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Preface

It is our honor and our pleasure to present this two-volume proceedings of the 25th
International Conference on Artificial Networks (ICANN 2016) held during September
6–9, 2016, in Barcelona, Spain, and organized by the Universitat Politècnica de
Catalunya and the Universitat Pompeu Fabra. The annual ICANN is the flagship
conference of the European Neural Network Society (ENNS). After 25 editions, it is
clear that ICANN’s is a story of success. The field has grown and matured during all
these years and the conference series has maintained its rank among the most presti-
gious conferences in the world. A special social gathering brought together all ENNS
members to celebrate its 25th anniversary. Professor Teuvo Kohonen was the first
president of ENNS serving the term 1990–1992. The office was then taken by John G.
Taylor, Errki Oja, Wlodek Duch, and Alessandro Villa, who comes to the end of his
last term. A new president of ENNS was elected and Barcelona is a very appropriate
location for this anniversary edition. It has a long tradition in neuroscience going back
to Santiago Ramón y Cajal, more than one century ago, who, after moving to the
University of Barcelona, made his pioneering neuroanatomical studies in this city. We
are sure that such a nice environment and intense program of activities will leave a
positive trace in our memories.

The field of artificial neural networks evolved tremendously in the past quarter of a
century, but the goal to bring together researchers from two worlds, i.e., information
sciences and neurosciences, is still fresh and necessary. The conference gathers people
not only from Europe but also from the rest of the globe. The 25th ICANN united
presenters from 42 countries from all continents. ICANN 2016 was tightly organized in
partnership with ENNS. This governance has been guided by not-for-profit procedures
that allowed us to keep very low congress fees compared with international standards.
Moreover, we consolidated the practice of offering a subscription to ENNS to all
ICANN delegates who present a scientific communication.

The Scientific and Reviewing Committee selected 169 contributions, after a
peer-review process of 227 submissions, which are published in these two proceedings
volumes. The variety of topics covered by all these contributions proves the maturity
and, at the same time, the vitality of the field of artificial neural networks. Besides, this
year, we introduced short extended abstract contributions in order to encourage
top-level scholars to join the conference without the need to submit a full paper. This
opportunity appeared very attractive also to researchers who are interested in presenting
results that could not justify a full paper submission. Hence, the implementation of this
scheme eventually produced 122 full papers and 47 short extended abstracts.

The type of submission was not the ultimate criterion in assigning the submitters to
an oral or a poster presentation. Papers were equally good and attributed to 94 oral and
75 poster presentations following, in the vast majority of the cases, the preference
expressed by the authors. The proceedings of the 47 short presentations have been
grouped together following the rules of the Publisher. Oral presentations were divided



into 18 sessions following the usual dual track, initially intended as the brain-inspired
computing track and machine-learning research track. As in the past editions the dual
track became track A and track B, because many papers presented an interdisciplinary
approach and track C for the posters. In addition, ICANN had eight plenary talks by
internationally renowned speakers, in particular one lecture sponsored by ENNS, the
John G. Taylor Memorial Lecture given by Errki Oja, past president of ENNS. Several
satellite workshops completed the intensive program of ICANN 2016.

This scientific event would not have been possible without the participation of many
people. We want to thank everyone who contributed, in one way or another, to the
success of the conference and the publication of the proceedings. We want to express
our deepest gratitude to the members of the Executive Committee of the ENNS, who
have accepted the proposal of Barcelona organizing the event. We are grateful for the
work of the Scientific and Reviewing Committee and all reviewers who worked under
strong time constraints during the compilation of the proceedings. The conference
would have been impossible without the contribution of all members of the Organizing
Committees. We want to thank the outstanding work by the ENNS, UPC, and UPF
personnel. We want to thank, particularly, the work of Paolo Masulli, Lara Escuain,
and Daniel Malagarriga. The conference would not have been a reality without the help
of Caroline Kleinheny. Finally, we would like to thank Anna Kramer, Frank Holz-
warth, and Alfred Hofmann from Springer for their help with the tough publication
project. We acknowledge, too, all authors who contributed to the volumes and shared
their ideas during the conference. We are sure that the papers appearing in these
volumes will contribute to the field of artificial neural networks with many new and
inspiring ideas that will help other concepts flourish in the future.

July 2016 Alessandro E.P. Villa
Paolo Masulli

Antonio Javier Pons Rivero
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Abstract. In this paper, we propose an Improved Chaotic Multidirec-
tional Associative Memory (ICMAM). The proposed model is based on
the Chaotic Multidirectional Associative Memory (CMAM) which can
realize one-to-many associations. In the conventional CMAM, the one-
to-many associative ability is very sensitive to chaotic neuron parame-
ters. Moreover, although the Chaotic Multidirectional Associative Mem-
ory with adaptive scaling factor of refractoriness can select appropri-
ate scaling factor of refractoriness α based on internal states of neurons
automatically, their one-to-many association ability is lower than that of
well-tuned Chaotic Multidirectional Associative Memory with variable
scaling factor of refractoriness when the number of layers is large. In the
proposed model, one-to-many association ability which does not depend
on the number of layers is realized by dividing internal states of neurons
by the number of layers. We carried out a series of computer experi-
ments in order to demonstrate the effectiveness of the proposed model,
and confirmed that the one-to-many association ability of this model
almost equals to that of well-tuned Chaotic Multidirectional Associa-
tive Memory with variable scaling factor of refractoriness even when the
number of layers is large.

1 Introduction

In the field of neural networks, a lot of associative memories have been proposed.
However, most of these models can deal with only one-to-one associations [1,2].
In contrast, as the model which can realize one-to-many associations, some mod-
els which are based on the chaotic neuron models [3] or chaotic neuron-based
models [4,5] have been proposed [6–11]. However, the association ability of neural
networks composed of chaotic neuron models or chaotic neuron-based models
are very sensitive to chaotic neuron parameters such as scaling factor of refrac-
toriness α and damping factor k and so on. And, in these models, appropriate
parameters have to determined by trial and error. Although the Chaotic Multidi-
rectional Associative Memory with adaptive scaling factor of refractoriness [12]
can select appropriate scaling factor of refractoriness α based on internal states
of neurons automatically, their one-to-many association ability is lower than that
of well-tuned Chaotic Multidirectional Associative Memory with variable scaling
factor of refractoriness when the number of layers is large.
c© Springer International Publishing Switzerland 2016
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Fig. 1. Structure of proposed ICMAM.

In this paper, we propose an Improved Chaotic Multidirectional Associa-
tive Memory (ICMAM). In the proposed model, one-to-many association ability
which does not depend on the number of layers is realized by dividing internal
states of neurons by the number of layers.

2 Improved Chaotic Multidirectional Associative
Memory

Here, we explain the proposed Improved Chaotic Multidirectional Associative
Memory (ICMAM). The proposed ICMAM is based on the conventional Chaotic
Multidirectional Associative Memory [7], and can realize one-to-many associa-
tion of M -tuple binary patterns.

2.1 Structure

The proposed model has three or more layers as similar as the conventional
Chaotic Multidirectional Associative Memory. Figure 1 shows the structure of
the proposed model which has three layers. Each layer consists of two parts;
(1) Key Input Part composed of conventional neuron models and (2) Context
Part composed of chaotic neuron models [3]. Since chaotic neuron models in the
Context Part change their states by chaos, plural patterns corresponding to the
input common term can be recalled, that is, one-to-many association can be
realized.

2.2 Learning Process

In the proposed model, pattern sets are memorized by the orthogonal learning.
In the proposed model which has M layers, the connection weights from the
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layer x to the layer y is given by

wyx = X y(X T
xX x)−1X T

x (1)

wxy = X x(X T
y X y)−1X T

y (2)

and X x and X y are given by

X x = {X (1)
x , · · · ,X (p)

x , · · · ,X (P )
x } (3)

X y = {X (1)
y , · · · ,X (p)

y , · · · ,X (P )
y } (4)

where P is the number of the training pattern sets, and X (p)
x is the pattern p

which is stored in the layer x, X (p)
y is the pattern p which is stored in the layer y.

Each element of training patterns takes −1 or 1.
In the orthogonal learning, since the stored common pattern causes super-

imposed pattern in the recall process, the pattern sets including one-to-many
relation can not be memorized. In the proposed model, each learning pattern is
memorized together with its own contextual information in order to memorize
the training set including one-to-many relations as similar as the conventional
CMAM. Here, the contextual information patterns are generated randomly.

2.3 Recall Process

In the recall process of the proposed model, only neurons in the Key Input Part
receives input in the first step. This is because we assume that contextual infor-
mation is usually unknown for users. In the proposed model, since the chaotic
neurons in the Context Part change their states by chaos, plural patterns corre-
sponding to the input common pattern can be recalled.

Step 1: Input to Layer x
The input pattern is given to the key input part in the layer x.

Step 2: Propagation from Layer x to Other Layers
The information in the layer x is propagated to the key input part in other

layers. The output of the neuron k in the key input part of the layer y (y �= x)
at the time t, xy

k(t) is calculated by

xy
k(t) = f

⎛
⎝

Nx∑
j=1

wyx
kj xx

j (t)

⎞
⎠ (5)

where Nx is the number of neurons in the layer x, wyx
kj is the connection weight

from the neuron j in the layer x to the neuron k in the layer y, and xx
j (t) is the

output of the neuron j in the layer x at the time t.
Step 3: Propagation from Other Layers to Layer x

The information in other layers is propagated to the layer x. The output of
the neuron j in the Key Input Part of the layer x, xx

j (t + 1), is given by

xx
j (t + 1) = f

⎛
⎝ 1

M − 1

M∑
y �=x

(
ny∑
k=1

wxy
jkxy

k(t)

)
+ vAx

j

⎞
⎠ (6)
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where M is the number of layers, ny is the number of neurons in the key input
part of the layer y, wxy

jk is the connection weight from the neuron k in the layer y
to the neuron j in the layer x, and v is the connection weight from the external
input.

Ax
j is the external input to the neuron j in the layer x and is given by

Ax
j =

{
0 (t < tin)
x̂x
j (tin) (tin ≤ t) (7)

tin = min

⎧⎨
⎩t

∣∣∣∣
nx∑
j=1

(x̂x
j (t) − x̂x

j (t − 1)) = 0

⎫⎬
⎭ (8)

x̂x
j (t) =

{
1 (0 ≤ xx

j (t))
−1 (xx

j (t) < 0) (9)

where x̂x
j (t) is the quantized output of the neuron j in the layer x at the time t.

The output of the neuron j of the Context Part in the layer x, xx
j (t + 1) is

given by

xx
j (t + 1) = f

⎛
⎝ 1

M − 1

M∑
y �=x

(
ny∑
k=1

wxy
jk

t∑
d=0

kd
mxd

k(t − d)

)

−α(t)
t∑

d=0

kd
rx

x
j (t − d)

)
(10)

where km and kr are damping factors. And, α(t) is the scaling factor of refrac-
toriness at the time t, and it is given by

α(t) = a + b sin
(
c · π

12
· t

)
(11)

Step 4: Repeat
Steps 2 and 3 are repeated.

3 Computer Experiment Results

Here, we show the computer experiment results in order to demonstrate of
effectiveness of the proposed ICMAM. The experimental conditions is shown
in Table 1. In the experiments, the N binary random pattern sets which have
1-to-N relation were memorized, and the common pattern is given to the
network.

3.1 One-to-Many Association Ability

Here, we compared the one-to-many association ability in the 3∼7-layered pro-
posed ICMAM with the well-turned 3∼7-layered conventional Chaotic Multi-
directional Associative Memory with variable scaling factor of refractoriness
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(Adjusted Model) and conventional Chaotic Multidirectional Associative Mem-
ory with adaptive scaling factor [12] (Conventional Model).

Figure 2 shows the one-to-many association ability of the proposed model, the
adjusted model and the conventional model. As shown in this figure, the one-
to-many association ability of the proposed model almost equals to that of the
adjusted model. Moreover, the one-to-many association ability of the proposed
model is superior to that of the adjusted model when the number of stored
patterns are large.
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Fig. 2. One-to-many association ability.
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3.2 One-to-Many Association Ability in Various Size Networks

Figure 3 shows the one-to-many association ability of the various size proposed
model. In this experiments, we used the network composed of 300 or 400 or 500
neurons in the Key Input Part and 100 neurons in the Context Part.

