state 1. Now imagine that the agent is in state 1. At this point the agent can 
go to states 3 and 5. Let us compute the Q value for this route:  
 
 

 

Q(3,1) = R(3,1) + 0.8 * Max[Q(1,3), Q(1,5)] 
 

= 0 + 0.8 * Max[0,100] 
 

= 0+ 0.8 * 100 
 

= 80 
 

At this point, the agent is in state 1, which is not the terminal or goal state and hence the 
loop iterates to the goal state (5 in this case). Let us assume that the agent randomly goes to 
state 5 from state 1, which is the goal state and hence episode 2 is concluded. The 
following is the Q matrix at the end of episode 2:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The matrix can be scaled by dividing all the non-zero numbers with the maximum number and 

multiplying by 100. With normalization, the final converged Q matrix is as follows:  
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Once the converged and normalized Q matrix is obtained, the agent has memorized 
and learned the optimal actions for state transitions in order to reach the goal state (5 in 
this case). The state transition diagram with Q matrix values is as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Once this transition matrix is defined, the agent can navigate through the search space in an 
optimal way by choosing an action at each step with maximum Q value, as indicated by the 
dotted arrow in the previous diagram. 
 

Here is a code snippet that implements the Q-learning algorithm with the same example 
that we have seen previously: 
 

package com.aibd.rl; 

 
import java.util.Random; 

 
public class QLearner { 

 
private static final int STATE_COUNT = 6; 

private static final double GAMMA = 0.8; 

private static final int MAX_ITERATIONS = 10; 

private static final int INITIAL_STATES[] = new int[] {1, 3, 5, 2,  
4, 0}; 

 
// initialize the R matrix with the state transition 
combinations private static final int R[][] =  

new int[][] {{-1, -1, -1, -1, 0, -1},  
{-1, -1, -1, 0, -1, 100},  
{-1, -1, -1, 0, -1, -1},  
{-1, 0, 0, -1, 0, -1},  
{0, -1, -1, 0, -1, 100},  
{-1, 0, -1, -1, 0, 100}}; 
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private static int q[][] = new int[STATE_COUNT][STATE_COUNT]; 

private static int currentState = 0;  
public static void main(String[] args) 

{ train();  
test();  
return;  

}  
private static void train() {  

// initialize the Q matrix to zero values 
initialize(); 

 

// Perform training, starting at all initial states. 
for(int j = 0; j < MAX_ITERATIONS; j++){ 

 
for(int i = 0; i < STATE_COUNT; i++) { 

episode(INITIAL_STATES[i]);  
}  

} 
 

System.out.println("Q Matrix:"); for(int 

i = 0; i < STATE_COUNT; i++) { 
 

for(int j = 0; j < STATE_COUNT; j++){ 

System.out.print(q[i][j] + ",\t");  
}  
System.out.print("\n");  

}  
System.out.print("\n");  
return;  

}  
private static void test() {  

// Perform tests, starting at all initial states. 
System.out.println("Shortest routes from initial states:"); 

for(int i = 0; i < STATE_COUNT; i++) { 
 

currentState = INITIAL_STATES[i]; 

int newState = 0;  
do { 

 
newState = maximum(currentState, true); 

System.out.print(currentState + " --> "); 

currentState = newState; 
 

}while(currentState < 5); 

System.out.print("5\n");  
}  
return;  

}  
private static void episode(final int initialState) { 

currentState = initialState;  
do {  

chooseAnAction();  
}while(currentState == 5); 
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for(int i = 0; i < STATE_COUNT; i++){  

chooseAnAction();  
}  
return;  

}  
private static void chooseAnAction() {  

int possibleAction = 0; 

 
// Randomly choose a possible action connected to the current  

state.  
possibleAction = getRandomAction(STATE_COUNT); 

 
if(R[currentState][possibleAction] >= 0){ 

q[currentState][possibleAction] = 

reward(possibleAction); currentState = possibleAction;  
}  
return;  

}  
private static int getRandomAction(final int upperBound) { 

int action = 0;  
boolean choiceIsValid = false; 

 
// Randomly choose a possible action connected to the current  

state.  
while(choiceIsValid == false) {  

// Get a random value between 0(inclusive) and 
6(exclusive). action = new Random().nextInt(upperBound); 

if(R[currentState][action] > -1){  
choiceIsValid = true;  

}  
} 

 
return action;  

}  
private static void initialize() { for(int 

i = 0; i < STATE_COUNT; i++) 

{  
for(int j = 0; j < STATE_COUNT; j++)  
{  

q[i][j] = 0;  
} // 

j } // i 

return;  
}  
private static int maximum(final int State, final 

boolean ReturnIndexOnly) {  
// If ReturnIndexOnly = True, the Q matrix index is returned.  
// If ReturnIndexOnly = False, the Q matrix value is returned. 
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int winner = 0;  
boolean foundNewWinner = false;  
boolean done = false;  

while(!done) {  
foundNewWinner = false;  
for(int i = 0; i < STATE_COUNT; i++)  
{  

if(i != winner){ // Avoid self-comparison.  
if(q[State][i] > q[State][winner]){  

winner = i;  
foundNewWinner = true;  

}  
}  

}  

if(foundNewWinner == false){  
done = true;  

}  
}  

if(ReturnIndexOnly == true){  
return winner;  

}else{  
return q[State][winner];  

}   
}  
private static int reward(final int Action) {  

return (int)(R[currentState][Action] + (GAMMA * maximum(Action,  
false)));  

} 

 
} 
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This program produces the following output: 
 

Q Matrix:     

0, 0, 0, 0, 396, 0, 

0, 0, 0, 316, 0, 496, 

0, 0, 0, 316, 0, 0,  
0, 396, 252, 0, 396, 0, 

316, 0, 0, 316, 0, 496, 

0, 396, 0, 0, 396, 496, 

 
Shortest routes from initial states:  
1-->5  
3-->1-->5  
5-->5  
2-->3-->1-->5  
4-->5  
0-->4-->5 

 

As we have seen, Q-learning is a method for optimizing discounted rewards, generally 
making the future rewards less prioritized compared to near-term rewards. In the next 
section, we will look at a variation of Q-learning algorithms called SARSA learning. 
 

 

SARSA learning 
 
State-Action-Reward-State-Action (SARSA) is an on-policy algorithm where the same 

policy that generated previous actions can generate the next action. This is unlike the Q-

learning where the algorithm is off-policy and only considers current state and rewards 

along with available next actions without any consideration to the ongoing policy. 
 

At each step within SARSA, the agent's action is evaluated and improved by improving Q-
function estimates. The Q-value is updated as a result of the error and adjusted by a factor 
of learning rate termed as . In this case, the Q-values represent potential reward from the 

next state transition as a result of action at+1 in state s plus the discounted ( ) future 
reward received from the next state-action observation. The algorithm can be 
mathematically represented as follows: 
 

Q(st, at) ← Q(st, at) + α [rt + γQ(st+1, at+1) - Q(st,at)] 
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The first deviation from Q-learning is that in the case of SARSA learning, the agent is 
learning action-value functions rather than state-value functions. The agent needs to  
estimate Qρ (s,a) for the current alignment with policy  for all the states s and actions a. The 
agent needs to consider the transitions from one state-action pair to another state-action pair 

and learn the value of state-action pairs. The updates are done after transition from st where 

it is a non-terminal state. If st+1 is the terminal state, then Q(st+1, at+1) is defined as 0. SARSA 
utilizes all the elements in decision making (st, at, rt+1, st+1, at+1) on transition from one 
state to the next. Similar to Q-learning, SARSA is also an iterative algorithm that can be 
represented as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Another method that is less popularly used in reinforcement learning is R-learning, 
which tries to optimize average rewards for the agent. It considers future and near-term 
rewards equally in deciding the optimal policy. 
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Deep reinforcement learning 
 
In order for the reinforcement learning algorithm to be deployed in real-world use cases 
and scenarios, we need to leverage the power of deep neural networks, which can infer 
the information from the environments in a human-like manner. One of the goals of AI is 
to augment human capabilities by creating autonomous agents that interact with the 
environment in which they operate, learn optimal behaviors that improve over time, and 
learn from mistakes. 
 
For example, the signals from the video camera can be interpreted using a deep neural 
network. Once this signal is interpreted, the objects and patterns observed by the camera 
can be analyzed with the help of a deep neural network, as we have seen in the chapters on 
artificial neural networks (ANNs). These deep neural networks can then be used for 
application of reinforcement learning algorithms for creating a navigation system that 
learns over a period of time based on the training feeds. 
 

Fundamentally, a combination of deep neural networks and reinforcement learning 
algorithms are poised to achieve near-human performance with object detection, self-
driving cars, video games, natural language processing, and so on. In this section, we will 
review various approaches and techniques for DRL. 
 
As we know, the deep neural networks (DNNs) can deduce low dimensional 
representations of the high dimensional datasets such as audio/video signals. On the other 
hand, the reinforcement learning model reduces dependence on training data and relies on 
the reward/punishment paradigm for the agent to navigate through the stochastic 
environments and improve over a period of time. Deep learning enables the reinforcement 
learning to a new level towards near-human performance and for some of the activities 
that require brute-force the autonomous agent is able to outperform human capabilities. 
 
While a lot of pioneering work is done with use of DRLs, the initial breakthrough was 
achieved with training the algorithm to master the Atari 2600 video games and achieve 
superhuman level of expertise just by feeding the pixel data. The agent was trained purely 
based on the reward signal in conjunction with the pixel map that represented the stochastic 
environment. Another prominent success was with the intelligent agent, AlphaGo, which 
beat the Go world champion based on the use of neural networks that were trained using a 
combination of supervised and reinforcement learning along with a self-learning algorithm. 
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DRLs are found to be useful in the area of robotics where the video signal is interpreted 
with an ANN that activates the controllers that perform mission critical tasks such as 
operating CNC machines as well as attempt to do surgeries. The push is towards making 
the agents that can meta-learn, meaning learning to learn. This is also possible with DRLs. 
It is imperative that the DRL agents will evolve to fully complement human capabilities in 
the near future. The DRLs have been successful due to the ability to extrapolate low 
dimensional learning techniques to high-dimensional, unstructured datasets. 
 

The neural networks are good at approximation and learning based on the high-dimensional 
data. With this, the DRLs can deal with the curse of dimensionality and train models for various 
stochastic environments in high dimension space. The convolution neural networks (CNNs) 
can be used as building blocks for the DRLs, which enables learning directly from the real-life 
raw data assets that are high dimensional in nature. The DRLs enable training a deep neural 
network to come up with optimal policy through state transitions along with optimal value 

functions, V, Q, and A. While the possibilities with a combination of neural networks and 
reinforcement learning are enormous, we will evaluate the application of deep neural networks 
as function approximators in policy search methods within DRL. One of the most popular 
algorithms is deep Q-network (DQN). 
 

 

Frequently asked questions 
 

Q: What is the difference between supervised learning and reinforcement learning? 
 
A: In the case of supervised learning algorithms, the model is trained based on historical 
data which describes the trend for the data historically and establishes a correlation 
between the event data and resultant output. In that case, the supervised learning model is 
a curve fitting exercise that maps the data points (independent variables) to a set of output 
variables (dependent variables). Availability of the historical data is essential for 
supervised learning. In case of reinforcement learning, the agent is modeled based on the 
rewards it receives based on the action(s) it takes within the context of the environment in 
which it is operating. There is no historical data available to the agent to train itself. 
However, a hybrid approach often works great where the agent is aware of the historical 
trends as well as applies exploration and exploitation strategies in order to maximize the 
reward as it transitions through the search space towards its goal. 
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Q: What are the basic components of Reinforcement Learning ? 
 

A: The Reinforcement Learning happens within the context of an environment. The 
environment defines all the external factors that impact the performance of an agent, which 
is the second component of RL. The agent transitions through the solution space within 
multiple states with a goal to achieve the terminal state and maximizing the reward on the 
way. Every action the agent performs generates a reward or punishment and a makes a 
corresponding change in the environment state. 
 

Q: What are the types of environment that an intelligent agent encounters? 
 
A: An intelligent agent encounters a deterministic or a stochastic environment. The 
deterministic environment has a level of certainty based on the environment stater and the 

latest action by the agent. In this type of environment, an action at at time step t when the 

environment is in state st results in a deterministic state and reward. However, in case of a 
stochastic environment, there is a level of uncertainty in terms of state of environment as 
well as reward for the same action within the same environment state. 
 

 

Summary 
 
In this chapter, we have explored one of the most important machine learning techniques, 
RL. We understood the difference between RL and supervised learning. Learning based on 
behavioral reinforcement for the agent is extremely critical in modeling the intelligent 
machines that will bridge the gap between human capabilities and the intelligent machines. 
We have seen the basic concepts of the RL algorithm along with the participating 
components. We have also tried to establish mathematical equations for a generic RL 
algorithm where the overall goal is to maximize cumulative rewards for the agent as it 
transitions through various states with every action. 
 
We have briefly tried to understand the MDPs in a deterministic and stochastic 
environment. We also explored dynamic programming concepts in brief along with Q-
learning and SARSA learning algorithms. In the end, we briefly discussed deep 
reinforcement learning DRL as a combination of deep neural networks and the 
reinforcement learning paradigm. The use cases that can be derived are enormous and with 
this chapter we have established a foundation to explore our creativity. 
 

In the next chapter, we are going to explore one of the most important aspects of data 
management, security. Cyber security is extremely critical with growing volumes of data. 
We will explore the basic concepts of infrastructure protection along with some of the 
frameworks available for Stream processing and real-time threat detection. 
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During the course of this book, we have established one thing. In order to realize AI, we 
need access to large volumes of data. Data plays a central role in building capabilities for 
intelligent machines which complement and augment human capabilities. The applications 
we develop based on machine learning architectures and algorithms are only as good as the 
underlying data. As our dependence on data increases and we start seeing data as an asset 
for mission-critical systems such as medical equipment, aviation, banking systems, and so 
on, maintaining the integrity of the data assets is one of the most important priorities and 
key ingredients for successful widespread adoption of AI-based systems. Protection of 
critical infrastructure from data breaches is generally known as cyber security. 
 

In this chapter, we are going to see how we can leverage various data governance 
frameworks to protect the critical data assets and utilize our understanding of Big Data 
management and machine learning frameworks to keep our most important asset (data) 
secure. We will cover the following topics in this chapter: 
 

 How we can leverage Big Data to protect critical infrastructure  
 General concepts of stream processing  
 Security information and event management  
 Web server access log file structure and strategies to utilize it for cyber security  
 Splunk as an enterprise application for implementing cyber security 

 ArcSight as an enterprise security management platform 
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Big Data for critical infrastructure protection 
 
Critical infrastructure (CI) is a term used by enterprises and government agencies to 
define the assets and working models that need to function at their optimal level in order 
for a seamless and harmonious experience for the stakeholders who directly or indirectly 
benefit from or are impacted by these systems. Examples include the power grid, water 
supply, transportation, law enforcement, and many such systems that need to work 
seamlessly around the clock. Over the last few decades, most of the CI has become 
digitized and is generating more and more data from heterogeneous sources. These 
additional data assets result in continuous improvement and elimination of the need for 
human intervention and thereby reduce error. 
 
The data generated by these systems is used as an asset for descriptive and predictive analytics 
in order to schedule preventive maintenance and prevent failures. With a data-driven approach 
for core functioning of the CI, we have seen tremendous improvements in efficiency and overall 
reliability of the CI. However, there are enormous incidents in which attackers with malicious 
intentions to disrupt the CI have been successful in breaching into the CI and creating 
disruption. For example, Stuxnet, which was found in 2010, targeted SCADA (Supervisory 

Control and Data Acquisition) systems and caused damage to fuel enrichment plans in Iran by 
interfacing with the Programmable Logic Controllers (PLCs). There are many such incidents 
and attempts which disturb CI and cause perpetual damage. 
 
One of the most important aspects of preventing cyber security attacks on the CI is the 
availability of data from the CI which is generated in a working environment. This data 
needs to be available for analysis and potential actions as close to the event time as 
possible. Along with the data from core CI components, the data from other heterogeneous 
systems which are indirectly linked to the CI needs to be utilized for building a robust 
defense mechanism against cyber attacks. That means we need data volume, velocity, and 
variety in order to effectively protect the CI. These three Vs along with value as fourth V 
which is derived from the data together constitute Big Data. In other words, Big Data is a 
critical asset for effective strategies against cyber attacks. We require a constantly evolving, 
data-driven framework and processes for protection of CI, leveraging Big Data analytics for 
effective security monitoring and protection. 
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This data-driven framework has three main components, as depicted in the 
following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.1 Components of a data-driven framework for critical infrastructure protection 

 

 

Data collection and analysis 
 
The core systems that constitute CIs generate data assets in the form of event logs. The data 
collection component needs to gather these logs from all the components (software and 
hardware). Apart from the core systems, the process should also gather data from the 
contextual environment of the CI systems. The heterogeneous logs help with holistic 
analysis and more accurate and timeline resolution. Along with the running logs, the 
system should also have the ability to store and access the historical data for the CI systems. 
 

The historical data provides insights based on pattern similarity with past events. If the past 
mitigations have resulted in quick correction and resolution of the critical event, then 
supervised learning can be deployed in order to take similar actions based on experience. 
Historical data also greatly helps in preventing future attacks based on similar system 
vulnerabilities. 
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The data (log) generated by the CI components and related environmental context can 
be categorized into three types: 
 

 Structured data: In the case of structured format, the individual elements 

(attributes) of an entity are represented in a predefined and consistent manner 

across time periods. For example, the logs generated by the web servers (HTTP 

log) represent fields such as the IP address, the time the server finished 

processing the request, the HTTP method, status code, and so on. All these 

attributes of a web request are represented consistently across requests. The 

structured data is relatively easy to process and does not require complex parsing 

and pre-processing before it is available for analysis. With structured data, 

processing is fast and efficient.  
 Unstructured data: This is a free-flowing application log format that does not 

follow any predefined structural rules. These logs are typically generated by 

the applications and are meant to be consumed by someone who is 

troubleshooting the issues. The intention is to log the events without an explicit 

goal of making the logs machine readable. These logs require extensive 

preprocessing, parsing, and some form of natural language processing before 

those are available for analysis.  
 Semi-structured data: This is a combination of structured and unstructured data 

where some of the attributes within structured format are represented in an 

unstructured manner. The information is organized into fields which can be 

easily parsed but the individual fields need additional preprocessing before being 

used in analysis. 
 

 

Anomaly detection 
 
As we start gathering data from heterogeneous systems, there is a pattern that is 
established in terms of data volume, structure, information content, and velocity of the 
data. This pattern remains consistent during standard operating conditions and there can 
be expected surges or changes in the patterns. For example, an online retailer can expect 
more orders during the holiday season and this event does not count as an anomaly. When 
there is an unanticipated change in the regular pattern of data in terms of volume, velocity, 
and variety, the anomaly detection component triggers an alert and notification. One of the 
important characteristics of a greatly evolved and reliable anomaly detection component is 
that it is able to generate the alert as soon as the event occurs, with minimum lag between 
event time and the alert/notification time. 
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The following diagram depicts the ideal, reliable, and unreliable anomaly detection 

components based on the time difference between the event and alert time:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.2 Anomaly detection reliability based on Event Time and Alert/Notification Time 

 

 

Corrective and preventive actions 
 
When the suspicious activity is detected by the anomaly detection component, there are two 
ways to respond. In the first case, the alert/notification requires manual intervention in 
order to trigger the corrective action. In the second case, the system itself takes some 
corrective action based on the context and the acceptable threshold of the error margin. 
 
For example, if a hack into the thermostat circuitry starts increasing the temperature of the 
cold storage in an unanticipated manner, the system can switch the control to an alternate 
thermostat and ensure that the temperature is back to normal and maintained at normal 
levels. This component can use supervised learning as well as reinforcement learning 
algorithms for triggering the corrective actions on their own based on historical data or the 
reward function. When the correction is applied and the CI state is restored to normal, the 
system needs to analyze the root cause and train itself to take preventive actions 
(application of a patch, changes to the security model, implementing new access controls, 
and so on). 
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Conceptual Data Flow 
 
In typical Big Data environments, a layered architecture is implemented. Layers within the 
data processing pipeline help in decoupling various stages through which the data passes 
to protect the critical infrastructure. The data flows through ingestion, storage, processing, 
and an actionize cycle, which is depicted in the following figure along with popular 
frameworks used for implementing the workflow:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.3 Conceptual Data Flow along with popular frameworks for implementing Cyber Security 

 

Most of the components used in this figure are open source and a result of collaborative 
efforts from a large community. A detailed discussion of all these components is out of 
the scope of this chapter. However, let us understand these components at a high level 
within the context of cyber security. 
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Components overview 
 
For successful implementation of CI protection strategy, it is imperative to collect data 
from heterogeneous sources beyond the obvious sources like server logs. As more data 
sources are identified and integrated, the storage requirement increases. Considering the 
volume and velocity of data, it is not possible to accommodate the data using traditional 
file systems. Instead, the modern architectures utilizes distributed file systems. 

 

Hadoop Distributed File System 
 
The Hadoop Distributed File System (HDFS) is one of the most popular 
implementations of a distributed file system. It is at the core of Hadoop which is a 
distributed computing platform. HDFS was designed and has evolved with the following 
goals in mind, which complement the storage requirements for the protection of the CI: 
 

 Hardware failure: HDFS replicates each file block on three (default) nodes. The 

core idea of using distributed computing is to be able to leverage commodity 

hardware and hence the cluster consists of a large number of relatively small-size 

nodes. With large numbers of nodes, the probability of failure of a node increases. 

Detection and recovery from these hardware failures without any data loss is one 

of the primary goals of HDFS. The CI protection systems also needs the same 

level of reliability and fault tolerance in order to detect cyber security threats.  