From these results, we confirmed that the proposed model in various size has
good one-to-many association ability as similar as in the result shown in Fig. 2.

Figure 4 shows the one-to-many association ability in the network which has
8 or 9 layers. In the conventional model, when the number of layers is large,
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Fig. 3. Relation between one-to-many association ability and the number of neurons
in key input part.
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Fig. 4. One-to-many association ability in 8 or 9-layered network.

Table 1. Experimental conditions

The number of neurons in key input part 400

The number of neurons in context part 100

Damping factor km 0.86

Damping factor kr 0.89

Coefficient in scaling factor a 0.9

Coefficient in scaling factor b 0.47

Coefficient in scaling factor c 2

Steepness parameter ε 0.013

Connection weight from external input v 10

one-to-many association ability decreases. In contrast, as shown in Fig. 4, one-
to-many association ability of the proposed ICMAM which has 8 or 9 layers is
almost similar as that of the proposed ICMAM when the number of layers are
small.

4 Conclusion

In this paper, we have proposed the Improved Chaotic Multidirectional Asso-
ciative Memory (ICMAM). The proposed model is based on the Chaotic Mul-
tidirectional Associative Memory (CMAM) [7] which can realize one-to-many
associations. In the proposed model, one-to-many association ability which does
not depend on the number of layers is realized by dividing internal states of
neurons by the number of layers.

We carried out a series of computer experiments and confirmed that the
proposed model has following features.
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(1) One-to-many association ability of the proposed model is almost equal to
that of the well-tuned Chaotic Multidirectional Associative Memory with
variable scaling factor of the refractoriness.

(2) The parameters can be determined appropriately in various size networks
even when the number of layers is large.
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Abstract. Synaptic plasticity is known to depend on the timing of
pre and postsynaptic spikes, a.k.a. spike-timing-dependent plasticity
(STDP). This implies that outcomes brought about by STDP should be
sensitive to the dynamic properties of pre and postsynaptic neuron activ-
ity. Furthermore, because the classical model of STDP does not consider
the effect of various pre and postsynaptic spike patterns on the outcome,
it fails to reproduce the dependence of the synaptic plasticity polarity,
namely the long-term potentiation or depression, on firing rates. In this
study, we investigated the interplay between realistic pre and postsy-
naptic dynamic property models and a modified STDP model, repro-
ducing the firing rate dependency. Our results showed that strengthened
synapses depend on a combination of pre and postsynaptic properties
as well as input firing rates, suggesting that a postsynaptic neuron may
favor specific spike statistics and input firing rates may facilitate this
tendency.

Keywords: STDP · Synaptic competition · Inter-spike intervals · MAT
model

1 Introduction

Neurons in the brain connect with each other through a vast number of synapses
responsible for neural information transfer. It is known that a synapse undergoes
change in strength depending on the pre and postsynaptic neural activities,
which is called Hebbian synaptic plasticity. In addition, it is supposed that this
type of synaptic plasticity should be a neural substrate of higher-order functions,
such as learning and memory.

The amount of change in synaptic strengths is determined by the timing of
pre and postsynaptic spikes as well as their firing rates [1–3]. This suggests that
the strengths should be sensitive to dynamic characteristics of pre and post-
synaptic neurons. Indeed, a variety of spike statistic classes have been found,
depending on the cortical regions and layers [4]. In most computational studies,
however, theoretically-tractable assumptions have been imposed on such charac-
teristics; presynaptic spike trains are characterized by a Poisson process whereas

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 11–18, 2016.
DOI: 10.1007/978-3-319-44778-0 2
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postsynaptic spiking activity can be reproduced using the leaky integrate-and-
fire (LIF) neuron model. A previous study introduced more realistic character-
istics by using Gamma spike trains and the multi-timescale adaptive threshold
(MAT) model [5,6]. The results of the study showed that the outcomes of synap-
tic competition through spike-timing-dependent plasticity (STDP) depend on
combinations of pre and postsynaptic characteristics [5]. However, the depen-
dence of the outcomes on firing rates was inconsistent with known experimen-
tal evidence that high frequency inputs induce long-term potentiation (LTP),
whereas low frequency inputs induce long-term depression (LTD). This result
was due to the nature of the STDP model [7] used. Therefore, the outcome of
the interplay between the characteristics of pre and postsynaptic activity, and
the more realistic STDP rule, on reproducing the firing rate dependence is still
unclear.

In our research, we addressed this issue by incorporating the STDP rule pro-
posed by Pfister and Gerstner (2006) into the previous study [9]. The STDP
rule takes into consideration additional synaptic spikes, not solely a pair of a pre
and a postsynaptic spikes. This successfully reproduces the firing rate depen-
dence. We investigated the type of features that are preferred and strengthened
by pre and postsynaptic spikes through synaptic competition under the STDP
rule defined by the time between spikes, which we term spike patterns.

2 Methods

2.1 Postsynaptic Neuron Model

The dynamics of the postsynaptic neuron can be represented by the MAT model,
which reproduces cortical spike patterns more accurately than any other neuron
model, such as LIF model [6]. The membrane potential V of the MAT model
obeys the following linear differential equation

τm
dV

dt
= Vrest − V +

1000∑
i

gexi (t) (Eex − V ) +
200∑
i

gini (t) (Ein − V ) , (1)

where τm, Vrest, Eex, and Ein are the membrane time constant, the resting mem-
brane potential, and the reversal potential of excitatory and inhibitory synapses,
respectively. gexi (t) and gini (t) are the conductance of the ith excitatory synapse
and the ith inhibitory synapse, respectively. In addition, when the membrane
potential V reaches the time-varying threshold θ(t), the neuron generates a
neural spike without resetting the membrane potential. θ(t) is described in time
as follows:

θ(t) = ω +
∑

l

(α1e−(t−tl)/τ1 + α2e−(t−tl)/τ2), (2)

where αj and τj are the amount and the decay time constants of the thresh-
old increase, respectively. ω is the time-invariant threshold. Each time-varying
component of θ(t) increases simultaneously at spike time tl by α1, α2 and then
exponentially decays.
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2.2 Synapse Model

The dynamics of the synaptic conductance is modeled by

dgX
i

dt
= −gX

i

τX
+ ĝX

i

∑
l

δ(t − tl) (X = ex, in), (3)

where τX , ĝX
i , and δ(·) are the time constant, the peak synaptic conductance, and

the Dirac’s delta function, respectively. While the peak conductance of inhibitory
synapses was constant, the excitatory synapses changed according to the follow-
ing description:

ĝexi → ĝexi + gmaxwi (t) , (4)

where gmax is the maximal synaptic conductance and w(t) defines an amount of
synaptic plasticity. To implement the STDP rule in our study, a triplet-based
model with all-to-all interactions was used [9], in which the variable w(t) changed
as described below. The presynaptic spike, generated at time tpre, triggers a
change depending on the postsynaptic variable o1 and the second presynaptic
variable r2 as follows:

w (t) → w (t) − o1 (t)
[
A−

2 + A−
3 r2 (t − ε)

]
. (5)

Similarly, the postsynaptic spike, generated at time tpost, triggers a change
depending on the presynaptic variable r1 and the second postsynaptic variable
o2 as follows:

w (t) → w (t) + r1 (t)
[
A+

2 + A+
3 o2 (t − ε)

]
. (6)

A−
2 and A+

2 are the weight change amplitudes whenever there is a post-pre
pair and pre-post pair, respectively. Similarly, A−

3 and A+
3 are the triplet term

amplitudes for depression and potentiation, respectively. If a presynaptic spike
is generated, the presynaptic detectors r1 and r2 are updated by r1 = r1 + 1
and r2 = r2 + 1. Otherwise, the presynaptic detectors r1 and r2 decay in the
following manner:

dr1 (t)
dt

= −r1 (t)
τ+

, (7)

dr2 (t)
dt

= −r2 (t)
τx

. (8)

Similarly, if a postsynaptic spike is generated, the postsynaptic detectors
o1 and o2 are updated by o1 = o1+1, and o2 = o2+1. Otherwise, the postsynaptic
detectors o1 and o2 decay exponentially.

do1 (t)
dt

= −o1 (t)
τ−

, (9)

do2 (t)
dt

= −o2 (t)
τy

. (10)

τ+, τx, τ−, and τy are the time constants of the corresponding variables.
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2.3 Presynaptic Spike Trains

Inter-spike intervals (ISIs) of a presynaptic spike train obey a gamma distribu-
tion. An ISI Tl = tl − tl−1 was drawn from a gamma distribution;

Tl ∼ p(T ; k, λ) =
λkT k−1e−λT

Γ (k)
. (11)

k is the shape parameter, λ is the rate parameter, and Γ (k) is the gamma func-
tion. The mean ISIs, T̄ , is T̄ = k

λ . The shape parameter k defines the shape of the
distribution. If k = 1, the distribution is an exponential distribution generating
a Poisson spike train. The presynaptic spike train shows nearly periodic firing
for larger k, whereas it shows burst firing for a smaller k(<1).

2.4 Numerical Simulations

In order to examine how synaptic competition is affected by interplay between
presynaptic inputs and postsynaptic dynamics, we compared different combi-
nations of pre and postsynaptic characteristics. Input spikes were generated
by the gamma distribution with various values for the shape parameter. The
LIF and MAT models were implemented to represent the postsynaptic neuron
(results shown below are obtained using the MAT model). In our final investi-
gation, 1,000 excitatory synapses were divided into 4 subgroups (250 synapses
per a subgroup). Synapses in each subgroup delivered spike trains generated by
gamma distributions with an identical shape parameter; the parameter for the
i-th group was set to k = 2i−1.

The parameters of the MAT model were the same as those used in a previous
study [5]. Other model parameters were taken from another previous study [9].

3 Results

For various input firing rates, we conducted numerical simulations using our
computational model until the distribution of synaptic strengths reached a sta-
tionary state. We focused on the stationary distribution of synaptic strengths
and postsynaptic firing characteristics, firing rate, and coefficients of variation
(Cv) of the postsynaptic neuron ISIs, as a function of the presynaptic spike
trains.

3.1 Inputs with an Identical Value of k

We first examined synaptic competition in the case where input spike trains
were generated by a gamma distribution with identical shape parameter values
(k = 1) for all excitatory synapses. Figure 1 shows the stationary distribution
of synaptic strengths for various input firing rates and the spike statistics of
the postsynaptic neurons in the stationary state. Figures 1a–d show that all
distributions exhibited bimodal shapes, in which there existed two populations
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Fig. 1. Synaptic competition and activity regulation when the MAT model received
Poisson spike trains (k = 1). a. Stationary distributions of synaptic strengths for
an input firing rate of 10 spikes/s. The abscissa indicates the normalized synaptic
conductance. b, c, and d are similar to a, but for 20 spikes/s, 30 spikes/s, and 40
spikes/s, respectively. e. Dependencies of postsynaptic firing rates and coefficients of
variation (Cv) of postsynaptic ISIs on the input firing rates.

of strengthened synapses (around 1) and weakened synapses (around 0). As
the input firing rate was increased, the population of strengthened synapses
became smaller, and the population of weakened ones became larger. However,
the change in the fraction of the two populations could be seen with an increase
in the input firing rate of up to 30 spikes/s. Figure 1e shows the postsynaptic
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firing rate and coefficients of variation (Cv) of the postsynaptic ISIs. The firing
rate of postsynaptic neurons increased moderately, suggesting that the activity
regulation by the STDP was successful, but weak. The Cv of postsynaptic ISIs
were kept low due to the dynamic nature of the MAT model.

Figures 2a–d show the mean synaptic conductances as a function of the input
firing rate for various values of the shape parameter (k = 0.5, 1, 4, and 8). When
k = 0.5 and 1, averaged synaptic strengths monotonically decreased with an
increase in input firing rates. In contrast, for k = 4 and 8, they differently
depended on the input firing rates, suggesting that the interplay between the
postsynaptic dynamics and the input spike patterns modulated the process of
synaptic competition.

 0  10  20  30  40  50
input rate[Hz]

b

 0

 0.2

 0.4

 0.6

 0.8

 1
g a

/g
m

ax
a

 0

 0.2

 0.4

 0.6

 0.8

 1

g a
/g

m
ax

c

 0

 0.2

 0.4

 0.6

 0.8

 1

g a
/g

m
ax

d

 0

 0.2

 0.4

 0.6

 0.8

 1

g a
/g

m
ax

 0  10  20  30  40  50
input rate[Hz]

 0  10  20  30  40  50
input rate[Hz]

 0  10  20  30  40  50
input rate[Hz]

Fig. 2. Averaged synaptic strengths when the MAT model received Gamma spike
trains. a. The averaged synaptic strengths if input spikes were generated by the Gamma
distribution with k = 0.5 and various input firing rates. The abscissa axis indicates the
input firing rate. b, c, and d are similar to a, but for k = 1, k = 4, and k = 8,
respectively.

3.2 Inputs with Different Values of k

Next, in order to see if synapses delivering a specific spike train were selectively
potentiated, we examined synaptic competition in the case where input spikes
were generated by a mixture of spike trains with different regularity (see Meth-
ods). While synapses in the subgroup 1 provided spike trains with k = 1, namely
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Poisson spike trains, those in subgroup 4 did so with more regular spike trains.
Figure 3a shows averaged synapse strengths within a subgroup for different input
firing rates. For the lower input firing rates (le 20 spikes/), the averaged synaptic
strengths for the subgroup with a smaller k seemed more increased. In contrast,
for increased input firing rates (≥30 spikes/s), synapses in the subgroup with a
larger k was likely to be more potentiated. In Fig. 3b, the postsynaptic firing rate
and coefficients of variation (Cv) of postsynaptic ISIs are shown as a function of
the input firing rate. The change in the postsynaptic firing rate was similar to
that in Fig. 1, and activity regulation worked moderately for this condition as
well. However, the ISI Cvs decreased with an increase in the input firing rate.
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Fig. 3. Synaptic strengths and postsynaptic spike statistics when the MAT model
received a mixture of Gamma spike trains with different regularity (k = 1, 2, 4, and 8).
a. The averages of synaptic strengths within a subpopulation for various input firing
rates. The abscissa indicates the values of the shape parameter k. b. Dependencies of
postsynaptic firing rates and coefficients of variation (Cv) of postsynaptic ISIs on the
input firing rates.

4 Discussion

If the shape parameter k is identical for all input spike trains, we obtain results
similar to those in the previous study. Both methodologies give the distribution
of synaptic strengths, the shift between strengthened and weakened populations
with an increase in input firing rates, and a moderate increase in the postsynaptic
firing rate [7]. Thus, employing the STDP rule did not cause differences under
this condition.

However, in the case of mixture spike trains with different spike patterns (k),
the STDP rule could strengthen the synapses delivering spike trains with larger k,
that is, more periodic spike trains with an increase in the input firing rate. If the
dynamics of the postsynaptic neuronwasmodeledby theLIFneuron, such aprefer-
ence was not seen for any input firing rates (data not shown). These results suggest
that the determination of which synapses are potentiated is determined by a com-
bination of the presynaptic spike train structure (k) and the dynamic property of
the postsynaptic neuron (This is found using either the LIF or MAT models).
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Thus, we conclude (i) the dynamic feature of postsynaptic neurons could
favor a specific spike pattern through synaptic competition brought about by
STDP and (ii) such a preference depends on input firing rates. Although the for-
mer conclusion was already obtained by the previous study applying the classical
STDP rule [5,7], the latter was achieved only through our use of the employed
STDP rule.
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Abstract. In previous work we have developed illustrative, neuro-
computational models to describe mechanisms associated with mental
processes. In these efforts, we have considered mental processes in phe-
nomena such as neurosis, creativity, consciousness/unconsciousness, and
some characteristics of the psychoses. Memory associativity is a key fea-
ture in the theoretical description of these phenomena, and much of
our work has focused on modeling this mechanism. In traditional neural
network models of memory, the symmetry of synaptic connections is a
necessary condition for reaching stationary states. The assumption of
symmetric weights seems however to be biologically unrealistic. Efforts
to model stationary network states with asymmetric weights are mathe-
matically complex and are usually applied to restricted situations. This
has motivated us to explore the possibility of a new approach to the
synaptic symmetry problem, based on its analogies with some features
of the nonlinear Fokker-Planck formalism.

Keywords: Mental functions · Memory · Asymmetry · Nonlinear
Fokker-Planck equation

1 Introduction

Much of our previous work [1–3] regards the search for neuronal network mech-
anisms, whose emergent states underlie behavioral aspects traditionally studied
by psychiatry, psychoanalysis and neuroscience [4–9]. A working hypothesis in
neuroscience is that human memory is encoded in the neural net of the brain,
and associativity is frequently used to describe mental processes, both in normal
and pathological functioning. Neuronal models of associative memory [10] have
therefore formed a central component of our descriptions.

In traditional neural network models of memory, such as the Hopfield model
[10], the symmetry of synaptic connections is a necessary mathematical require-
ment for reaching stationary states (memory) [10,11]. This is the case both
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when using the Boltzmann Machine (BM) procedure, as when employing more
recent approaches based on the Generalized Simulated Annealing (GSA) algo-
rithm [12]. Real biological neural networks, however, do not seem to comply
with the synaptic symmetry condition. We then face the curious situation that
the main mathematical-mechanistic neural models for memory are based on an
assumption that is at odds with biological reality. There have been efforts to
model stationary memory attractor states with asymmetric weights, but they
are mathematically complex and usually applicable only to restricted situa-
tions [13,14]. In spite of these interesting attempts, and even though memory
modeling with neural networks has been an active field of research for decades,
the (a)symmetry issue remains largely an unexplored (and almost forgotten)
open problem. This indicates the need to consider new alternative approaches
to this subject. Our main aim in the present exploratory work is to point out
basic similarities between the synaptic symmetry problem and some aspects of
the nonlinear Fokker-Planck (NLFP) dynamics. These connections may lead to
a new possible way to address the symmetry problem in neural networks. Here
we advance the first steps in the development of a formalism based on the non-
linear Fokker-Planck equation, which we summarize in this paper, along with
some preliminary results. A more detailed discussion is being prepared for an
extended publication.

In previous work, we have used the Boltzmann Machine [10] and Generalized
Simulated Annealing [12] to simulate memory. In the BM and GSA, pattern
retrieval on the net is achieved by a simulated annealing (SA) process, where
the temperature T is gradually lowered by an annealing schedule α. For a BM or
GSA network with N nodes, where each node i has a discrete state Si in {−1, 1},
it is a necessary condition for the network to have stable states that synaptic
weights between nodes i and j obey wij = wji. One can then define an Energy
function, representing the potential energy corresponding to the interactions
between neurons,

E({Si}) = −1
2

∑
ij

wijSiSj , (1)

and stored memories correspond to minimum energy (stable) states, which are
attractors in the memory retrieval mechanism (SA process).

In the SA process, the energy surface is sampled according to the following
transition probabilities. For the Boltzmann Machine (BM)

PBG(Si → −Si) =
1

1 + exp (E({−Si})−E({Si}))
T

, (2)

and for the Generalized Simulated Annealing or Tsallis Machine (GSA) [12]

PGSA(Si → −Si) =
1

[
1 + (q − 1) (E({−Si})−E({Si})

T

] 1
q−1

. (3)
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These transition probabilities tend to take the system from a current state
towards a final, more favorable minimum energy state (although energy may
increase at intermediate steps).

In Sect. 2, we briefly review neural network models as related to basic theory
of Dynamical Systems. We then introduce basic aspects of the Fokker-Planck
formalism. In Subsect. 4.2, we show that it is possible to introduce a drift or force
term not arising from the gradient of a potential, which is related to asymmetric
couplings, and still achieve stationary states for the probability density function,
in the phase space describing the system. We also mention further developments
and present our conclusions in the last section.

2 Dynamical Systems and Neural Networks

For a continuous deterministic dynamical system with phase space variables
{X1,X2, · · · ,XN}, considering that there is no noise, the equations of motion
can be expressed as

dX1

dt
= G1(X1,X2, · · · XN )
...

dXN

dt
= GN (X1,X2, · · · XN ), (4)

which in self-explanatory vector notation is expressed as dX
dt = G(X), with

X,G ∈ �N . That is, the time evolution of the system’s state X is described
by a phase space flux given by the vectorial field G. Neural networks have been
widely studied within this framework [10]. In neural network models, the synaptic
weight wij expresses the intensity of the influence of neuron j on neuron i (the
coupling). So the net signal input to neuron i is given by

ui =
∑

j

wijVOj
, (5)

where VOj
is the output signal of neuron j.

It is possible to generalize the McCulloch-Pitts (discrete activation) neural
model, in order to consider continuous state variables [10,11], so that VOi

(in
equilibrium) is updated by a continuous function of ui,

VOi
(t + Δt) = g(ui(t)). (6)

In Eq. (6), the activation function g(u) is usually nonlinear and saturates for
large values of |u|, such as a sigmoid or tanh(u). One possible continuous-time
rule for updating the VOi

[11,15], is the set of differential equations

dVOi

dt
=

−VOi
+ g(ui)
τi

= Gi(VO1 , VO2 , . . .), (7)

where τi are suitable time constants.
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In traditional neural network models of memory, such as the Hopfield model,
BM and GSA, wij = wji is a necessary condition for reaching stationary states
(memory). This symmetry restriction seems to be biologically unrealistic. In
this contribution we comment on the similarities between the synaptic symmetry
problem and some features of the nonlinear Fokker-Planck dynamics, which may
shed new light on this problem and suggest possible ways to tackle it.

3 Fokker-Planck Equation

We now consider an ensemble of identical systems, each consisting of N elements,
that evolve from different initial conditions. This ensemble is described by a
time-dependent probability density in phase space P(X1, · · · ,XN , t) obeying
the Liouville equation

∂P
∂t

+
N∑

i=1

∂(PGi)
∂Xi

= 0. (8)

If the system presents noisy behavior, it is necessary to add a new diffusion-like
term in Eq. (8), which results in the Fokker-Planck equation (FPE)

∂P
∂t

= D

(
N∑

i=1

∂2P
∂X2

i

)
−

N∑
i=1

∂(PGi)
∂Xi

, (9)

where D is the diffusion coefficient and the second term on the right, involving
the field G, is referred to as the drift term. We shall call G the drift field. If

G1 = −∂V/∂X1,
...

GN = −∂V/∂XN , (10)

for some potential function V (X), there is a Boltzmann-Gibbs-like stationary
solution to Eq. (9),

PBG =
1
Z

exp
[
− 1

D
V (X)

]
, (11)

where Z is an appropriate normalization constant. That is, PBG satisfies (9)
with ∂PBG

∂t = 0. The distribution PBG maximizes the Boltzmann-Gibbs entropy
SBG under the constraints of normalization and the mean value 〈V 〉 of the
potential V .

Note that a dynamical system with a flux in phase space of the form (10)
(gradient form) corresponds to a system that evolves so as to minimize V , i.e.
down-hill along the potential energy surface. For a field G of the form (10) one
has,

∂Gi

∂Xj
=

∂Gj

∂Xi
=

∂2V

∂Xi∂Xj
. (12)
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In the case of a Hopfield Neural Network, if the activation g(u) is linear, for
example in Eq. (7), Gi ∝ ∑

j

wijXj (corresponding to linear forces),

∂Gi

∂Xj
= wij , (13)

and therefore, by Eq. (12), wij = wji. We see that the general condition (12),
that guarantees that the Fokker-Planck dynamics evolves towards a stationary
Boltzmann-Gibbs distribution (11), is very similar to the synaptic symmetry
requirement, necessary for a neural network to evolve towards minima of an
energy surface. This similarity is, of course, also closely related to the fact that
the simulated annealing technique provides a useful algorithm to find the minima
of the network’s energy landscape. In the Fokker-Planck case, however, it is
possible to relax the condition (12), considering more general drift fields, and
still have a dynamics that leads to a stationary Boltzmann-Gibbs distribution.
This suggests that the Fokker-Planck scenario with non-gradient drift fields may
be relevant to the synaptic symmetry problem. In the following sections we
explore some basic aspects of this scenario, within the more general context of
the nonlinear Fokker-Planck equation.

4 Nonlinear Fokker-Planck Equation

In [16], Ribeiro, Nobre and Curado state: “The linear differential equations in
physics are, in many cases, valid for media characterized by specific conditions,
like homogeneity, isotropy, and translational invariance, with particles interact-
ing through short-range forces and with a dynamical behavior characterized by
short-time memories”. It is possible to introduce a nonlinear diffusion term to
the FPE to describe a physical ensemble of interacting particles, so that the
nonlinearity is an effective description of the interactions [16–20]. Physical sys-
tems characterized by spatial disorder and/or long-range interactions seem to be
natural candidates for this formalism, which has recently attracted considerable
attention from the complex systems research community.