 Large datasets: The applications that utilize HDFS as underlying data stores are 

assumed to be dealing with large datasets in the range of multiple gigabytes to 

terabytes and more. HDFS is inherently built to support large data files. CI 

protection systems also generate and deal with large data volumes. A good 

example is the central governing authority of a country which monitors the 

internet backbone of the country and deals with hundreds of gigabytes of data 

per second.  
 Simple Coherency Model: The CI applications generate log files which need to 

be written once and read multiple times. The coherence model is also one of the 

primary design goals of HDFS. A file, once created and written, does not need to 

be changed with this model. This goal also complements the cyber security 

applications.  
 Portability across heterogeneous hardware and software platforms: HDFS is 

easy to port across various platforms. This goal also complements the core 

requirement of the cyber security systems. The cyber security systems are 

deployed on a variety of different platforms and the portability of HDFS as 

an underlying file system can be an added advantage. 
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NoSQL databases 
 
NoSQL (Not only SQL) is a paradigm in which the data is stored in the form of entities 
instead of the typical RDBMS type tabular relational format. One of the primary goals for 
NoSQL databases is horizontal scaling and high availability. Based on the underlying 
data structure of the NoSQL databases, they are categorized into: 
 

 Document databases: Each key in the database is mapped to a document. A 

document can be a binary file or a nested structure like XML or JSON. The 

examples of document databases are MongoDB, CouchDB, Couchbase, and so 

on.  
 Graph databases: These are useful with the data which is in the form of 

connected graphs like social media connections. The examples of graph 

databases are Neo4j, OrientDB, Apache Giraph, and so on.  

 Columnar databases: These databases represent the data by storing column data 

together instead of rows. They are optimized for distributed storage and fast 

query access over very large databases. The examples of columnar databases are 

Cassandra, HBase, and so on. 
 

The NoSQL databases can be effectively used in implementations of cyber security 
applications since they can easily handle large volumes of structures and semi-structured 
and unstructured data which is gathered from heterogeneous sources surrounding the CI. 
The NoSQL databases also support geographically distributed architecture which can be 
scaled out on demand without impacting the already persisted data. This feature is handy 
in case of incremental growth in CI infrastructure, such as the telecommunication services 
in the remote areas which are incrementally built. 

 

MapReduce 
 
MapReduce (MR) is a programming paradigm at the core of Hadoop. It can scale the 
processing of data to massively high volumes. The data and processing can be 
distributed to hundreds and thousands of nodes for horizontal scalability. As the name 
suggests, the MR jobs contain two phases: 
 

 The map phase  
 The reduce phase 
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In the map phase, the dataset is divided into chunks and sent to an independent process to 
gather the result. These parallel mapper processes work independently on various available 
nodes in the cluster. Once their processing is completed (map task), the results are shuffled 
and sorted before initiating the reduce tasks. The reduce tasks once again run 
independently on the available nodes and the entire computation is completed as a whole. 
The intermediate results are stored on the file system (HDFS) and involve IO operations. 
Due to these IO operations, the MR paradigm is suitable for batch-oriented workloads 
where very large volumes of datasets are to be processed. In the context of cyber security, 
the MR framework can be used for processing the historical data originating from the CI 
and the surrounding application and environmental context. The data can be aggregated 
for reporting and can be used as the training data for supervised learning-based cyber 
security implementation. 

 

Apache Pig 
 
HDFS and MR are storage and compute engines at the core of Hadoop. The raw 
implementation of parallel processing applications is complex and error prone. Apache Pig 
provides a wrapper around the parallel processing jobs on Hadoop. Pig makes it easy to 
process large datasets by providing a simple programming interface and API. The tasks and 
actions written with Pig are inherently parallelized on the underlying Hadoop cluster. In 
the context of cyber security, Pig can be used for the implementation of complex parallel 
data aggregation and anomaly detection tasks along with preparation of the training data 
for supervised learning in case the CI protection application is leveraging machine learning 
algorithms. 

 

Hive 
 
Apache Hive is the data warehouse built on top of Hadoop. Hive provides an SQL-like 
interface for the data residing on HDFS. The queries are executed as MR, Tez, or Spark jobs 
on the Hadoop cluster. Hive supports indexing for fast queries along with compressed 
storage types like ORC. In the context of cyber security, Hive can be used for storing the 
aggregate views of various logs which are generated by the CI applications. 
 
While the batch processing frameworks like MR on Hadoop are useful in processing very 
large volumes of data in an efficient manner, they are not suitable for providing security 
to mission CIs. Such CI systems require real-time (at least near real-time) processing of the 
streaming or micro-batch data for quick alerts, notifications, and timely actions. Stream 
processing architecture requires more focus in the context of cyber security and protection 
of CIs. 
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Understanding stream processing 
 

The software applications that are deployed in the enterprise have two basic components: 
 

 The infrastructure  
 The applications 

 

The infrastructure includes the physical hardware and the network that connects different 
systems together. The security implementation for infrastructure and applications have 
different considerations due to which the frameworks and processes for protecting the CI 
are also different. 
 

The security systems need to operate across the peripheries of the infrastructure and 
within the applications. There are various events through which the data (network and 
application) flows. The events take place at a point in time and the corresponding data is 
available for analysis and action immediately after the event occurs. 
 
For example, a client application such as a web browser requests access to a website over 
the HTTP protocol. The sequence of events are initiated right after the URL is entered 
through the browser. The related analysis based on the request needs to happen as close to 
the event time as possible in order to protect the web application from malicious attacks. 
The capability to process the data as a stream for detection of anomalies is a key 
consideration for an effective cyber security implementation. The key considerations for 
stream processing are unbounded data, unbounded data processing and low latency-based 
analysis: 
 

 Unbounded data: This term refers to virtually unlimited datasets. For example, 

the network packets which flow from one physical system to another. These 

packets contain information that keeps generating as a continuous stream.  
 Unbounded data processing: The processing needs to happen while the data is in 

motion. The network packets or the application data needs to be accessed and 

processed as they are getting generated, unlike a batch processing engine where 

the data lands into persistent storage before getting processed.  

 Low latency analysis: The analysis based on the unbounded data needs to 

happen as close to event time as possible in the case of streaming use cases. Cyber 

security is a critical use case which requires low latency analysis and actions for it 

to be effective. As we have seen in figure 11.2, anomaly detection is reliable when 

the event time and alert/notification time is separated by a minimum skew. This 

differential is variable and depends on multiple conditions such as network 

congestion, latency introduced to processing overhead in a distributed 

environment, and so on. 
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Stream processing semantics 
 
As the events are triggered in a system, there are messages (data packets) which are 
generated at source and processed within the processing engines. There are three distinct 
semantics for the stream processing systems, at least once, at most once, and exactly once: 
 

 At least once: In this case, the message may be sent by the source more than once. 

However, the processing engine needs to guarantee that one message is 

processed at least once out of multiple transmissions of the same message. It is 

possible that the message is processed more than once and may be acceptable in 

certain use cases. The end application may need to run a de-duplication check on 

the semantics.  
 At most once: The stream processing application guarantees that the message is 

processed only once. Even if there are multiple transmissions of the same 

message, the processing engine needs to guarantee that the message is not 

processed more than once. It may happen in this case that a particular package 

is not processed at all but it cannot be processed more than once. This semantic 

is critical in the applications where the end result of the transaction leads itself 

into an inconsistent state if the message is processed more than once. For 

example, a banking transaction with a fund transfer needs to strictly follow at 

most once semantic.  
 Exactly once: Even if the source system delivers the message more than once, it is 

consumed and processed exactly once. This is the most ideal semantic for the 

cyber security systems. A critical message processed only once guarantees timely 

and right action which can prevent potential attacks on the network and 

application infrastructure. However, this semantic of exactly once is the most 

difficult to implement since it requires close collaboration between the source 

and the target systems. Strong consistency is a primary requirement for the 

exactly once semantic. 
 

The exactly once semantic of streaming data processing is supported by some of the open 
source frameworks such as Spark Streaming, Apache Kafka, and Apache Storm. Let us 
understand these frameworks at a high level before looking at the high-level architecture 
of the cyber security system that leverages these frameworks. 
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Spark Streaming 
 
Spark is a general purpose, in-memory, distributed computation engine. The Spark 
Streaming API is an extension of the core Spark library which was designed with scalability, 
high throughput, and fault tolerance for streaming (unbounded) data goals in mind. Spark 
Streaming integrates with a variety of data sources such as TCP network sockets, HTTP 
server logs, kafka producers, social media streams, and so on. 
 
The streams and complex events are processed with generic operations such as 
MapReduce, join, and windowing. The data in motion can be analysed, aggregated, filtered, 
and sent to downstream applications, persistent storage, or live dashboards. Machine 
learning and graph processing algorithms and APIs can be applied to the unbounded data 
with Spark Streaming. Spark Streaming breaks down the streaming data into batches based 
on time-based windowing. 
 

The stream is chunked at specific (predefined and configurable) time intervals and 
processed as discretized stream as a low-level abstraction of a processing unit. This is 
called a DStream. DStreams can be created from the input streaming data (network or 
application logs) or can be consumed from the streaming systems such as Flume, Storm, or 
Kafka. The Spark Streaming pipeline can be seen conceptually as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.4 Conceptual view of Spark Streaming pipeline 
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Spark Streaming provides exactly once semantics on the streaming data as a reliable 
receiver when the streaming source is enabled for acknowledgement processing (for 
example, Kafka). 
 

 

Kafka 
 
Kafka acts as a write-ahead log that records messages to a persistent store and allows 
subscribers to read and apply these changes to their own stores in a system-appropriate 
timeframe. Common subscribers include live services that do message aggregation or other 
processing of these streams, as well as Hadoop and data warehousing pipelines, which load 
virtually all feeds for batch-oriented processing. Overall, Kafka was built with the following 
goals in mind: 
 

 Loose coupling between message producers and message consumers  
 Persistence of message data for different consumers and failure handling  
 Maximize end-to-end throughput with low latency components  
 Managing diverse data formats and types  
 Scaling servers linearly without affecting existing setup 

 

In Kafka, every message is an array of bytes. Producers are the applications or processes 
that want to store information into Kafka queues. They send messages to Kafka topics, 
which stores messages of all types. Each topic is divided into one or more partitions. 
Each partition is an ordered write-ahead log of messages. There are only two operations 
the system performs: 
 

 To append to the end of the log  
 To fetch messages from a given partition beginning from a message ID 

 

Physically, each topic is spread over different Kafka brokers, which host one or two 
partitions of each topic. Ideally, Kafka pipelines should have a uniform number of 
partitions per broker and all topics on each machine. Consumers are applications 
or processes that subscribe to a topic or receive messages from these topics. 
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The following visual lays out the simplified conceptual layout of a Kafka cluster:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.5 Conceptual layout of a Kafka cluster 

 

In messaging systems, messages need to be stored somewhere. In Kafka, we store 
messages in Topics. Each topic belongs to a category, which means you may have one topic 
storing items information and another may store sales information. A producer who wants 
to send a message may send it to a a category of its choosing. A consumer who wants to 
read those messages will simply subscribe to the category of topics he is interested in and 
will consume it. Here are few terms that we need to know in terms of publish and 
subscribe architectures: 
 