We thus use the nonlinear Fokker-Planck equation (NLFP)

∂P
∂t

= D

[
N∑

i=1

∂2

∂X2
i

(P2−q
)] −

N∑
i=1

∂(PGi)
∂Xi

, (14)

to study systems which may deviate from the linear description. Since we need
to model stable properties of interesting physical systems, such as the stored
memory states in a neural network, we search for possible stationary solutions
to Eq. (14).
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4.1 Stationary Solution - G of Gradient Form

In the most frequently studied case, where the field G is of the gradient form
(10), the stationary solution of the NLFP is found by solving,

D

[
N∑

i=1

∂2

∂X2
i

(P2−q
)] −

N∑
i=1

∂(PGi)
∂Xi

= 0, (15)

considering the Tsallis ansatz [20]

Pq = A[1 − (1 − q)βV (X)]
1

1−q , (16)

where A and β are constants to be determined. One finds that the ansatz given
by Eq. (16) is a stationary solution of the NLFP equation, if

A = [(2 − q)βD]
1

q−1 . (17)

We call Eq. (16) the q-exponential ansatz. As already mentioned, it constitutes
a stationary solution of the NLFP equation, when G is minus the gradient of a
potential V (Eq. (10)), and A and β satisfy Eq. (17). The distribution Pq is also
called a q-maxent distribution because it optimizes the nonextensive q-entropy
Sq, under the constraints of normalization and the mean value of the potential
V [17,20]. In the limit q → 1, the q-maxent stationary distribution (16) reduces
to the Boltzmann-Gibbs one (11), with β = 1/D.

4.2 Stationary Solution - G Not of the Gradient Form

Now we consider the NLFP equation, with a drift term not arising from the
gradient of a potential and with the form

G = F + E, (18)

where F is equal to minus the gradient of some potential V (X), while E does
not come from a potential function (that is, we have ∂Ei/∂Xj �= ∂Ej/∂Xi). We
then substitute this G and Pq (Eq. (16)) in the stationary NLFP Eq. (15) and
obtain

D

[
N∑

i=1

∂2

∂X2
i

(P2−q
q

)] −
[

N∑
i=1

∂(PqFi)
∂Xi

]
−

[
N∑

i=1

∂(PqEi)
∂Xi

]
= 0. (19)

The first two terms in Eq. (19) vanish, because we know that Pq is a stationary
solution of Eq. (15), when only the gradient field F is present. In order for Pq to
satisfy (19), we then require

∑N
i=1 ∂(PqEi)/∂Xi = 0. If this relation is satisfied,

then Pq is also a stationary solution of the full NLFP equation, including the
non-gradient term corresponding to E. We therefore require

N∑
i=1

∂

∂Xi

(
Ei[1 − (1 − q)βV ]

1
1−q

)
= 0, (20)
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This equation constitutes a consistency requirement that the potential function
V , the non-gradient field E, the inverse temperature β, and the entropic parame-
ter q have to satisfy in order that the nonlinear Fokker-Planck equation admits
a stationary solution of the q-maxent form. In the most general β-dependent
situation, the condition given by Eq. (20) leads to a rather complicated relation
between the non-gradient component E and the potential V . However, there are
cases where a β-independent set of constraints can be obtained. We illustrate
this with a two-dimensional example. Consider two-dimensional fields F and G
with components of the form,

(F1; F2) = (−w11X1 − w12X2; −w22X2 − w12X1)
(E1; E2) = (h11X1 + h12X2; h21X1 + h22X2), (21)

with the wij and hij constant real parameters. The field F is minus the gradient
of the potential

V (X1,X2) =
1
2

(
w11X

2
1 + 2w12X1X2 + w22X

2
2

)
. (22)

It can be verified after some algebra that the q-maxent distribution (16) is a
stationary solution of the NLFP equation, if the parameters characterizing the
potential V and the (non-gradient) drift term E satisfy,

h11 = h22 = w12 = 0,
w11h12 + w22h21 = 0. (23)

We see that we have a family of noisy dynamical systems (described by NLFP
equations) characterized by 3 independent parameters, that have q-maxent sta-
tionary solutions in spite of having drift fields not necessarily arising from a
potential. This can be appreciated from the fact that the constraints (23) are
compatible with h12 �= h21. Therefore, the drift field given by Eq. (21) does not
necessarily comply with the symmetry restriction described by Eq. (12), which
is akin to the standard symmetry condition in neural networks.

We are preparing an extended manuscript with a more detailed and general
discussion of the ideas that we presented here briefly, due to space limitations.
There we plan to explore systematically the conditions for having a q-maxent
stationary state in more general scenarios described by NLFP equations, where
the deterministic part of the concomitant dynamics involves a phase space flux
not having the gradient form.

5 Conclusions

Inspired on the symmetry problem in neural networks, we explored properties
of multi-dimensional NLFP equations endowed with drift fields not arising from
a potential. We considered drift fields having both a gradient term and a non-
gradient contribution. The non-gradient component of the drift field exhibits
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asymmetric features akin to those associated with the dynamics of neural net-
works with asymmetric synaptic weights. We identified cases where a NLFP
equation having a non-gradient drift field still has a stationary solution of the
q-maxent form (i.e. a q-exponential of the potential associated with the gradient
part of the drift field). In future contributions, we plan to continue exploring
the connections between the NLFP equation and the synaptic symmetry prob-
lem in the dynamics of neural networks, in order to apply the formalism of a
non-potential drift term to account for attractor states in neuronal circuits, with
asymmetric synaptic interactions.
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G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 379–386. Springer, Heidelberg
(2012)

4. Freud, S.: Introductory Lectures on Psycho-Analysis, Standard Edition. W. W.
Norton and Company, New York, London (1966). First German edition (1917)

5. Kandel, E.: Psychiatry, Psychoanalysis, and the New Biology of Mind. American
Psychiatric Publishing Inc., Washington, D.C., London (2005)

6. Shedler, J.: The efficacy of psychodynamic psychotherapy. Am. Psychol. 65(2),
98–109 (2010)

7. Cleeremans, A., Timmermans, B., Pasquali, A.: Consciousness and metarepresen-
tation: a computational sketch. Neural Netw. 20, 1032–1039 (2007)

8. Taylor, J.G., Villa, A.E.P.: The “Conscious I”: a neuroheuristic approach to the
mind. In: Baltimore, D., Dulbecco, R., Francois, J., Levi-Montalcini, R. (eds.)
Frontiers of Life, pp. 349–368. Academic Press (2001)

9. Taylor, J.G.: A neural model of the loss of self in schizophrenia. Schizophrenia
Bull. 37(6), 1229–1247 (2011)

10. Hertz, J.A., Krogh, A., Palmer, R.G. (eds.): Introduction to the Theory of Neural
Computation. Lecture Notes, vol. 1. Perseus Books, Cambridge (1991)

11. Cohen, M.A., Grossberg, S.: Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man
Cybern. 13, 815–826 (1983)

12. Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Phys. A 233, 395–406
(1996)

13. Parisi, G.: Asymmetric neural networks and the process of learning. J. Phys. A
Math. Gen. 19, L675–L680 (1986)



Assymetries and the Nonlinear Fokker-Planck Formalism 27

14. Xu, Z.B., Hu, G.Q., Kwong, C.P.: Asymmetric hopfield-type networks: theory and
applications. Neural Netw. 9(3), 483–501 (1996)

15. Hopfield, J.J.: Neurons with graded responses have collective computational prop-
erties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81, 3088–3092
(1988)

16. Ribeiro, M.S., Nobre, F., Curado, E.M.F.: Classes of N-dimensional nonlinear
Fokker-Planck equations associated to Tsallis entropy. Entropy 13, 1928–1944
(2011)

17. Plastino, A.R., Plastino, A.: Non-extensive statistical mechanics and generalized
Fokker-Planck equation. Phys. A 222, 347–354 (1995)

18. Tsallis, C., Buckman, D.J.: Anomalous diffusion in the presence of external forces:
Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E
54(3), R2197–R2200 (1996)

19. Franck, T.D.: Nonlinear Fokker-Planck Equations: Fundamentals and Applica-
tions. Springer, Heidelberg (2005)

20. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics. Approaching a
Complex World. Springer, New York (2009)



Synaptogenesis: Constraining Synaptic Plasticity
Based on a Distance Rule
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Abstract. Neural models, artificial or biologically grounded, have been
used for understanding the nature of learning mechanisms as well as for
applied tasks. The study of such learning systems has been typically cen-
tered on the identification or extraction of the most relevant features that
will help to solve a task. Recently, convolutional networks, deep architec-
tures and huge reservoirs have shown impressive results in tasks ranging
from speech recognition to visual classification or emotion perception.
With the accumulated momentum of such large-scale architectures, the
importance of imposing sparsity on the networks to differentiate contexts
has been rising. We present a biologically grounded system that imposes
physical and local constraints to these architectures in the form of synap-
togenesis, or synapse generation. This method guarantees sparsity and
promotes the acquisition of experience-relevant, topologically-organized
and more diverse features.

Keywords: Machine learning · Connections · Biologically constrained

1 Introduction

Typically, artificial networks of learning nodes, or neurons, have been conceived
as all-to-all connected. There are two reasons to begin with this approach. First,
at a low scale, biological neurons are strongly connected with most of their
neighbors, small networks being approximated in this way. Second, the flow of
information among plastic networks is usually computed through dot products.
This leads to fully disconnected networks becoming fully connected with the
slightest amount of noise. This becomes equivalent to having all to all connections
between all nodes, regardless of some weights trending towards 0. These two
assumptions have been implicitly used for several years. Still the exponential
increase in computational power is limited by this approach, as the complexity
in the data increases, affecting the stability of the network.
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1.1 Sparseness in Artificial Networks

State of the art approaches to neural computation, which has been gain-
ing momentum, has discovered the benefits of sparsity and local connectivity
patterns:

Convolutional Networks (ConvNets) approaches the problem by defining
local sets of weights (or kernels) shared by all or part of the other neu-
rons. These kernels are limited in size, limiting the effect of one neuron to
the others, and are convolved over the network. This implies that neurons
are locally connected to just a small fraction of other neurons, dramatically
reducing the amount of connections to below 5 % of all possible connections
and, by extension, the computational power needed.

Reservoir Computing (RC) considers pools of units with complex temporal
dynamics, that are randomly connected. The idea is that a sufficiently large
and complex pool would contain potentially useful features. With it, one
could use simple, shallow classifiers that read from the pool (or reservoir)
and learn combinations of such features for a range of different tasks. One of
the principal requirements for the convergence of these networks is having a
spectral radius smaller than one [1], what is strongly influenced by the degree
of sparsity of the network.

Deep architectures, combined with other techniques, are currently a trend
that is used under the lemma of reusing features from previous layers, indi-
rectly increasing the sparsity of the whole network. This occurs because
the number of connections existing in the layered architecture could be re-
converted into a shallow network which would have lost most of the initial
connections.

Sparsity, then, is a feature present in State of the Art machine learning, typi-
cally imposed through architectural constraints. Still, the techniques are usually
designed artificially, occasionally with inspiration from biology.

1.2 Sparseness in Biological Systems

The connections between and within areas of the brain have been widely studied
in order to understand what makes it so unique. One of the most outstanding
regions of the brain in this sense is the neocortex. The neocortex is the larger
extension of neurons in the primate brain. Over its long extension, rich, func-
tional heterogeneity at large scale levels conflicts with apparently strong struc-
tural homogeneity among cortical areas at a neuronal level. This introduces a
dichotomy that is present also at the level of connectivity: long range, inter-
areal connectivity matrices seem to be very dense [2] with over 90 % of possible
connections existing. This does not mean that the connections are evenly dis-
tributed in terms of weight. Additionally, at the neuronal level, neurons strongly
exhibit lots of short range, local connections to their neighbors, and the longer
the distance, the lower the probability of connecting 2 neurons, which results in
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very sparse networks as they scale up. Kennedy et al. has proposed that cortical
connections must follow a distance rule that determines their level of neighbor-
ing connectivity [3]. We therefore present a model of how such a distance rule
can generate new network topologies driven by external activity patterns.

1.3 Synaptogenesis

Connections are functionally critical for neurons: how neurons connect to each
other determines the way the neural network would operate. Synaptogenesis
occurs not only in neurons grown during the embryonic and neonatal stages
of life, but also in adult-grown neurons. In the case of adult neurogenesis, it
is necessary for newly-grown neurons to not only create synapses with older
neurons but also do so in a manner that would not disrupt the preexisting
network. However, adult neurogenesis in mammals is relatively uncommon and
occurs mainly in specific regions of the brain, like the olfactory bulb [4] and the
dentate gyrus [5]. Regardless of when the neurons exhibiting synaptogenesis are
grown, synapses’ proliferation and survival are of scientific interest as they offer
insight on how the brain processes stimuli.

Synaptogenesis has been shown to be dependent on activity of the neuron [6]
and genetic traits. In addition, the distances between neurons could also play a
significant role in synaptogenesis. Particularly in the cortex, most connections
within the area are local, with approximately 80 % of connections in the V1,
V2 and V4 stemming from intra-areal sources [2], with 95 % of these intrinsic
connections arising from within 1.9 mm. Such evidence suggest that the brain’s
neural network is composed of clusters of densely connected neurons which are
then connected to each other by sparse, long-range connections [3].

Moreover, tone directionality and frequency tuning are characteristics that
identify receptive fields in primary auditory cortex (A1) [7]. As receptive fields
are shaped by the connections between neurons, these phenomena should also
be reflected by synaptogenesis. While it is also possible that neurogenesis could
contribute to their formation, the low rate of occurrence of adult neurogenesis
in the cortex suggests that synaptogenesis is a plausible mechanism for the early
formation of receptive fields. Other plastic mechanisms at the level of neuron
receptors might then have a more important role on their later fine tunning.
This paper attempts to propose a model of synaptogenesis that can describe the
structure and function of the cortex, in particular A1.

2 Methods

We propose a model of a cortical layer that uses Izhikevich neurons with spike
time dependent plasticity (STDP) to update connections and a distance rule to
model how connections are formed during development.

2.1 Spiking Cortical Dynamics

Cortical dynamics were modeled using python scripts. The network consisted
of 800 excitatory and 200 inhibitory Izhikevich neurons in total, that together
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represent part of the primary auditory cortex [8]. The neuron’s membrane poten-
tial v and membrane recovery variable u follow two differential equations:

dv

dt
= 0.04v2 + 5v + 140 − u + I (1)

du

dt
= a(bv − u) (2)

With a = .02/.10 for E/I, b = .2, after-spike membrane reset c = −65 and
after-spike recovery reset d = 2.0. Both populations had a rectangular shape
with a ratio of 2:1 (i.e., 40× 20) with a randomly initialized connectivity matrix
(see Table 1 for initialization values). The network was first trained using real-
world auditory signals, consisting of 7 different songs converted to input signals
with the multi-taper fast Fourier Transformation (FFT), that gives the music’s
power spectrum over time. Songs covered different genres, including 70’s and
80’s pop, rock and metal, and lasted approximately 34 min. The FFT’s spanned
100 frequencies in the range of 150–650 Hz, and were normalized at each time
point such that the maximum input value was always 1. This input was then
mapped to the 800 excitatory neurons in a 1:10 ratio with small overlap using
Gaussian smearing over both the x- and y-axis. Simulations ran at a temporal
resolution of 1 ms, and the connectivity matrix was updated at each iteration
based on Synaptic Time-Dependent Plasticity (STDP) principles. These princi-
ples constitute temporal asymmetric Hebbian learning, where synapse strength
increases as a pre-synaptic action potential is followed by a post-synaptic spike
and decreases vice versa. This was implemented on a population level through
two variables M(t) and P(t) that either increase or decrease synaptic weights
based on the order of spikes:

τ+
dP

dt
= P + a+ and τ−

dM

dt
= −M + a− (3)

This implementation was based on [9], with τ+ and τ− being the time constants
of synaptic potentiation and depression respectively and a+ and a− their ampli-
tude. Where weights Wij are updated for each spiking neuron:

Wij = Wij + Mij + Pij (4)

Alternatively an artificial network was trained using the same setup but using a
different learning rule. A rate version of STDP was extracted from [10] and used
as a learning rule for the rate approximation of the same system as:

Wij = Wij + η(WM − Wij)(Wm − Wij)xixj + Weε(WM − Wij)Wij (5)

Table 1. Model parameter values

Neuron a b c d

E .02 .20 −65 2.0

I .10 .20 −65 2.0
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Where Weε corresponds to the integral of the STDP rule, WM and Wm are the
maximum and minimum thresholds for the weights, making the learning rule
bi-stable and with a homeostatic decay. The rule is in function of the spiking
rates of the presynaptic (xi) and postsynaptic (xj) neurons.

2.2 Synaptogenesis

In order to model synaptogenesis, a distance matrix has been computed in order
to identify the position of each neuron of the space. In order to do this, the
neurons have been distributed along two axis and given a normalized distance
of 1 unit. From that, the probability of forming a connection from a neuron i to
a neuron j given their distance dij is:

P (Cij |dij) =
1

1 + kd2ij
(6)

Where k is a scaling constant that defines the range connections will reach. The
exponential has been chosen squared standing for the distribution gradient a
typical fluid will suffer on a 2D medium (see Fig. 1 for reference). This rule was
extended in two ways:

– The probability of a connection between neuron i and j being created is influ-
enced by nearby existing connections to neurons k. With the probability dis-
tribution in Eq. 6, scaled by the weight between the origin neuron i and the
neighbor neuron k, in order to promote clusters of specialized neurons and
rich-club effects. The computation is then equivalent to a dot product like:

P (Cnew|W,P ) = WP · PT (7)

Where C corresponds to the Boolean connectivity matrix, W is the weights
matrix and P is the probability matrix obtained from Eq. 6 and shown in
Fig. 1a.

Fig. 1. (a) Sample distribution of probabilities extracted from Eq. 6. The network
was initialized with size 20× 40 neurons and considered a 2D layer of interconnected
excitatory neurons. Parameters: k: 0.1, network size: 10x5. (b) Connectivity matrix W
of the model using synaptogenesis. One can observe the weights organized in clusters,
spatially concentrated around the low frequencies (neurons 10–20).
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– The connection probability was then scaled by the plasticity rule. It increases
the weight as defined by the STDP rule above, promoting the formation of
only relevant connections between the input and cortical layers and filtering
out random ones.

3 Results

3.1 Synaptogenesis Creates Sparse Networks

In order to understand the sparsity of the receptive fields, we trained our STDP
and rate networks for around 30 min of real music. We observed higher degrees
of sparsity in the model using synaptogenesis as compared to the model without
(Fig. 2).

Fig. 2. Synaptogenesis (red) produces more variety (higher standard deviation) in
skewness, bandwidth and scale than raw STDP (blue). Y axis show the fitting value
of the data in a skewed Gaussian distribution. This data was generated using the rate
based model. (Color figure online)

3.2 Synaptogenesis Converges to Richer Receptive Fields

We aimed to reproduce the data observed in [7], who found a high variability in
the cortex, in terms of skewness, scale and bandwidth, and which corresponds
to the three main parameters describing a skewed Gaussian distribution. We
selected 10 evenly distributed frequencies and tested the network trained in the
previous experiment for 10 trials. We then computed the rate of subpopulations
of the network by summing the number of spikes in bins of 25 neurons, selected
accordingly from the 2 dimensional pool. We extracted the spectral receptive
fields for each population of neurons, as shown in Fig. 3. In order to extract
the receptive fields we used the same methodology typically used in the study
of the auditory cortex [7]. This showed slight differences between the receptive
fields of the different neurons, where using synaptogenesis usually led to more
dissimilar receptive fields among the neurons of the population. The minimal dif-
ferences observed in Fig. 3 are attributed to the use of too strong inputs during
testing, and the task of producing more realistic background noise and audi-
tory input in order to show more relevant differences is left out of the scope of
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Fig. 3. Examples of the variety of receptive fields found. Top row shows three sam-
ple neurons with receptive fields that show greater variability in skewness and scale,
whereas the bottom row shows neurons that have similar receptive fields for both
approaches. The data was generated using the rate based model. Blue: STDP, red:
synaptogenesis (Color figure online)

this paper. Finally, in order to test the relevance of these small differences, we
fit a skewed Gaussian curve to the receptive fields. We observed increased vari-
ability (standard deviation) in the measures of skewness, bandwidth and scale
of the model with synaptogenesis, relative to the model without synaptogenesis.
We then conclude that additional work should show significant differences on
the trends observed.

4 Conclusions

We have proposed a model of synapse generation, or synaptogenesis, based on
a distance rule. This rule promotes the formation of a richer family of receptive
fields, specializing neurons for variations in bandwidth, skewness and intensity.
We have shown this variations comparing plasticity rules for rate and spiking
neurons, with and without the synaptogenesis process.

We have shown that this process leads to sparser networks, a characteristic
highly valued in state of the art artificial neural networks. Nonetheless, the
capacity of this process to filter out redundant information and keep just relevant
connections has yet to be shown. A big improvement to this model would involve
the addition of apoptosis, or neural death, what would help prune connections
that have become irrelevant. Still, the processes underlying apoptosis are mostly
unknown and good measures to guide the pruning are still under debate.

We have proposed this experimental setup as a potential substrate of a sin-
gle cortical layer. In this sense, the layer has a realistic ratio of excitatory and
inhibitory neurons. Moreover, our model has been trained on auditory data, allow-
ing the generation of a richer variety of features which is already observed in the
auditory cortex of the ferret [7]. Next steps include completing the cortical model
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with several layers and a better set of neuron types. Moreover, the input was math-
ematically modeled as observations in the A1 of the ferret (described in [11]), but
in order to account for a real model of the cortex, the input should be filtered
through attentional processes mainly driven by thalamo-cortical connections.
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Abstract. The study and monitoring of the behavior of wildlife has always been
a subject of great interest. Although many systems can track animal positions
using GPS systems, the behavior classification is not a common task. For this
work, a multi-sensory wearable device has been designed and implemented to be
used in the Doñana National Park in order to control and monitor wild and semi-
wild life animals. The data obtained with these sensors is processed using a
Spiking Neural Network (SNN), with Address-Event-Representation (AER)
coding, and it is classified between some fixed activity behaviors. This works
presents the full infrastructure deployed in Doñana to collect the data, the wear‐
able device, the SNN implementation in SpiNNaker and the classification
results.

Keywords: SpiNNaker · Spiking neural network · Pattern classification · Horse
gait · IMU · Integrate-and-fire · Caffe

1 Introduction

The animal behaviour classification is a challenge for biologists who try to get some
patterns from the acts of different animals. There are certain commercial devices that
can track animals using GPS and detect their activity level offering some numerical
values based on their position. The challenge of the system presented in this paper is to
classify the animal behaviour into different patterns, which are previously trained,
proposed by biologists. Currently there are some mechanisms like Neural Networks
(NNs), SVM (Support Vector Machines), statistical algorithms, among others, that are
trained to extract some patterns from large amount of data. These mechanisms are
usually implemented on computers but other hardware platforms like [1, 2] have been
designed to develop SNNs easily and with better throughput than conventional
computers.

The work presented in this paper is part of the Andalusian Excellence project
MINERVA, which main aim is to study and classify the wildlife behaviour inside
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Doñana National Park [3]. To achieve this goal, a hierarchical wireless sensor network
capable of gathering and transmitting information from the animals has been deployed
and tested inside the park. A low-power collar device attached to the animal, which has
an IMU (Inertial Measurement Unit) and a GPS as main sensors, collects the animal
information. It sends data throw a ZigBee network of motes to a base station, where this
information is classified and uploaded into a cloud server database, using a Wi-Fi link.
Biologists can access those reports through a web application, where processed and raw
data from animal collars is shown. This paper focuses on the behaviour classification
task of horse gaits using SpiNNaker [1], a neuromorphic hardware platform where SNNs
can be deployed. The SpiNNaker board is placed in a base station and it receives the
collected data from a mini PC (NUC) that interfaces with the ZigBee network using a
ZigBee-to-USB bridge board. The raw sensor data is processed by the SNN on SpiN‐
Naker after this information is sent from the collars to the base station and, then, the
classification results are sent to the server. This work is focused on horse gaits, but thanks
to the configurability of the developed architecture, this classification system can be
either extended to other animals or even improved easily by only changing the param‐
eters involved in the training step without the need to catch the animal, which is not
possible on the commercial devices that already exist (they only give position and
activity level).