 Retention period: The messages in the topic need to be stored for a defined 

period of time to save space irrespective of throughput. We can configure a 

retention period which is by default 7 days to day of our choice. Kafka will keep 

messages for the configured period of time and then will delete them.  
 Space retention policy: We can also configure a Kafka topic to clear messages 

when the size reaches the threshold mentioned in the configuration. However, 

this scenario may occur if you haven't done enough capacity planning before 

deploying Kafka into your organization.  
 Offset: Each message in Kafka is assigned a number called an offset. Topics 

consist of many partitions; each partition stores messages in the sequence in 

which they arrived. Consumers acknowledge the message with the offset; this 

means all the messages before that message offset are received by consumer. 
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 Partition: Each Kafka topic consists of a defined number of partitions. We need to 

configure the number of partitions while creating topics. Partitions are 

distributed and help in achieving high throughput.  
 Compaction: Topic Compaction was introduced in Kafka's 0.8 release. There is no 

way to change over to previous messages in Kafka, message gets deleted when 

the retention period is over. Sometimes you may get new Kafka messages with 

the same key which includes a few changes and on the consumer side you only 

want to process the latest data. Compaction helps you achieve this goal by 

compacting all messages with the same key and creates a map offset for key: 

offset. It helps in removing duplicates from large numbers of messages.  
 Leader: Partitions are replicated across Kafka clusters based on the replication 

factor specified. Each partition has a leader broker and followers, and all the 

read and write requests to the partition will go through the leader only. If the 

leader fails another leader will get elected and the process will resume.  
 Buffering: Kafka buffers messages both at the producer and consumer side to 

increase throughput and to reduce IO. 
 

A combination of Spark Streaming and Kafka produces a comprehensive architecture for 
the implementation of cyber security applications. These applications are fault tolerant, 
ensure low latency, and are capable of handling large numbers of events per second. Here 
is a reference architecture for cyber security applications using the Big Data ecosystem:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.6 Cyber security application - reference architecture 

 

Let's now understand some of the common types of cyber security attacks and 
general strategies to deal with those. 
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Cyber security attack types 
 

"One of the main cyber-risks is to think they don’t exist. The other is to try to treat all 
potential risks. (Fix the basics, protect first what matters for your business and be ready 
to react properly to pertinent threats. Think data, but also business services integrity, 
awareness, customer experience, compliance, and reputation)." 

 
– Stephane Nappo 

 

As more and more systems and CIs are getting digitized, the number of security breaches is 
also growing. The attackers utilize novel techniques to exploit the vulnerabilities within the 
applications to get access to unauthorized information and administrative privileges. In 
this section, we will list some of the common attack types and generic resolutions to those. 
 

 

Phishing 
 
This is one of the most common and successful (from an attacker's perspective) attacks on 
the applications. Most of the time, the attacker sends an email or some kind of familiar 
communication to the user to trick him/her into following the URL and providing the 
credentials. The idea is to make the user believe that the message is genuine. The attacker, at 
times, creates a dummy but identical web page which the user is familiar with and finds no 
reason to suspect the genuineness. Once the user clicks the URL, some malicious software 
gets downloaded to the machine and starts accessing information over the connected 
networks. 
 

These attacks can be prevented by using machine learning algorithms. The 
user's email headers and content can be used as the training data and can 
train the model to understand the common patterns. This learning can 
help in detecting the phishing attempt based on the behavioral trends in 
the historical emails. 

 

 

Lateral movement 
 
When an attacker gets access to the network of an enterprise, he/she tries to exploit 
vulnerabilities on a given network node. While doing this, the attacker moves from one 
network endpoint to another while gaining access to more services and the administration 
of the network and application infrastructure. This movement leaves traces within the 
network logs. 
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Machine learning algorithms can be trained with lateral movements to 
trace data and detect the suspicious user movements. If these movements 
are tracked by streaming the live network logs through the processing 
systems, the intrusion can potentially be detected in near real time. 

 

 

Injection attacks 
 
The malicious code is supplied into the target application via form fields or other input 
mechanisms. SQL injection is a special case of injection attack where the SQL statements are 
pushed into the system via field inputs and the SQL commands can get the dump of the 
sensitive data outside of the network. The attacker can get access to the authentication 
details if they reside in the database. Despite all the field validations and filtering at the web 
server layer, the injection attacks are frequent and one of the leading types of attack. The 
database logs can be used to train machine learning models based on statistical user profiles 
which can be built over a period of time as the users interacts with the databases. 
 
The abnormalities in the access pattern can be called out as anomalies and the alerts can be 
generated. Apart from SQL injection, the attackers at times run scripts that impersonate the 
actual application user and execute business functional actions on behalf of the actual user. 
For example, if the attacker can get access to the e-commerce platform and starts placing 
orders on behalf of the actual users or performs similar operations such as changing the 
address. In this case, the machine learning models need to be trained to learn the 
individual user behavior and these models should be utilized to identify the suspicious 
changes in the user navigation and action pattern in the web application. 
 

 

AI-based defense 
 

"With AI and machine learning we can do inference and pattern-based monitoring 
and alerting, but the real opportunity is the predictive restoration." 

 
– Rob Stroud 

 

As the AI becomes democratized, the attackers will also have access to tools and techniques 
to leverage AI for attacking the CIs. The defense mechanism for such attacks also needs to 
upgrade itself to use the power of data and computation to quickly build AI-based models 
in order to defend the CI and other applications. 
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As a general principle, the following diagram shows the stages of AI-based 
defense mechanisms against cyber security attacks:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.7 Stages of AI-based defence against cyber security attacks 

 

Various machine learning algorithms can be used for detection and prevention of cyber 
attacks. While each application is different in terms of its network and security 
configuration, a general guideline for the prevention of cyber attacks by different machine 
learning algorithms is depicted in the following diagram: 
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Figure 11.8 Prevention of cyber security attacks with Machine Learning algorithms 

 

 

Understanding SIEM 
 
Security Incident and Event Management (SIEM) is a process that helps cyber security 
implementation by gathering security-related information (network and application logs for 

example) at a centralized location or tags those information assets at the edge (the location 

where the data is generated in the case of IoT) and uses this information for identification of 
anomalies which indicates breaches to the security infrastructure of an enterprise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[312]  



Cyber Security Chapter 11  

 

The SIEM also facilitates continuous monitoring of the security infrastructure by providing 
intuitive visualization dashboards. SIEM as a process is implemented as a suite of software 
which is governed by enterprise security with role-based access control. The common 
characteristic features of the SIEM system are depicted in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.9 Features of the SIEM system 

 

The SIEM software application needs to support the basic building blocks as follows: 
 

 Data Collection: The SIEM software should support a variety of network 

communication protocols in order to connect to heterogeneous systems within 

the organization's boundary. The raw data is available in the form of logs from 

the enterprise applications, network traffic packets, and hardware controllers. 

These raw data assets need to be collected in a seamless and secure manner. Each 

individual system should be identified and added to the data collection stack for 

the successful implementation of the SIEM. The collected data from across 

systems can have a variety of formats such as text, XML, JSON, binary, and so on. 

The SIEM system needs to support a diverse variety of data formats.  
 Data Persistence: Depending on the data volumes, the SIEM software can use the 

local and network drives or utilize distributed file systems like HDFS for data 

persistence. As soon as the data from the applications and appliances is available 

to SIEM, it needs to parse the data depending on the format, index it, and make it 

available for ad hoc searching by the human user or by an integrated application. 

The historical and rolling logs are an ongoing and ever-increasing asset and 

hence the indexing function of the SIEM system needs to be advanced and 

efficient. 
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 Data Normalization: This is one of the most important aspects of SIEM software. 

Once the data is sourced and persisted, it needs to be modeled and normalized. 

The purpose of normalization is to make it easy for the visualization component 

to display critical information on the dashboard. The normalization module can 

also utilize the data assets to build machine learning models based on historical 

trends. The SIEM systems that leverage the data to train the machine learning 

models and provide predictive analytics will be more in demand compared to 

the SIEM systems which perform descriptive analytics and provide rules-based 

alerts.  
 Data Visualization: The visualization is the window for the personnel in charge 

of enterprise security as well as management, which may require a high-level 

view of overall system status. Since the decisions and actions are based on what is 

visually seen on the dashboard, the SIEM systems need to deploy a thoughtful 

and thorough process for defining visualizations. Since every enterprise and the 

use case is unique, one visualization cannot fit all. The SIEM tool needs to 

provide easy customizations to the visualization component. A generic set of 

features of visualization are depicted in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.10 Features of the visualization component within SIEM 

 

 

Visualization attributes and features 
 

The visualization attributes and features are as follows: 
 

 Value retrieval: The SIEM software should support retrieval of any attribute 

values across the data assets. In an ideal scenario, the SIEM software will 

support the SQL-like query language to fetch data based on multiple datasets 

based on some join condition. 
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 Filtering and sorting: The SIEM software should support intuitive filtering and 

sorting on the basis of one or multiple key columns desired by the end user.  
 Extreme values: The SIEM software should support highlighting the extreme 

values for the attributes with color coding so that the user can quickly take action 

based on critical conditions.  
 Data range: For the key attributes, the SIEM should provide a feature to highlight 

the range values so as to identify anomalies, if any.  
 Data distribution: The SIEM software should have a feature to show the data 

distribution for key attributes based on a set of criteria. It can answer 

questions like: what is the distribution of various types of cyber security 

attacks? The support team can tackle the top reasons to safeguard the CI 

efficiently.  
 Anomalies representation: The anomalies should be represented in such a way 

that they attract attention and provide enough information for mitigating the 

risks immediately.  

 Data clustering and correlation: The data related to CI security infrastructure 

applications should be visualized in clusters or groups of correlated entities. The 

application should be able to support some operations (filtering, sorting, and so 

on) on the clusters.  
 Alerting: The SIEM software should support mechanisms to generate alerts on 

critical events. The user needs to have the capability to configure alert thresholds 

and configure new alerts as required. In case of commonly used logs like web 

server access logs, the application should have predefined alerts which can be 

quickly set up by configuring threshold values. The software should also make 

use of historical data to train machine learning models which generate preventive 

alerts based on the past trends. 
 

We are going to review two SIEM software packages in this chapter. Splunk and ArcSight 
ESM are two of the most popular SIEM applications which are widely deployed for some of 
the mission CIs. 
 

 

Splunk 
 
Splunk is one of the most popular and time-tested SIEM solutions on the market at the time 
of writing. It is trusted by more than 15,000 customers worldwide for the protection of CIs. 
In this section, we will review some of the features Splunk supports for security monitoring 
and alerting. 
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A high-level overview of the Splunk platform is depicted in the following visual:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.11 Overview of the Splunk platform 

 

Splunk as a platform provides a range of sub-products which cater to specific 
organizational needs. In the context of this chapter, let us review the high-level features 
of Splunk Enterprise Security and Splunk Light. 
 