The rest of the paper is structured as follows: Sect. 2 describes the hardware platforms
involved in this work. Section 3 presents the spiking neural network (SNN) model
implemented and its training process. In Sect. 4 the accuracy results of the SNN are
shown. Finally, Sect. 5 presents the conclusions.

2 Hardware Platforms

For this work, four different platforms have been designed. They are, from lower to
higher operating range: collar, sniffer, base station and central server (see Fig. 1). The
collar is the end device, which is attached to the animal. The sniffer device is an easy-
to-carry device used by biologists and animal handlers to find a particular animal and
obtain its information. Base stations (BS) are placed inside Doñana National Park and
they are used as beacons to receive the information transmitted by the collars to classify
animal’s behavior and send results to a server. Finally, the central server receives the
information from BS and stores it into an accessible format through web applications.

Fig. 1. MINERVA communication topology architecture
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Next, from all these hardware platforms, we will focus on those ones that take part
more actively in the SNN classification: collar and BS will be detailed deeply.

2.1 Collar

This device collects information from the environment using multiple sensors. These
sensors are a GPS, which gives the position and time; and an inertial movement unit
(IMU), which combines 3 different sensors: accelerometer, gyroscope and magneto‐
meter. The IMU has 3 axes for each sensor: (X, Y, Z). These parameters will be taken
into account in the SNN for learning and classification steps.

A low power microcontroller is in charge of the measurements. Furthermore, the
collar includes a Zigbee module that can transmit data through the network in a wireless
way. If the device is out of range from the network, it carries an SD card where the
information is always stored; so the animal behavioural information can be accessed
later in an offline way, avoiding data loss (see Fig. 2).

2.2 Base Station

The main task of the BS is to receive data packets from collars and to retransmit them
to a remote web server via 802.11 Wi-Fi connection. If the collar is out of range, it stores
everything in the SD card until it reaches the BS. Moreover, the main impact of these
stations is the inclusion of a SNN classifier that allows to know the animal activity. This
NN classifier uses the sensors’ raw data collected by the collars to obtain the animal
behavior, which is later uploaded to the server. Hence, the classification is not done in
real time, but in an offline way. This is due to the fact that both the power consumption
of the SpiNNaker board and its size are not small enough to be embedded on the collar,
which on the other hand leads to implement a simpler firmware on this device.

BS is composed of: the Bridge board, which contains the sensors (i.e. temperature,
humidity, luminosity, accelerometer and battery amperimeter) and Zigbee module,
which is used to communicate with collars. BS is USB-connected to an Intel NUC [4].
And a battery, a solar panel and a regulator allows the BS to be installed close to wild-
animals habitat to charge the battery during daylight (see Fig. 3).

Fig. 2. Collar device prototype
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2.3 Synthetic Spikes Generator (RB-SSG)

A Synthetic Spikes Generator (SSG) will transform digital words into a stream of rate-
coded spikes to feed SpiNNaker hardware. This element is necessary for transforming
digital sensors information into spikes because the output of these sensors are not spike-
coded. There are several ways to implement a SSG as presented in [5]. A SSG should
generate a synthetic spikes stream, whose frequency should be proportional to a constant
(kSpikesGen) and an input value (x), according to next equation:

(1)

The SSG used in this work implements the Reverse-Bitwise (RB) method (details
in [6]) for synthetic spikes generation. Figure 4 shows the internal components of the
RB-SSG. It uses a continuous digital counter, whose output is reversed bitwise and
compared with the input absolute value (ABS(x)). If the input absolute value is greater
than reversed counter value, a new spike is sent. RB-SSG ensures a homogeneous spikes
distribution along time, thanks to reversing bitwise counter output. Since a sensor value
can be negative, it is necessary to generate positive and negatives spikes. A demulti‐
plexer is used to select the right output spike port, where selection signal is the input
sign (X(MSB)). Finally, a clock frequency divider is included to adjust RB-SSG gain.
This element will activate a clock enable (CE) signal, for dividing the clock frequency,
according to a frequency divider signal (genFD). So RB-SSG gain (kBWSpikesGen) can be
calculated as in (2):

(2)

spike_p
spike_n

Clock Frequency
Divider Digital Counter

Bit-wise

A>B DEMUX

CEgenFD

X

X(MSB)

A
B

ABS

[n-1 ... 0]

[0 ... n-1]

[n-1 ... 0][n...0]

Fig. 4. Reverse Bitwise Synthetic Spikes Generator block diagram.

Fig. 3. Bridge board (left) and base station (right)
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Where Fclk represents system clock frequency, N the RB-SSG bits length, and
genFD clock frequency divider value. These parameters can be modified in order to set
up RB-SSG gain according with design requirements.

2.4 Spiking Neural Network Architecture (SpiNNaker)

SpiNNaker is a parallel multi-core computing system designed for modelling very large
SNNs in real time. Each SpiNNaker consists of chips (both system architecture and chip
are designed by the Advanced Processor Technologies Research Group [7] in
Manchester), with eighteen 200 MHz ARM968 cores each. In this work, a SpiNNaker
102 machine, plus PACMAN software was used to implement and test a SNN archi‐
tecture, presented in the next section. This board has 4 SpiNNaker chips (72 ARM
processor cores, where typically are 64 application cores, 4 are monitor cores and there
are 4 spare cores) and it requires a 5 V 1A power supply. The control and I/O data is
sent through a 100 Mbps Ethernet link. See Fig. 5.

Fig. 5. SpiNNaker 102 machine.

3 Spiking Neural Network Configuration

3.1 Network Architecture

The SpiNNaker platform allows fast and easy SNNs implementation using PyNN [8],
which is a Python package for simulator-independent specification of SNN models.
PyNN provides a set of different spiking neuron models. However, integrate-and-fire
neurons (IF) have been used in this work due to the fact that it is one of the simplest and
most widely used models for pattern classification in SNNs. The implemented archi‐
tecture consists of 3 layers. The input layer receives the stream of spikes (coded in AER
[9]) related to the sensor information which was captured with the collar and (converted
into aedat files by the SSG) for a specific horse gait [10]. This layer has 9 IF neurons
(one per IMU’s axis).

Both the hidden and the output layers have the same number of neurons as the desired
number of classes to be classified. Three different horse gaits were investigated in this
work (motionless, walking and trotting), hence these layers should consist of three IF
neurons. Figure 6 shows the SNN architecture implemented on the SpiNNaker board.
Two set of connections between consecutive layers of the network are presented: (1)
connections between the input and the hidden layers. These connections are trained using
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a spike-rate based algorithm which is described in the next section. And (2) connections
between the hidden and the output layers. These connections inhibit the unwanted signal
from the classification output obtained in the hidden layer.

Fig. 6. Spiking neural network architecture using a horse gait aedat file sample as input.

3.2 Training Phase

The weights of the first set of SNN connections are obtained using an offline and super‐
vised spike-rate based training algorithm. These weights are calculated from the normal‐
ization of the spike firing activity for each IMU signal using a set of aedat files. These
files were generated from a 20-samples frame variance of the raw data obtained in
Doñana from the collar while a horse was performing the three different gaits that want
to be classified (motionless, walking and trotting). The aim of this training is to obtain
the weights of the SNN connections. After that, according to the neuron labels shown
on Fig. 6, when the horse is motionless, the only firing neuron in the hidden layer is the
number 2; when it is walking, both number 1 and 2 neurons fire; and, in case of trotting,
the three of them. Hence, connections between the neurons in the input layer and the
neuron 2 of the hidden layer have greater weight values than the connections between
the inputs and the number 1, and so on.

The firing rate of a specific degree of freedom (FRatedol[i]) is calculated by dividing
the number of AER events fired during a certain time period by that time period. Then,
the firing rate of a specific sensor (accelerometer, gyroscope or magnetometer)
(FRatesensor[i]) is the maximum firing rate value of its axes. Finally, FRatedol[i] is normal‐
ized using its corresponding FRatesensor[i] value, obtaining (3).

(3)

(4)

(5)

As seen in Fig. 7 (left), the highest event rate for each axis is obtained when the horse
is trotting (collar in constant motion), hence variance values are greater. However,
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setting the weights of the connections with the results obtained from (3) after using these
numbers of AER events leads to a firing output in the hidden layer that is the opposite
of what was expected. To solve this problem, the normalized firing rate values are
inverted (see Fig. 7 right) and used as weights for the connections between input and
hidden layers.

Fig. 7. AER events fired (left) and normalized activity (right) for each IMU degree of freedom

The connections between hidden and output layers are configured such as the first
neuron of the hidden layer inhibits the last two neurons of the output layer. However,
the second neuron of the hidden layer only inhibits the last neuron of the output layer.
With this configuration, when the horse is performing one of the gaits that want to be
classified, only its corresponding output neuron fires.

4 Results

The information required for training and testing the SNN has been collected with the
collar placed on a horse. This specie was chosen due to the weight of the collar prototype.
For the testing scenario, the collar collects information continuously from on-board
sensors and send it to a computer application. The information is stored in different files
depending on the behaviour.

The information is obtained by a biologist managing the animal while a user captures
each behaviour in different files: 6000 samples for each behaviour have been collected.
Next, the dataset is pre-processed by calculating the variance using 20-sample windows.
Finally, 300 samples per behaviour are used for training (200) and testing (100) the SNN
after converting them to spikes. Figure 8 shows the accuracy results of this test.

Fig. 8. Accuracy results for the SNN SpiNNaker implementation
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The network proposed in this paper has been compared with a modification of the
LeNet5 [11] ConvNet, which has been trained and tested using Caffe [12] (Convolutional
Architecture for Fast Feature Embedding). This network is well known for its high accu‐
racy results for image recognition, so data samples have been converted to frames. The
network is fed with these frames, using the same train and test ratio of the whole dataset.
Each frame has been composed as Fig. 9-left shows.

Fig. 9. (left) Frame structure using sensor variance. Column: IMU sensor, Row: coordinate.
(right) Network topology from Caffe

Figure 9-right shows the modified LeNet5 network where pooling operations have been
removed in both convolutional stages because input frames have low pixel resolution. After
training and testing this network, an 81.2 % average accuracy value is obtained.

5 Conclusions

In this manuscript, a novel SNN for horse gait classification was implemented and tested
using SpiNNaker. For that purpose, a collar with a low-power microcontroller and a 9-axis
IMU has been developed along with a desktop application for collecting the data. This data
was obtained in Doñana National Park from different horses in three different seasons of the
year. After transforming the collected sensor information into spike-streams using the RB-
SSG, the SNN was trained. And then, several classification tests were performed on the
SpiNNaker board, obtaining an 83.33 % accuracy on average. These tests were also
performed using a modified LeNet ConvNet implemented in Caffe to compare the results,
obtaining an 81.2 % accuracy. The SpiNNaker board has allowed modeling, implementing
and testing a SNN for this purpose in an easy and fast way, proving its versatility and effi‐
ciency when deploying SNNs in hardware platforms.
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Abstract. Audio classification has always been an interesting subject of research
inside the neuromorphic engineering field. Tools like Nengo or Brian, and hard‐
ware platforms like the SpiNNaker board are rapidly increasing in popularity in
the neuromorphic community due to the ease of modelling spiking neural
networks with them. In this manuscript a multilayer spiking neural network for
audio samples classification using SpiNNaker is presented. The network consists
of different leaky integrate-and-fire neuron layers. The connections between them
are trained using novel firing rate based algorithms and tested using sets of pure
tones with frequencies that range from 130.813 to 1396.91 Hz. The hit rate
percentage values are obtained after adding a random noise signal to the original
pure tone signal. The results show very good classification results (above 85 %
hit rate) for each class when the Signal-to-noise ratio is above 3 decibels, vali‐
dating the robustness of the network configuration and the training step.