 

Splunk Enterprise Security 
 
This is a comprehensive suite which takes a holistic view of enterprise security by 
improving security operations with reduced action time, making machine data available for 
end-to-end visualization with interactive dashboards, and leveraging machine learning and 
AI to train predictive models for preventive security measures. 
 

 

Splunk Light 
 
Splunk Light is a specific product feature that deals with enterprise-wide logs. The logs 
contain loads of information which can be leveraged for corrective and preventive cyber 
security. Splunk Light enables enterprises to collect and index all the log files irrespective of 
their structure and other semantics. 
 
The data input layer is flexible enough to accept logs in any format. There is an intuitive 
user interface that reads logs from the configured location and drives the user through 
various runtime configurations which makes it easy to index the contents of the log files. 
The forwarder component can collect the logs from the systems which are not directly 
accessible to Splunk due to network limits. 
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The forwarder can connect to external sources with numerous supported protocols and 
fetches the data into Splunk Light for preprocessing and indexing. Splunk supports the 
schemaless writes paradigm of Big Data frameworks. The schema is defined at the read 
time and there can be multiple interpretations of the data assets based on context and the 
use case. 
 
Another handy feature is the support for chronology inference. Splunk can determine the 
event sequence based on the timestamp and the messages where the timestamp is missing; 
it can also infer the timestamp based on context. All the logs are available at a centralized 
location and can be accessed in a consistent manner irrespective of source and format. The 
logs are continuously indexed in the background and are available for analysis, filtering, 
sorting, and aggregation. 
 

Splunk supports Splunk Search Processing Language (SPL) as a simple SQL-like query 
interface into the log files. It also supports analytical and visualization commands which 
makes it easy to detect anomalies based on distinct patterns and outliers. The search is 
agnostic with respect to pre-processed and indexed logs or the streaming logs. There is a 
common interface for searching the logs which enables real-time query into the logs. 
 

The search results can be visualized with an interactive dashboard. The visualization 
provides slice and dice capabilities out of the box and can be easily customized based on 
the enterprise requirements. Here is a screenshot of Search Processing Language query 
execution:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.12 Search Processing Language in Splunk 
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For an SIEM to be effective, the event data from multiple discrete sources needs to be 
available for analysis at a centralized place; Splunk enables the correlation of complex 
events across various systems. This enables monitoring of the lineage of the event as it 
originates from the source and its correlation with the events from other source systems. 
This facilitates out-of-the-box investigation for the security team with improved chances of 
finding the root cause of anomalies. 
 
Splunk Light can detect changes in pattern automatically without requiring any user 
intervention. For example, a particular web application host receives n requests on day d 
of a week, if there is a significant change. Splunk can highlight the change in pattern which 
can be quickly investigated. Splunk Light allows the configuration of alerts based on 
common searches performed by the administration teams. The alerts queries can be set to 
run with a predefined frequency or in real time as per the use case context, as seen in the 
following screenshot:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.13 Configuration of alerts based on queries in Splunk (source: splunk.com) 
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ArcSight ESM 
 
ArcSight ESM is an HP SIEM product which provides premiere security event 
management solutions. ArcSight analyzes and correlates every event and makes it available 
for anomaly detection. The product greatly complements efforts in compliance and risk 
management. It helps the network operations teams. Key features of ArcSight are as 
follows: 
 

 Regulatory compliance  
 Automated log collection and archiving  
 Fraud detection  
 Real-time threat detection  
 Business KPI to IT assets mapping and monitoring  
 Business impact analysis of the threats and automated prioritization 

 

 

Frequently asked questions 
 

Let us have a small recap. 
 

Q: What is the significance of Big Data in cyber security? 
 
A: Big data and cyber security complement each other and play a vital role in each other's 
relevance and utility. As more and more devices are getting digitally connected, they are 
generating more data (volume); the data generated by these connected devices needs to be 
processed in neartime (velocity) and it follows a variety of forms such as structured, 
unstructured, and semi-structured (variety). These three Vs constitute Big Data in general 
which lead to Value as fourth V. The cyber security systems require that the Big Data is 
processed in its entirety in order to provide actionable insights into the security 
infrastructure of an enterprise and to help in detecting anomalies and preventing attacks 
on an organization's computing assets. 
 

Q: What is the meaning of critical infrastructure (CI)? What are the key components 

for protection of the CI? 
 

A: Critical Infrastructure is a term used by enterprises and government agencies to define the 
assets and working models that need to function at their optimal level in order for a seamless 

and harmonious experience for the stakeholders who directly or indirectly benefit from or are 

impacted by these systems. A country's power grid is a good example of CI. 
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Most of the CI systems are now digitized and hence controlled with computer programs 
with minimum human supervision. The criticality of these systems functioning round the 
clock also makes them vulnerable to cyber attacks. The systems that protect the CI against 
the attacks are also critically important from a defense perspective. The CI systems generate 
large volumes of log data and other operational data. This data is the most important asset 
in protecting the CIs. Apart from data, we need systems that are able to consume and 
process these data assets in a timely manner for detecting anomalies in system behaviors 
and generate alerts which trigger human or automated actions. 
 

Q: How can machine learning and AI be leveraged for effective protection of CI? 
 
A: Rules-based alerts and monitoring systems are not sufficient to deal with the cyber 
security attacks and for protecting CIs. The machine learning models need to be trained 
based on the historical data (supervised learning) in order to predict the occurrence of 
malicious activities in advance or in near real time when the intrusion is in progress. The 
machine learning and AI transitions the cyber security systems to predictive analysis which 
helps in preventing the attacks. 
 

Q: Is it possible that the attackers also leverage AI for breaching security infrastructure? 
How do we protect against it? 
 

A:Yes, AI and machine learning is already leveraged by attackers in breaching security 
infrastructure. It is a race to get the better of the attackers and protect the systems. Data 
is the advantage with the systems which protect the CI. The data across heterogeneous 
sources needs to be leveraged in near real time to stay ahead and protect the CIs. 
 

Q: What is the significance of Stream Processing in cyber security? 
 
A: Big data assets can be processed in batch and real-time modes. Batch mode processing is 
suitable for large volumes of data and when the processes are not time sensitive (do not 
need to be real time). However, the CI systems constantly generate data as an unbounded 
source of information. The ingestion, processing, and analysis needs to happen as close to 
the event time as possible in order to stand a chance of protecting the CIs. Stream 
processing is an architectural paradigm that deals with unbounded data which is consumed 
as a stream and processed even while it is in motion. This comes handy with performing 
anomaly detection even while the intrusion is in progress and helps in preventing potential 
attacks on CI. 
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Summary 
 
In this chapter, we have studied the basic concepts of cyber security and the significance of 
Big Data in dealing with threats to the security of critical applications. Big data processing 
has two fundamental types, batch processing and real-time processing, for streaming data 
sources. We have studied the fundamental concepts and frameworks in batch and real-
time processing. 
 
Real-time stream-based processing is important in dealing with cyber security threats. We 
have seen the different types of common security threats and vulnerabilities exploited by 
the attackers. Machine learning and AI are largely democratized and leveraged by attackers 
for sophisticated attacks on the CIs. This makes utilization of machine learning and AI a 
critical consideration while building the systems which deal with cyber security attacks. We 
have reviewed the basic building blocks of the SIEM systems and a couple of examples, 
Splunk and ArcSight SEM, as two of the most popular SIEM frameworks. The field of cyber 
security is of prime importance and more research needs to happen in order to protect data 
assets. The protection of data assets is even more significant with ever-increasing 
dependence of CI and other systems on the availability of accurate and reliable data. 
 

In the next and final chapter of this book, we will study cognitive computing. Cognitive 
intelligence takes the machines as close to human intelligence as possible. It is an exciting 
field of research and we will review some of the fundamental concepts and tools available 
for experimenting with and realizing cognitive intelligence in smart machines which will 
complement and augment human capabilities. 
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So far in this book, we have studied the general principles of machine learning (ML) and 
artificial intelligence (AI). This is a good foundation and a starting point for creating 
intelligent machines that can complement and augment human capabilities. This is possible 
with the ever increasing computational power along with the availability of ever growing 
volumes of data. However, in order to build artificial machines that can potentially match 
(or inch closer to) the human brain, we need to develop our understanding of human 
cognition. 
 

While a tremendous amount of research and thinking has happened for so many decades 
(or centuries), we are far from fully decoding nature's program when it comes to human 
cognition. In this chapter, we will initiate the reader on cognitive science and introduce 
some of the frameworks that are available to take the research forward. During the course 
of this final chapter, we will introduce you to the following: 
 

 General principles of cognitive science  
 Cognitive Systems  
 Application of cognitive intelligence in big data analytics  

 An introduction of IBM Watson as one of the most advanced cognitive 

computing frameworks  
 Developing an IBM Watson application in Java 
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Cognitive science 
 
In our quest to build intelligent machines, we are attempting to build capabilities that match 
and for the most part mimic the human brain and the sensory organs. There are five senses 
and primary organs corresponding to each through which we perceive this world. The goal 
of cognitive science is to build these sensory capabilities in intelligent machines so that the 
interactions with them are natural and seamless: 
 

 Vision: To see the objects, understand their position in three primary dimensions, 

and also their movement along with time as the fourth dimension. While we use 

our eyes as an external interface for vision, everything else happens within the 

brain. By deploying principles of cognitive science, we are able to build 

intelligent systems that can see the objects and their movements with video 

cameras and create a mathematical model for converting the visual signal into a 

knowledge.  
 Audition: With this sense, we hear various audio signals. The external interface 

to this in the human body is ears, and once again the audio processing takes 

place in the brain. We can identify the person via voice, understand the meaning 

of the signal all due to the brain's capacity to process the signal in real time, and 

use memory to put the audio signal in context and trigger necessary actions. The 

AI systems can also be modeled to perceive audio signals and process those with 

NLP and translate them into knowledge and also trigger actions.  
 Gustation: With this sense, we can perceive taste of an object (food). The external 

interface is the tongue and the taste signal is processed within the brain.  
 Olfaction: With this sense, we can smell various objects. The external interface is 

the nose and the signals are all processed within the brain.  
 Somatosensation: With this sense, we can feel various objects. The external 

interface is the skin and once again the entire processing of temperature, texture, 

and all the other tangible aspects of an object are processed and understood by 

the brain. 
 

During the course of this book in previous chapters, we have seen theories, mathematical 
models, tools, and frameworks for creating intelligent machines that mimic human 
intelligence with these five senses. The manifestations of these senses are tangible and can 
be physically modeled. However, there is a sixth organ and corresponding sense that 
governs human life within a larger context and it is called the mind. 
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The human mind is the closest manifestation of universal consciousness and it is believed 
to control all the other five senses. The mind is in play when we talk about willpower, 
emotions, determination, and all other things intangible, but it is the most important 
aspect when it comes to building intelligent machines or fully creating AI that is going to 
complement and augment human capabilities in a larger sense. 
 