Keywords: SpiNNaker · Spiking neural network · Audio samples classification ·
Spikes · Neuromorphic auditory sensor · Address-Event Representation

1 Introduction

Neuromorphic engineering is a discipline that studies, designs and implements hardware
and software with the aim of mimicking the way in which nervous systems work,
focusing its main inspiration on how the brain solves complex problems easily. Nowa‐
days, the neuromorphic community has a set of neuromorphic hardware tools available
such as sensors [1, 2], learning circuits [3, 4], neuromorphic information filters and
feature extractors [5, 6], robotic and motor controllers [7, 8]. In the field of neuromorphic
sensors, diverse neuromorphic cochleae can be found [2, 9, 10]. These sensors are able
to decompose the audio in frequency bands, and represent them as streams of short
pulses, called spikes, using the Address-Event Representation (AER) [11] to interface
with other neuromorphic layers. On the other hand, there are several software tools in
the community for spiking neural networks (SNN) simulation, i.e. NENGO [12] and
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BRIAN [13]; or jAER [14] for real-time visualization and software processing of AER
streams captured from the hardware using specific interfaces [15]. Hardware platforms
like the SpiNNaker board [16] allows to develop and implement complex SNN easily
using a high-level programming language such as Python and the PyNN [17] library.

This manuscript presents a novel multilayer SNN architecture built in SpiNNaker
which has been trained for audio samples classification using a firing rate based algo‐
rithm. To test the network behavior and robustness, a 64-channel binaural Neuromorphic
Auditory Sensor (NAS) for FPGA [10] has been used together with an USB-AER inter‐
face [15] (Fig. 1) and the jAER software, allowing to produce different pure tones with
frequencies varying from 130.813 Hz to 1396.91 Hz, record the NAS response storing
the information in aedat files through jAER and use these files as input for the SNN that
has been implemented in the SpiNNaker board.

Fig. 1. Block diagram of the system

The paper is structured as follows: Sect. 2 presents the number of neurons, layers
and connections of the SNN. Then, Sect. 3 describes the training algorithm used in every
layer for the audio samples classification. Section 4 describes the test scenario, including
information about the input files. Then, Sect. 5 presents the experimental results of the
audio samples classification when using the inputs described in Sect. 4. Finally, Sect. 6
presents the conclusions of this work.

2 Hardware Setup

The standalone hardware used in this work consists of two main parts: the 64-channel
NAS connected to the USB-AER interface for generating a spike stream for each audio
sample, and the SpiNNaker for back-end computation and deployment of the SNN
classifier.

2.1 Neuromorphic Auditory Sensor (NAS)

A Neuromorphic Auditory Sensor (NAS) is used as the input layer of our system. This
sensor converts the incoming sound into a train of rate-coded spikes and processes them
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using Spike Signal Processing (SSP) techniques for FPGA [5]. NAS is composed of a
set of Spike Low-pass Filters (SLPF) implementing a cascade topology, where SLPF’s
correlative spike outputs are subtracted, performing a bank of equivalent Spikes Band-
pass Filters (SBPF), and decomposing input audio spikes into spectral activity [10].
Finally, SBPF spikes are collected using an AER monitor, codifying each spike using
the Address-Event Representation, and propagating AER events through a 16-bit
parallel asynchronous AER port [11].

NAS designing is very flexible and fully customizable, allowing neuromorphic engi‐
neers to build application-specific NASs, with diverse features and number of channels.
In this case, we have used a 64-channel binaural NAS, with a frequency response
between 20 Hz and 22 kHz, and a dynamic range of +75 dB, synthesized for a Virtex-5
FPGA. Figure 1 shows a NAS implemented in a Xilinx development board, and a USB-
AER mini2 board, that implements a bridge between AER systems and jAER in a PC
(Fig. 2).

Fig. 2. 64-channel binaural NAS implemented in a Xilinx ML507 FPGA connected to an USB-
AER mini2 board.

2.2 Spiking Neural Network Architecture (SpiNNaker)

SpiNNaker is a massively-parallel multi-core computing system designed for modelling
very large spiking neural networks in real time. Each SpiNNaker chip comprises 18
general-purpose ARM968 cores, running at 200 MHz, communicating via packets
carried by a custom interconnect fabric. Packets are transmitted and their transmission
is brokered entirely by hardware, giving the overall engine an extremely high bisection
bandwidth. The Advanced Processor Technologies Research Group (APT) [18] in
Manchester are responsible for the system architecture and the design of the SpiNNaker
chip itself.

In this work, a SpiNNaker 102 machine was used. The 102 machine, Fig. 3, is a 4-
node circuit board and hence has 72 ARM processor cores, which are typically deployed
as 64 application cores, 4 Monitor Processors and 4 spare cores. The 102 machine
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requires a 5 V 1 A supply, and can be powered from some USB2 ports. The control and
I/O interface is a single 100 Mbps Ethernet connection.

Fig. 3. SpiNNaker 102 machine.

3 Leaky Integrate-and-Fire Spiking Neural Network

The SpiNNaker platform allows to implement a specific spiking neuron model and use
it in any SNN deployed on the board thanks to the PyNN package. Leaky Integrate-and-
Fire (LIF) neurons have been used in a 3-layer SNN architecture for audio samples
classification.

• Input layer. This layer receives the stream of AER events fired for the audio samples
captured as aedat files through jAER. The number of input neurons is equal to the
number of channels that the NAS has. As a 64-channel NAS (64 different AER
addresses) was used in this work, the input layer consists of 64 LIF neurons.

• Hidden layer. The hidden layer has the same number of neurons as the desired
number of classes to be classified in the output layer. As an example, this layer should
consist of eight LIF neurons if eight different audio samples are expected to be
classified.

• Output layer. As the previous layer, this also has as many neurons as output classes.
The firing output of the neurons in this layer will determine the result of the classi‐
fication.

Figure 4 shows the SNN architecture. Connections between layers are achieved using
the FromListConnector method from PyNN, meaning that the source, destination and
weight of the connection are specified manually. Using other connectors from this
package will result on having the same weight in all the connections between consecutive
layers, instead of a different value for each. In this architecture, each neuron in a layer
is connected to every neuron in the next layer, and the weight value is obtained from the
training step, which is described in Sect. 4. The threshold voltage of the neurons in the
hidden layer is 15 mV, while this voltage is 10 mV in the neurons in the output layer.
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Decay rate and refractory period are the same for both layers: 20 mV/ms and 2 ms,
respectively.

Fig. 4. SNN architecture using an audio sample aedat file as input.

4 Training Phase for Audio Classification

In the previous section, each of the three layers comprising the network were described.
The training phase is performed offline and supervised. The main objective of this
training is to obtain the weight values of the connections between the input and the
hidden layer and between the hidden and the output layers for further audio samples
classification. Therefore, two different training steps need to be done.

The weights of the first step of the training phase are obtained from the normalized
spike firing activity for each NAS channel using a set of audio samples similar to those
to be recognized (same amplitude, duration and frequencies). The firing rate for a specific
channel (FRchannel_i) is obtained by dividing the number of events produced in that
channel by the NAS firing rate (FRT), which is the number of events fired in the NAS
in a particular time period.

(1)

(2)

Figure 5 shows the normalized spike firing activity for a set of eight pure tones with
frequencies that range from 130.813 Hz to 1396.91 Hz, logarithmically spaced.

The weights of the second step of the training phase are obtained from the firing
output of each neuron in the hidden layer when using the set of audio samples as input
after loading the weights calculated in the previous step into the connections between
the input and the hidden layer. These firing outputs are normalized by dividing each of
them by the maximum value. The results obtained are the weight values that will be used
in the connections between the hidden and the output layer.
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5 Test Scenario

In this work, the SNN architecture and training algorithm presented are tested using
eight different audio samples. These output classes correspond to eight different pure
tones with frequencies that range from 130.813 Hz to 1396.91 Hz, logarithmically
spaced (130.813, 174.614, 261.626, 349.228, 523.251, 698.456, 1046.50 and
1396.91 Hz). These samples have a duration of 0.5 s and were generated using the
audioplayer function from Matlab with a sampling rate of 48 KHz and a peak-to-peak
voltage value of 1 V. After the signal is sent to the mixer, it propagates the sound to
NAS input and sends an AER stream to the PC through the AER-USB interface. The
jAER software running on the PC is able to capture this stream and save it as an aedat
file. Figure 6 shows the cochleograms for the 130.813 Hz and the 1396.91 Hz pure tones
after capturing them.

The first step of the training phase can be achieved by applying the equations
presented in Sect. 4 to the set of eight aedat files corresponding to each pure tone. This
will generate a CSV file containing the weights for the 64 × 8 connections between the
input and the hidden layers of the SNN based on the firing rate of the spike streams for
each audio sample. As described in the previous section, loading those weights into the
corresponding connections and using the eight pure tones as input will result on a firing

Fig. 5. Normalized spike firing activity for each NAS channel per audio sample.

Fig. 6. First 10 ms cochleogram of the 130.813 Hz (left) and 1396.91 Hz (right) pure tones.
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output on the second layer neurons that will be used for training the connections between
the second and the output layers of the SNN.

After the weights are set on these connections, new sets of the same pure tones (same
frequencies) are recorded using different Signal-to-Noise Ratio (SNR) values and tested
on the network, calculating the hit rate percentage for each class.

6 Experimental Results

Different pure tone sets with the same frequencies and properties (0.5 s and 0.5 V
amplitude) as the ones used in this work were captured and used to test the network
robustness and effectiveness. A 100 % hit rate was obtained for every class when the
signal was a pure sine wave. Moreover, the network has also been tested by adding a
noise signal consisting of random values to the pure tones original signals, obtaining
audio samples with different SNR values (from 35.2 dB to 0 dB). The hit rate percentage
for every class using the previous SNR values are listed in Table 1.

Table 1. Hit rate percentage of the audio samples classification SNN for different SNR values.

SNR
(dB)

Pure tone frequency (Hz)
130.813 174.614 261.626 349.228 523.251 698.456 1046.5 1396.91

No noise 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
35.1993 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
21.3363 100 % 83 % 96 % 100 % 100 % 100 % 100 % 100 %
13.2273 100 % 81 % 92 % 100 % 100 % 100 % 100 % 96 %
7.4733 100 % 86 % 100 % 100 % 100 % 100 % 100 % 95 %
3.0103 74 % 90 % 100 % 98 % 100 % 100 % 100 % 98 %
2 93 % 88 % 20 % 32 % 16 % 92 % 32 % 97 %
1 10 % 5 % 0 % 0 % 0 % 88 % 26 % 94 %
0 0 % 0 % 0 % 0 % 0 % 76 % 22 % 91 %

The results show very high hit rate percentages when the SNR is above 3 dB.
However, when the SNR falls below 3 dB and approaches zero dB (the amplitude of the
pure tone is the same as the amplitude of the noise signal) the network is not able to
classify every input signal as its corresponding class.

7 Conclusions

In this paper, a novel multilayer spiking neural network architecture for audio samples
classification implemented in SpiNNaker has been presented. To achieve this goal, an
optimized training phase for audio recognition has been described and specified in two
different steps, which allow obtaining the weights for the connections between the input
and the hidden layers and between the hidden and the output layers. The network was
trained using eight pure tones with frequencies between 130.813 Hz and 1396.91 Hz
and tested by adding a noise signal with SNR values between 35.1993 and 0 dB.
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The hit rate values obtained after many tests confirm the robustness of the network
and the training, which make it possible to classify every pure tone with a probability
over 74 % even when the SNR value is 3 dB, obtaining almost a 100 % probability for
every input when the SNR is above that value.

Finally, the SpiNNaker board has allowed to model and develop a leaky integrate-
and-fire spiking neural network for this purpose in an easy, fast, user-friendly and effi‐
cient way, proving its potential, and promoting and facilitating the implementation of
SNNs like these in real hardware platforms. The PyNN code used to test the SNN
presented in this work is available at [19].

Acknowledgements. The authors would like to thank the APT Research Group of the University
of Manchester for instructing us in the SpiNNaker. This work is supported by the Spanish
government grant BIOSENSE (TEC2012-37868-C04-02) and by the excellence project from
Andalusian Council MINERVA (P12-TIC-1300), both with support from the European Regional
Development Fund.