While it is important to study and eventually mimic the human mind, at the same time, it is 
difficult. This is because the human mind is not easy to observe, measure, or manipulate 
and sometimes it is termed as the most complex entity (that is intangible too) in the 
universe. Cognitive science is a branch of science that performs interdisciplinary study of 
the mind. While the individual disciplines are independent of each other in their research 
space and domain, they have a common string connected to the study of the mind. Some of 
the primary fields that coincide with study of the mind are depicted in the following 
diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.1: Cognitive science as an interdisciplinary study of mind 

 

While the functioning of the mind is still an unexplored area of research to a large extent, 
for the sake of simplicity, we can treat the mind as a central information processing unit and 
relate it to a computer that gathers inputs, processes those based on predefined and fuzzy 
rules, and transforms them into outputs that serve a larger purpose. The human mind can 
also represent the information and translates it into knowledge and actions. The inputs are 
received from the perceptive organs that we have listed earlier. 
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However, there is a fundamental difference between the digital computers and primarily 
analog human mind and its representation in the brain. When we think about building 
intelligent machines, the larger goal of AI when it comes to cognitive computing is to use 
computing infrastructure and knowledge assets (database) to solve real-world problems 
that complement and augment human capabilities. The deeper-level goal is to ultimately 
decode the meta-knowledge and human intelligence to have a chance at building machines 
with cognitive abilities (emotional and spiritual intelligence). With the deeper goal in 
perspective, the AI can be divided into three stages, as depicted in the following diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.2: Stages of AI 

 

They are as follows: 
 

 Applied AI: We have had applied AI in mainstream use for quite some time now. 

The household appliances that work on fuzzy logic (washing machines, air 

conditioners, and so on), the smart navigation systems that can predict the 

driving time based on real-time traffic situations, the industrial robots that 

perform predefined tasks within a level of variation in the environmental state 

are some of the examples of applied AI. The applied AI leverages machine 

learning models and the data assets to implement supervised, unsupervised, and 

reinforcement learning algorithms to develop smart machines. 
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 Cognitively Simulated AI: With this, the machines are enabled with natural 

language processing, interpreting video and other sensory inputs from the 

environment, and react based on the context and truly augment human 

capabilities. The intelligent assistants that we have on our phones simulate 

cognitive intelligence for a seamless interaction with the smart machines. In order 

to realize cognitively simulated AI, we require a higher level of computation 

power along with data. With big data systems in the mainstream, we have 

already realized the applications based on cognitively simulated AI.  
 Strong AI: In this stage, the field of AI gets as close to human intelligence as it 

can be and with the brute force as an additional advantage with the computers, 

the systems based on strong AI can potentially surpass human intelligence and 

create a paradigm shift in our experience of the world. At this level, the AI is 

based on high-level cognition and can perform multi-stage reasoning, fully 

understand the "meaning" of the natural language, and can potentially generate 

artifacts without being instructed to do so. 
 

"The goal of strong AI is nothing less than to build a machine on the model of a man, a 
robot that is to have its childhood, to learn language as a child does, to gain its 
knowledge of the world by sensing the world through its own organs, and ultimately to 
contemplate the whole domain of human thought." 

 
–Weizenbaum (MIT AI Laboratory) 

 

While applied AI and cognitively simulated AI are already well adopted for various use cases 
and have become mainstream, the Cognitive science is a quest toward Strong AI. That means, 
some of the very basic activities which human beings can perform naturally without any 
external training like use of language, logical reasoning, plan future activities and strategies are 

some of the most difficult abilities to be replicated in intelligent machines. These behaviors are 
the core cognitive competencies which we are planning to incorporate in machines within the 
scope of study of Cognitive science and developing strong AI. 
 

In the next section, let us review some of the characteristics of the Cognitive Systems 
which can possibly be built with the goal to achieve Strong AI. 
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Cognitive Systems 
 
One of the key characteristics of Cognitive Systems (CS) is that they have the ability to 
interact and interface with human beings with natural language in a similar as possible 
manner to human interactions. The systems are capable of learning and thinking from 
the stochastic environmental context as well as historical data inputs. The systems should 
be able to quickly evolve from dependency on the structured data inputs (traditional 
computing) to semi-structured and unstructured data inputs very similar to the human 
interface. 
 
We have already seen in the chapter on fuzzy systems that the systems based on AI 
should be trainable to accept fuzzy inputs in a natural format without any cleansing or 
harmonizing. Since Cognitive Systems interact with human beings in a natural way, they 
can extend and amplify human capabilities with an added advantage of brute-force and a 
virtually unlimited amount of data storage capabilities. 
 
As we have seen in the introductory section in this chapter, the development of CS is a 
multidisciplinary effort and requires a great deal of collaboration and knowledge sharing in 
order to progress in the direction of realizing a truly Cognitive System that cannot be 
differentiated from human capabilities in terms of intelligent behavior. The 
multidisciplinary nature of Cognitive Systems can be depicted as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.3: Cognitive Systems (CS) as a multidisciplinary effort 
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As we can see, Cognitive Systems can be built with combined efforts from information 
technology (IT), Biology (Neuro and Life Science), and Cognitive science. IT provides the 
backbone for the CS with data storage and data processing capabilities. With the advent of 
cloud-based distributed computing, we have potentially unlimited storage and computing 
power at our disposal. IT systems also translate the high-level natural inputs into low-level 
digital forms that are interoperable and a means of communication between multiple 
Cognitive Systems. Biological knowledge, specifically in the area of neurology and 
physiological study of the brain and the nervous system, helps in emulating some of the 
tangible patterns in Cognitive Systems. The nervous system is the most complex system and 
is far from being fully understood at this time. However, Cognitive Systems can draw a lot 
of inspiration from neurological studies. 
 

Cognitive science incorporates the knowledge of psychology, mind, and 
its interface with physiology, linguistics, and so on. These three fields 
combined together have the potential to develop a true Cognitive System 
that resembles human behavior and complements and augments its 
capabilities. 

 

Let's look at how far CS has evolved at this point. 
 

 

A brief history of Cognitive Systems 
 
Cognitive Systems have greatly evolved at this point in time even though we are far from 
making a truly Cognitive System that matches human abilities. 
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Here is a brief timeline of the evolution of Cognitive Systems:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.4: Cognitive Systems evolution timeline 

 

As you can see in this figure, the general theories and science behind realization of 
Cognitive Systems have existed for decades, but the acceleration in the evolution process 
is a result of availability of big data analytics frameworks that are based on distributed 
computing architectures that started becoming mainstream around the year 2000. With 
exponential growth in the digital data assets along with the computation power, the 
systems are poised to evolve at a faster rate every passing day. A significant feat was 
achieved in 2010 when IBM's Watson engine, which is based on cognitive intelligence, beat 
a world champion in a game of Jeopardy. 
 

With this background, let us look at some of the goals for Cognitive Systems. 
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Goals of Cognitive Systems 
 
The primary goal for Cognitive Systems is to complement human capabilities and augment 
those for overall benefit and betterment of human society by helping to solve some of the 
problems (effective and accurate diagnosis of some diseases, autonomous and self-driving 
cars, decoding human DNA, and so on) that are faced by the human race. When we design 
Cognitive Systems, there are certain generic capabilities that contribute to achieving overall 
goals for the CS. These capabilities are as follows: 
 

 Exploration: The CS should be able to autonomously explore the environmental 

context and infer meaning from it. This exploration can go beyond the immediate 

or close context into the vast amounts of digital data that is available for 

converting into information and finally into knowledge assets. The architecture of 

Cognitive Systems should facilitate unbounded exploration within and outside of 

the context.  
 Retrieval: Once the data is available as knowledge assets in logically and 

cognitively connected entities, the architecture should enable effective and timely 

retrieval of the knowledge assets as and when required for the system to drive 

effective and accurate actions.  
 Semantic Search: This is a generic extension of the retrieval capabilities. 

Whenever a human interface or another Cognitive System needs some 

information based on cognitive inputs, the CS should be able to search the 

knowledge assets in a timely manner and feed the extracted information to the 

entity that has requested the information based on the context. At this point, the 

keywords should have semantic context associated with them instead of being 

just plain text. This is based on the ontological mapping as we have seen in 

Chapter 2, Ontology for Big Data.  
 Physical activity and state manipulation: The Cognitive System should have 

tangible components that are capable of physical activities. For example, a robotic 

arm that can perform a delicate surgery. The system should also be able to 

manipulate the state of the environment based on the context and the optimal 

behavior of the intended Cognitive System. For example, the system should be 

able to turn ON the music for a person in a room based on the mood, time of the 

day, and so many other personalized parameters.  

 Information enrichment: This is a very important aspect of a Cognitive System. 

Based on the historical data, current environmental context, and the learning, 

the CS should be able to enrich the knowledge assets in an implicit and seamless 

manner without having to explicitly perform data entry operations. It should be 

an automated closed control loop that draws and commits information into the 

knowledge base in order to enrich it with every interaction. 
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 Navigation and Control: The Cognitive Systems should be capable of navigating 

physical objects within the problem space considering the environmental context. 

The well known example is the self-driving cars, traffic control systems, and 

smart-home systems that can control various operating parameters of the system 

in real time.  
 Decision Support: The Cognitive Systems should facilitate effective decision 

making in day-to-day as well as mission critical applications. For example, a 

medical decision to operate a particular condition in a patient or to treat it with 

available medicine based on the patient's history, symptoms, and various reports 

can be taken by the Cognitive System based on the following: 

 Model: In this type of decision support system (DSS), the decision 

is made based on well-established models and theories in the 

specific field of consideration. The Cognitive System should be 

able to interpret and infer from the model in a consistent manner.  
 Data: In this type of DSS, the decision is made based on the 

historical data. This is an example of supervised learning 

algorithms that the CS can deploy for decision making.  

 Communication: The Cognitive System should be able to 

communicate in real time with various other human and non-

human Cognitive Systems in order to derive decisions in a 

particular situation.  
 Document: Document-driven decision is based on large volumes of 

unstructured data that is digitized as scanned documents and 

audio-video files. The Cognitive Systems should be enabled to 

search into these knowledge assets and provide context sensitive 

decision support in a timely and efficient manner.  
 Knowledge: These are specialized types of Cognitive Systems that 

operate on domain-specific data assets and ontologies. These are 

meant for special purposes with a very limited context. These 

systems also leverage the machine learning models based on the 

historical data assets and past decisions. These systems constantly 

add to the data assets, build semantic relationships within the 

domain, and provide decisions similar to the natural human 

interfaces in which management seeks some of the reports and 

projects from the teams. The decision support systems based on 

domain-specific knowledge assets within the enterprise can 

potentially improve operational efficiencies multifold. 
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 Natural language interface: Cognitive Systems support natural language as a 

means for data input and generate outputs in natural language that resemble 

human interactions. These systems should also be enabled to interact with 

the other Cognitive Systems in a standardized and natural format. This 

facilitates seamless knowledge exchange and system improvisations with 

time. 
 

With these goals and expected capabilities within Cognitive Systems, let us look at some 
of the entities that enable realization of Cognitive Systems. 
 

 

Cognitive Systems enablers 
 
In order to build Cognitive Systems that resemble human intellectual behavior, we need the 

following core ingredients: 
 

 Data: As depicted in the previous diagram, the Cognitive Systems evolution 

accelerated after the mainstream availability of large volumes of data in digital 

format. The theories and algorithms that were prescribed decades ago, could not 

be evaluated to lack of substantial amounts of data. Data is one of the biggest 

enablers for Cognitive Systems.  
 Computation: In order to process the data and apply the theories and algorithms, 

we need ever increasing computational power. Once again, as soon as the 

distributed computing power was mainstream, the evolution of Cognitive 

Systems has accelerated.  
 Connectivity: Cognitive Systems need data from heterogeneous sources for cross 

referencing the entities and derive meaning from those in order to create a 

knowledge base. The connectivity of all the data sources as well as the entities 

within the data sources is extremely critical for development of efficient and 

accurate Cognitive Systems.  

 Sensors: There has been a recent advance in Internet of things (IoT) where the 

sensing devices generate data that can be mission critical in many 

applications. Cognitive Systems also deploy various sensors that emulate 

human sensory systems in order to facilitate natural language conversations 

and interactions with human beings as well as other Cognitive Systems.  
 Theories in understanding human brain: In order to propel the research in the 

right direction, we need to understand the functioning of the human brain in 

more detail. We are still far from fully understanding how the human brain 

works. In order for Cognitive Systems to really come close to human intelligence 

levels, we need to also study the mind. Mind research is complex due to the 

intangible nature of the mind. 
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 Nature: Cognitive Systems need to derive inspiration from nature and how 

various creatures interact with each other with the basic survival instincts. All 

the natural creatures have the level of intelligence to interact within their 

environmental context as well as survive effectively. As we have seen in the 

chapter on swarm intelligence, the natural behaviors for the creatures can help in 

building Cognitive Systems. 
 

 

Application in Big Data analytics 
 
Frequently, the terms big data and Cognitive Intelligence are used together. Let us 
understand the relationship between these two concepts. During the course of this book, we 
have already seen primary aspects and details of big data, such as Volume, Velocity, and 
Variety. The data volumes are growing exponentially with more devices and systems 
producing data across business domains and platforms. 
 
As a simple example, a person living in any urban area across the world, is producing at 
least a few megabytes of data every day with the use of smartphones, televisions, various 
electronic gadgets, and even cars. These personalized datasets along with industrial and 
enterprise data assets are adding to the volume of data everyday. This data is generated and 
stored at an ever increasing velocity into centralized servers on the premise or within the 
cloud. In order for the data assets to be of value, the analysis and actionable insights should 
be generated as close to the event time as possible. That means the velocity of data 
processing is another key aspect of big data. 
 
Most of the data assets we have talked about in this section do not have a standardized 
format. They are generated in a large variety of formats and are mostly unstructured in 
nature. There is also an increasing volume of structured and semistructured data that is 
constantly getting generated. The variety is the third dimension of big data. The 
computational models that can store and process this big data is very well established in the 
form of distributed computing frameworks such as Hadoop and others. The growth of big 
data analytics is also fueled and accelerated with the availability of these platforms as a 
service (PAAS) onto cloud. The entire cluster of analytics platform can be spawned within 
minutes and it can be auto-scaled as per the data volume and compute requirements. 
 

These big data analytics platforms are the foundation on which cognitive intelligence can be 
built. As we have seen earlier in this chapter, underlying technologies that facilitate big 
data, are the core components that are required for building artificial intelligence. The key 
components are the ability to store massive amounts of data and massive amount of 
computation power. 
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Despite growing volumes of data that is available in digital format, we still have more than 
80% of data that is in rudimentary format. For example, the ancient scriptures, century-old 
official documents in paper format, handwritten books, and so on. Some of these 
knowledge assets are digitized, but they are still in unstructured raw format. This large 
data is extremely critical and a significant portion of our knowledge assets. This data as a 
whole is called dark data. One of the core objectives and possibilities with the use of big 
data and Cognitive Intelligence together is to be able to tap into the dark data. 
 

Using cognitive intelligence, we can create a semantic view of the dark data that can be brought 
into mainstream data assets can be part of the evolution of Cognitive Systems. It is impossible to 
fully understand and use the dark data with manual processes. We need big data technology 
tools along with the algorithmic approach of cognitive intelligence in order to utilize the dark 
data. The cognitive image and document processing techniques such as advanced imaging, 
optical character recognition, natural language processing, and various machine learning 

algorithms for text classification. Once the knowledge assets are digitized, they are semantically 
organized along with the relationships at the ontological entity level. 
 
Within the traditional big data systems that are collectively referred to as Enterprise Data 
Hub (EDH) or Data Lake, one of the key components is data modeling. This is an exercise 
that maps the source systems to the target data structure into the data lake. The data 
modeling is a largely manual process, which requires understanding the significance of the 
data attributes (columns) in the source systems that are domain specific structures and map 
those to the fields in the data lake. With the use of cognitive intelligence, it is possible to 
fully eliminate the data modeling process. In this new paradigm, the Cognitive System 
parses and semantically understands the source database and generates a connected 
prototype of the target structure, which is efficient in search and exploration and fully 
available for advanced analytics. Essentially with a combination of big data technologies 
along with the cognitive intelligence, the data management systems are poised to be 
autonomous, more efficient, and accurate. Since the manual intervention is minimum, the 
data analysis and hence actionable insights are available faster. 
 

With the use of cognitive intelligence, it is possible to seamlessly interact with the data 
platform. In the traditional big data analytics world, we are using visualization and 
reporting tools for generating and showing trends in the data and doing prescriptive 
analytics on the data. The data assets are also made available for machine learning models 
for performing predictive analytics. If we introduce cognitive intelligence in these systems, 
we can interact with the data platform in a more natural manner. 
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This is very similar to human interaction where we can ask domain and context specific 
questions to the platform in natural language and by tapping into the underlying data 
assets and application of various machine learning algorithms, the answers are presented 
to the user in a natural form. This capability opens up a whole new world of how human-
machine interfaces can evolve to the extent where it will be difficult to tell if we are 
interacting with a machine or a human being. 
 

 

Cognitive intelligence as a service 
 
The field of cognitive intelligence is vast and exciting since we are trying to follow an 
intangible entity, the human mind. As our understanding of how human cognition works, 
we can implement similar behaviors in Cognitive Systems. At a high level, the cognitive 
intelligence based human decision process has four basic components as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.5: Basic components of cognitive intelligence based human decision process 

 

We observe the environment and the various inputs simultaneously through the sensory 
organs. The inputs are interpreted within the context of environmental state. During the 
interpretation stage, we refer to the historical data as well as the intended goal for the 
process. Once the interpretation is done, various options based on the past experiences and 
future rewards are evaluated and the best option is selected, which maximizes the overall 
gain. The decision making is also based on a reinforcement learning process, which we 
have seen in Chapter 10, Reinforcement Learning. Any platform that facilitates the decision 
making processes based on cognitive intelligence needs to implement the four building 
blocks at the core. 
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While the research is ongoing and it will accelerate in the near future, companies like 
IBM, Microsoft, and Google are some of the pioneers in the field. They have already 
invested in AI research in general and cognitive computing related research and 
application development in particular. The success of IBM's Watson in the game of 
Jeopardy has encouraged the community to make the application using cognitive 
intelligence commercially available. There is also a commitment from the front runners to 
democratize the knowledge as well as create layers of abstraction for wider and easy 
adoption. As a result, the community of data scientists and enthusiasts have access to 
storage and computing power with minimum boot time as well as minimum cost to 
explore and experiment. Let us explore some of the frameworks, APIs, and tools that are 
available for running experiments and research in cognitive intelligence. 
 

 

IBM cognitive toolkit based on Watson 
 
IBM initially developed Watson as an engine that could play the game of Jeopardy. In this 
game, a human moderator asks questions in a somewhat cryptic manner in natural 
language. The question is heard by all the participants at the same time. The players can 
press a buzzer to indicate that they are ready with an answer. The first player to press the 
buzzer gets the chance to answer the question. Watson was successful in outperforming 
the Jeopardy world champion in year 2010. As we can see, this process also goes through 
the Observe | Interpret | Evaluate | Decide cycle. Here is the high-level architecture of 
IBM Watson as an intelligent machine that can answer questions in natural language:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

>   
Figure 12.6: High level architecture of IBM Watson as an intelligent machine 
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"The computer's techniques for unravelling Jeopardy! clues sounded just like mine. That 
machine zeroes in on keywords in a clue then combs its memory (in Watson's case, a 15-
terabyte databank of human knowledge) for clusters of associations with those words. It 
rigorously checks the top hits against all the contextual information it can muster: the 
category name; the kind of answer being sought; the time, place, and gender hinted at in 
the clue; and so on. And when it feels sure enough, it decides to buzz. This is all an 
instant, intuitive process for a human Jeopardy player, but I felt convinced that under the 
hood my brain was doing more or less the same thing." 

 
–Ken Jennings (one of the best players in Jeopardy) 

 

After the initial success of Watson as a Jeopardy engine, IBM has evolved Watson into 
Cognitive Intelligence as a Service and it is available on IBM cloud. The Cognitive System 
enablers that we have seen earlier in this chapter (Data, Computation, Connectivity, 
Sensors, Understanding of human brain functioning, Nature, and collective intelligence) 
are made available with a common interface on the platform. 
 
 

Watson-based cognitive apps 
 

At the time of writing, IBM supports the following cognitive applications as services on the 

IBM Cloud platform: 
 

 Watson assistant: This application was formally named as "Conversation". This 

application makes it easy to add a natural language interface to any application. 

It is easy to train the model for the domain-specific queries and implement 

customized chatbots.  
 Discovery: This application enables search into the user's documents as well as a 

generic cognitive keyword based search on the internet. The service delivers 

connections, metadata, trends, and sentiment information by default. It is 

possible to input data from local filesystems, emails, and scanned documents in 

unstructured format. It is also possible to connect to enterprise storage 

repository (sharepoint) or a relational database store. It can seamlessly connect to 

the content on cloud storages. 
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 Knowledge Catalog: The application facilitates organization of data assets for 

experimenting with various data science algorithms and hypothesis. A data 

science project in the knowledge catalog contains data, collaborators, notebooks, 

data flows, and dashboards for visualization. Watson knowledge catalog is a 

handy and useful application when there are thousands of datasets and 

hundreds of data scientists who need access to these datasets simultaneously and 

need to collaborate. The knowledge catalog provides tools to index the data, 

classify the documents, and control access based on the users and roles. The 

application supports three user roles. Administrators with full control over the 

data assets, Editors who can add content to the catalog and grant access to 

various users, and Viewers who have role-based access to data assets.  
 Language Translator: This is an easy to use application that is a handy tool that 

can be easily incorporated within mobile and web applications in order to 

provide language translation services. This can facilitate development of 

multilingual applications.  
 Machine Learning: With this app we can experiment and build various machine 

learning models in a context sensitive assisted manner within the Watson studio. 

The models are very easy to build with model builder web application available 

on IBM cloud. The flow editor provides a graphical user interface to represent the 

model and this is based on SparkML nodes representation of the DAGs (Directed 

Acyclic Graphs).  
 Natural Language Understanding: This is a cognitive application which makes it 

easy to interpret the natural language based on pre-built trained models. It 

makes it very easy to integrate within mobile and web applications. The app 

supports identification of concepts, entities, keywords, categories, sentiment, 

emotion and most importantly semantic relationship between the natural 

language text presented as input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



[338]  



Cognitive Computing Chapter 12  

 

 Personality Insights: This application gets as close as possible to cognitive 

intelligence human beings demonstrate while interacting with each other. We 

judge a person by the use of specific words in the language, the assertion in 

making certain statements, pitch, openness to ideas from others, and so on. 

This application applies linguistic analytics and personality theory using 

various algorithms and comes up with a Big Five, Needs, and Values score 

based on the text available in Twitter feeds, blogs, or recorded speeches from a 

person. The output from the service is delivered in a JSON format that contains 

percentile scores on various parameters, as seen in the following screenshot:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.7: Percentage scores on various parameters 

 

 Speech to Text and Text to Speech: These are two services to add the speech 

recognition capabilities to the enterprise applications. The services transcribe the 

speech from various languages and a variety of dialects and tones. The services 

support broadband and narrow-band audio formats. The text transmissions 

(requests and responses) support JSON format and UTF-8 character set. 
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 Tone Analyzer: This is another cognitive skill that we humans possess. From the 

tone of a speaker, we can identify the mood and the overall connotation. This 

determines the overall effectiveness of a specific communication session when it 

comes to call centers and other customer interactions. The service offerings can 

be optimized based on the detected tone of the client. This service leverages 

cognitive linguistic analytics for identification of various types of tones and 

categorize emotions (anger, joy, and so on), social nature (openness, emotional 

range, and so on), and language styles (confident and tentative).  
 Visual Recognition: This services enables applications to recognize images and 

identify objects and faces that are uploaded to the service. The tagged keywords 

are generated with confidence scores. The service utilizes deep learning 

algorithms.  
 Watson Studio: This service makes it very easy to explore machine learning and 

cognitive intelligence algorithms and embed the models into the applications. 

The studio provides data exploration and preparation capabilities and facilitates 

collaborations among project teams. The data assets and notebooks can be 

shared and visualization dashboards can be easily created with the Watson 

Studio interface. 
 
 

Developing with Watson 
 
Watson provides all the services listed previously along with many more on IBM Cloud 
infrastructure. There is a consistent web-based user interface for all the services, which 
enables quick developments of the prototypes and tests. The cognitive services can be 
easily integrated within the applications since most of those work with REST API calls to 
the service. The interactions with Watson are secure with encryption and user 
authentication. Let us develop a language translator using Watson service. 

 

Setting up the prerequisites 
 

In order to leverage IBM Watson services, we require an IBMid: 
 

1. Create an IBMid at https://console.bluemix.net/registration/?target= 

%2Fdeveloper%2Fwatson%2Fdashboard.  

2. Log in to IBM Cloud with the login name and password. 
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3. Browse the Watson services catalog at https://console.bluemix.net/catalog/? 

search=label:litecategory=watson:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.8: IBM services catalog 

 
4. Select Service Name (you can use the default name), region/location to deploy 

the service in, and create the service by clicking on the Create button.  
5. Create the service credentials (username and password) for authenticating 

the requests to your language translation service:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.9: Language translator 
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6. Once we get the service credentials along with URL endpoint, the language 
translator service is ready to serve the requests for translating text between 
various supported languages. 

 

Developing a language translator application in Java 
 

We proceed as follows: 
 

1. Create a Maven project and add the following dependency for including 

Watson libraries: 
 

<dependency>  
<groupId>com.ibm.watson.developer_cloud</groupId>  
<artifactId>java-sdk</artifactId>  
<version>5.2.0</version>  

</dependency> 

 

2. Write the Java code for calling various API methods for LanguageTranslator: 
 

package com.aibd; 

 
import com.ibm.watson.developer_cloud.language_translator.v2.*;  
import  
com.ibm.watson.developer_cloud.language_translator.v2.model.*; 

 
public class WatsonLanguageTranslator { 

public static void main(String[] args) {  
// Initialize the Language Translator object with 

your authentication details 
 

LanguageTranslator languageTranslator = new 

LanguageTranslator("{USER_NAME}","{PASSWORD}"); 
 

// Provide the URL end point which is provided along with 
service credentials 

languageTranslator.setEndPoint("https://gateway.watsonplatform.net/ 

language-translator/api"); 
 

// Create TranslateOptions object with the builder and 
adding the text which needs to be  

// translated  
TranslateOptions translateOptions = 

new TranslateOptions.Builder()  
.addText("Artificial Intelligence will soon 

become mainstream in everyone's life")  
.modelId("en-es").build();  

// Call the translation API and collect the result in 
TransalationResult object  

TranslationResult result = 
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languageTranslator.translate(translateOptions)  

.execute();  
// Print the JSON formatted result 

System.out.println(result); 
 

// This is a supporting API to list all the 
identifiable languages 

 
IdentifiableLanguages languages = 

languageTranslator.listIdentifiableLanguages()  
.execute(); 

 
//System.out.println(languages);  
// The API enables identification of the language based on 

the entered text.  
IdentifyOptions options = new IdentifyOptions.Builder()  

.text("this is a test for identification of the  
language")  

.build();  
// The language identification API returns a JSON object 

with level of confidence  
// for all the identifiable languages  
IdentifiedLanguages identifiedLanguages = 

languageTranslator.identify(options).execute();  
//System.out.println(identifiedLanguages);  
// API to list the model properties 

GetModelOptions options1 = new  
GetModelOptions.Builder().modelId("en-

es").build(); TranslationModel model =  
languageTranslator.getModel(options1).execute(); 

//System.out.println(model);  
} 

 
} 

 

Output # 1: The translation output is returned in JSON format, which contains a number of 
words that are translated, the character count, and the translated text in the target language 
based on the model that is selected: 
 

{  
"word_count": 9,  
"character_count": 70,  
"translations": [  

{  
"translation": "Inteligencia Artificial pronto será incorporar en 

la vida de todos"  
}  

]  
} 
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Output # 2: The listIdentifiableLanguages provides the list of languages that 

are supported in JSON format: 
 

{  
"languages": [  

{  
"language": "af",  
"name": "Afrikaans"  

},  
{  
"language": "ar",  
"name": "Arabic"  

},  
{  
"language": "az",  
"name": "Azerbaijani"  

},  
{  
"language": "ba",  
"name": "Bashkir"  

},  
{  
"language": "be",  
"name": "Belarusian"  

},  
...  
... 

 

Output # 3: The service provides API for identifying the language of the text that is 
provided as input. This is a handy feature for the mobile and web applications where the 
user can key-in text in any language and the API detects the language and translates into 
the target language. The output is presented in JSON format with the confidence score for 
each language. In this case, the service is returning language as English (en) with 
0.995921 confidence: 
 

{  
"languages": [  

{  
"language": "en",  
"confidence": 0.995921  

},  
{  
"language": "nn",  
"confidence": 0.00240049  

},  
{  
"language": "hu", 
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"confidence": 5.5941E-4  

},  
..  
.. 

 

Output # 4: The model properties can be displayed with the GetModelOptions API call: 
 

{  
"model_id": "en-es",  
"name": "en-es",  
"source": "en",  
"target": "es",  
"base_model_id": "",  
"domain": "news",  
"customizable": true,  
"default_model": true,  
"owner": "",  
"status": "available"  

} 

 

 

Frequently asked questions 
 

Q: What are the various stages of AI and what is the significance of cognitive capabilities? 
 
A: In terms of applicability and its resemblance level with the human brain, AI can be divided 

into three stages. Applied AI is the application of machine learning algorithms on the data 
assets in order for the smart machines to define the next course of action. These smart machines 
operate on the models that can operate within a pre-defined environmental context as well as to 

a certain degree work within stochastic environments. This level of AI is generally available and 
is finding use cases and applications in our day to day lives. 
 
Cognitively Simulated AI is the next stage in AI development. In this stage, the intelligent 
machines are capable of interfacing with human beings in a natural format (with speech, 
vision, body movements and gestures, and so on). This type of interface between man and 
machine is seamless and natural and the intelligent machines in this stage can start 
becoming complementary to human capabilities. The next stage is Strong AI with which 
we intend to develop intelligence machines that match or exceed human cognitive 
capabilities. With the availability of large volumes of data along with the machine's brute-
force, potentially these intelligent machines can fully augment human capabilities and help 
us define solutions for some of the most difficult problems and open new frontiers in AI. 
At that point, it will be difficult to differentiate the intelligent machines from human beings 
in terms of their cognitive intelligent behavior. 
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Q: What is the goal of Cognitive Systems and what are the enablers that move the 
systems towards the goal? 
 
A: The primary goal of developing Cognitive Systems is to create intelligent machines that 
supplement and augment human capabilities while keeping the interface between man 
and machine through primary senses. Instead of interacting with keyboard, mouse with 
the machine, we interface through the five primary senses and mind as the sixth organ and 
sense. The most important enabler for the development of Cognitive Systems that 
incorporate strong AI is availability of data and computation power to process the data. 
 

Q: What is the significance of big data in development of Cognitive Systems? 
 
A: The theory of machine learning, various algorithms, and Cognitive Systems has existed 
for decades. The acceleration in the field has started with the advent of big data. The 
systems learns from the past patterns that can be searched in the data. The supervised 
learning and learning models are more accurate with availability of large volumes of data. 
Big data also allows the systems to have access to heterogeneous data assets that provide 
key contextual insights within the environment, which makes the intelligent machines more 
informed and hence enables wholistic decision making. Cognitive Systems also get benefit 
from the availability of big data assets. The knowledge that is available in unstructured 
format can be utilized with the use of cognitive intelligence and it opens an entirely new 
frontier for Cognitive Systems. 
 

 

Summary 
 
In this chapter, we were introduced to cognitive computing as the next wave in the 
development of artificial intelligence. By leveraging the five primary human senses along 
with mind as the sixth sense, the new era of Cognitive Systems can be built. We have seen 
the stages of AI and the natural progression towards strong AI along with the key 
enablers for achieving strong AI. 
 
We have also seen the history of Cognitive Systems and observed that the growth is 
accelerated with availability of big data, which brings large data volumes and the 
processing power in a distributed computing framework. While the human brain is far from 
being fully understood, the prospects are looking great with the pioneering work done by 
some of the large companies that have access to the largest volumes of digital data. The 
consistent push towards democratizing the AI by enabling AI as a service, these companies 
are accelerating research for the entire community. 
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In this book, we have introduced some of the fundamental concepts in Machine Learning 
and AI and discussed how big data is enabling accelerated research and development in 
this exciting field. However, just like any new tool or innovation in our hand, as long as we 
do not lose sight of the overall goal to complement and augment human capabilities, the 
field is wide open for more research and some of the exciting new use cases that can become 
mainstream in the near future. 
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