References

1. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 × 128 120 dB 15 μs latency asynchronous
temporal contrast vision sensor. IEEE J. Solid-State Circ. 43, 566–576 (2008)

2. Chan, V., Liu, S.C., van Schaik, A.: AER EAR: a matched silicon cochlea pair with address
event representation interface. IEEE Trans Circ. Syst. I 54(1), 48–59 (2007)

3. Häfliger, P.: Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Trans.
Neural Netw. 18, 551–572 (2007)

4. Indiveri, G., Chicca, E., Douglas, R.: A VLSI array of low-power spiking neurons and bistable
synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221
(2006)

5. Jiménez-Fernández, A., Jiménez-Moreno, G., Linares-Barranco, A., et al.: Building blocks
for spikes signal processing. In: International Joint Conference on Neural Networks, IJCNN
(2010)

6. Linares-Barranco, A., et al.: A USB3.0 FPGA event-based filtering and tracking framework
for dynamic vision sensors. In: Proceedings of IEEE International Symposium on Circuits
and Systems, pp. 2417–2420 (2015)

7. Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., et al.: Using FPGA for
visuo-motor control with a silicon retina and a humanoid robot. In: IEEE International
Symposium on Circuits and Systems, pp. 1192–1195 (2007)

8. Jimenez-Fernandez, A., Jimenez-Moreno, G., Linares-Barranco, A., et al.: A neuro-inspired
spike-based PID motor controller for multi-motor robots with low cost FPGAs. Sensors 12,
3831–3856 (2012)

9. Hamilton, T.J., Jin, C., van Schaik, A., Tapson, J.: An active 2-D silicon cochlea. IEEE Trans.
Biomed. Circ. Syst. 2, 30–43 (2008)

10. Jimenez-Fernandez, A., Cerezuela-Escudero, E., Miro-Amarante, L., et al.: A binaural
neuromorphic auditory sensor for FPGA: a spike signal processing approach. IEEE Trans.
Neural Networks Learn. Syst. 1(0) (2016)

11. Boahen, K.: Point-to-point connectivity between neuromorphic chips using address events.
IEEE Trans. Circ. Syst II Analog Digit Sig. Process. 47, 416–434 (2000)

52 J.P. Dominguez-Morales et al.



12. Bekolay, T., et al.: Nengo: a Python tool for building large-scale functional brain models.
Front Neuroinform. 7, 48 (2014)

13. Goodman, D., Brette, R.: Brian: a simulator for spiking neural networks in python. Front
Neuroinform. 2, 5 (2008)

14. jAER Open Source Project. http://jaer.wiki.sourceforge.net
15. Berner, R., Delbruck, T., Civit-Balcells, A., Linares-Barranco, A.: A 5 Meps $100 USB2.0

address-event monitor-sequencer interface. IEEE International Symposium on Circuits and
Systems (2007)

16. Painkras, E., et al.: SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural
network simulation. IEEE J. Solid-State Circ. 48, 1943–1953 (2013)

17. Davison, A.P.: PyNN: a common interface for neuronal network simulators. Front
Neuroinform. 2, 11 (2008)

18. SpiNNaker Home Page. http://apt.cs.manchester.ac.uk/projects/SpiNNaker
19. Dominguez-Morales, J.P.: Multilayer spiking neural network for audio samples classification

using Spinnaker Github page. https://github.com/jpdominguez/Multilayer-SNN-for-audio-
samples-classification-using-SpiNNaker

Multilayer Spiking Neural Network for Audio Samples 53

http://jaer.wiki.sourceforge.net
http://apt.cs.manchester.ac.uk/projects/SpiNNaker
https://github.com/jpdominguez/Multilayer-SNN-for-audio-samples-classification-using-SpiNNaker
https://github.com/jpdominguez/Multilayer-SNN-for-audio-samples-classification-using-SpiNNaker


Input-Modulation as an Alternative
to Conventional Learning Strategies

Esin Yavuz(B) and Thomas Nowotny

School of Engineering and Informatics, University of Sussex,
Falmer, Brighton BN1 9QJ, UK

{e.yavuz,t.nowotny}@sussex.ac.uk
http://www.sussex.ac.uk

Abstract. Animals use various strategies for learning stimulus-reward
associations. Computational methods that mimic animal behaviour most
commonly interpret learning as a high level phenomenon, in which the
pairing of stimulus and reward leads to plastic changes in the final out-
put layers where action selection takes place. Here, we present an alter-
native input-modulation strategy for forming simple stimulus-response
associations based on reward. Our model is motivated by experimental
evidence on modulation of early brain regions by reward signalling in
the honeybee. The model can successfully discriminate dissimilar odours
and generalise across similar odours, like bees do. In the most simplified
connectionist description, the new input-modulation learning is shown
to be asymptotically equivalent to the standard perceptron.

Keywords: Reinforcement learning · Olfactory system · Spiking neural
network

1 Introduction

Reinforcement learning is a learning paradigm in which appropriate actions are
associated to sensory input guided by an evaluative feedback signal [16]. In
computational models, this feedback is often considered to lead to modifications
of the synapses between the outputs of the sensory processing cascade and the
pre-motor regions that give rise to behaviour.

There are a number of regions associated with stimulus-reward associations in
the human brain, and many different pathways are involved. On the other hand,
insects are also capable of performing quite complex tasks even though their
brains have much fewer brain regions and less than a million neurons. Honeybees,
for example, rely on stimulus-reward associations for foraging, which is essential
for their survival. Because of their extraordinary capabilities of solving complex
learning tasks and the small size of their brains, they are a good animal model
for studying the neural correlates of reinforcement learning [12].

The main brain regions of the honeybee olfactory system are the antennae,
the antennal lobe (AL) and the mushroom bodies (MB). The olfactory receptor
c© Springer International Publishing Switzerland 2016
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neurons (ORNs) in the antennae respond to olfactory stimuli and make synapses
with projection neurons (PNs) and local interneurons (LNs) in the AL. PNs then
rely this stimulus-related information to the MBs. Even though the MBs are
considered to be the main regions of stimulus identification and learning, bees
have been shown to be capable of performing acquisition, but not consolida-
tion, of elementary stimulus-reward associations even when the MBs are ablated
[11] or their spiking activity is suppressed [3]. Moreover, injecting octopamine,
a neurotransmitter which is known to mediate reward signalling in the insect
brain, into the AL just after presenting an odour has been shown to be sufficient
for conditioning [7]. Other studies have found that associative learning induces
changes in the spiking activity of the neurons in the AL [2,5,15], not only in
the MBs. These experiments suggest that reinforcement learning can be induced
and evokes changes in the very early stages of the olfactory system, the AL, and
that the MBs are not essential for simple elemental associative learning tasks.

Based on these observations, we have developed a spiking neural network
model of the early olfactory system of the honeybee that does not require MBs
to learn simple associations for appetitive absolute conditioning. The model uses
elements of an earlier olfaction model [14], and includes additional mechanisms
for reward modulation in the AL. Stimulus-reward associations are stored in
plastic ORN-PN connections governed by a three-factor learning rule.

2 Model

The network connectivity is shown in Fig. 1. The model has four main layers:
ORNs, PNs and LNs in the AL, and detector neurons (DNs), presumably located
in the lateral protocerebrum. We have included 450 ORNs, 150 PNs, 30 LNs
and 2 DNs, modelling roughly 1/5, or 30 glomeruli, of the AL. This choice was
guided by the availability of experimental data for 30 glomeruli that are located
dorsally and hence easily accessible for imaging [14]. Each glomerulus has five
PNs and one LN associated to it. We have interpreted this as the substrate
for five potential behaviours, and modify only the ORN-PN synapses of one of
the PNs in response to reward. Others may be modified by other signals, e.g.
in response to punishment. LN-LN and LN-PN synapses are inhibitory, all the
other synapses are excitatory.

Each ORN expresses only one receptor type and each ORN type projects to
the same glomerulus. ORN responses are modelled as Poisson spike trains with
input-dependent rate. The rates are calculated as a function of the identity and
concentration of odour input, in a rate model of binding, unbinding, activation
and inactivation of receptors [13]. Details can be found in a previous study [14].

PNs and LNs are modelled as Hodgkin-Huxley type conductance based neu-
rons [17], tuned to reproduce the electrophysiological data from honeybees [10].
We only modelled the homogeneous LNs which provide all-to-all inhibition, and
excluded the heterogeneous LNs which connect to only a subset of glomeruli.

The membrane potential Vi of neuron i is given by:

CV̇i = −INa,i − IK,i − IL,i − IDC,i − Isyn,i, (1)
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Fig. 1. Network connectivity. Presynaptic populations are at the light end of the
synapses, and the postsynaptic populations are at the dark end. Each 5 PNs (and
1 LN) are members of the same glomeruli, and one of them makes reward-modulated
plastic synapses with ORNs. LN-LN and LN-PN connections are inhibitory.

where C is the membrane capacitance, and IDC,i is a direct current injected into
the neuron. The leak current is IL,i = gL(Vi − EL) and the ionic currents INa,i,
IK,i and IM,i are described by

INa,i(t) = gNami(t)3hi(t)(Vi(t) − ENa) (2)

IK,i(t) = gKni(t)4(Vi(t) − EK) (3)

IM,i(t) = gMzi(t)4(Vi(t) − EK). (4)

The synaptic current Isyn,i received by neuron i is given by

Isyn,i(t) = (Vsyn − Vi(t))
∑
j

gsyn,ij(t)Sij(t) (5)

with a reversal potential of Vsyn = 0 mV for excitatory and −80 mV for inhibitory
synapses. The synaptic activation variable Sij is governed by

Ṡij = − Sij

τsyn,ij
+

∑
k

δ(t − t
(k)
j ), (6)

where t
(k)
j is the time stamp of the kth spike of the presynaptic neuron j. Each

activation and inactivation variable mi(t), hi(t), ni(t), zi(t) satisfied first-order
kinetics exactly as described in [14], Eqs. (10) and (11).

The plastic synapses between ORNs and learning PNs were updated by
a 3-factor learning rule. The “eligibility trace” pij is updated according to
pij �→ pij + FSTDP(Δtspike) whenever a pre- or post-synaptic spike occurs and
otherwise decays exponentially according to ṗij = −(pij − pbase)/τp. For sim-
plicity, the STDP function was set to a constant, FSTDP = A, if −20 < Δt < 30
and = 0 otherwise. The time window was chosen to match the STDP time win-
dow observed in locust Kenyon cells [1]. pij then drives changes in the synaptic
conductance gsyn,ij in conjunction with the reward signal R according to

ġsyn,ij =
R · pij
τlearn

− gsyn,ij
τforget

(7)
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R is determined by the external experimental protocol in the form of a reward
signal value Rtarget(t) to which R approaches exponentially with a given time
scale τreward:

Ṙ =
R0 + Rtarget − R

τreward
(8)

Here, R0 is a negative baseline value for reward that causes responses in the
absence of reward to lead to depression of gsyn,ij and hence extinction of previ-
ous memories. In a steady state without reward, both R and pij are negative;
therefore the total effect on gsyn,ij is positive, resulting in recovery. The model
behaviour is summarised in Table 1.

Table 1. Model behaviour as a function of reward (R) and eligibility (p)

R < 0 R > 0

p < 0 + (recovery) − (inactivation)

p > 0 − (extinction) + (reinforcement)

The model was simulated on the GeNN GPU-accelerated modelling frame-
work [18]1.

3 Results

In order to test the performance of the model for discrimination and generalisa-
tion when forming associations between odours and reward, we tested responses
to 2-Hexanol (2-Hex) against responses to 1-Hexanol (1-Hex) and 2-Octanol (2-
Oct). According to behavioral [6] and calcium imaging [4] studies, 2-Hex and
1-Hex are similar and should lead to generalisation and 2-Oct is dissimilar and
should be discriminated. When tested against 2-Hex conditioning, the behavioral
generalisation probability of bees was 75.0 % for 1-Hex and 37.5 % for 2-Oct [6].

The absolute conditioning protocol used here consists of five consecutive pre-
sentations of an odour paired with a reward signal (A+). The odour is presented
for 4 s, and the reward signal is introduced 2 s after the stimulus onset. The
reward is presented for 3 s. After the five consecutive presentations of A+, a sec-
ond odour is presented without any reward (B−). Following B−, the first odour
is presented again three times without sugar pairing (A−).

As a result of conditioning, the glomeruli that are active during A+ increase
their firing, while the glomeruli that are not active decrease their firing. The
temporal evolution of the PN responses during the absolute conditioning pro-
tocol is shown in Fig. 2 for dissimilar odours, and in Fig. 3 for similar odours.
Glomerulus 15 responds to 1-Hex but not to 2-Hex, therefore its synapses are

1 The code and the parameter values are available at https://github.com/esinyavuz/
Input-Modulation-Learning.

https://github.com/esinyavuz/Input-Modulation-Learning
https://github.com/esinyavuz/Input-Modulation-Learning
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Fig. 2. Glomerular responses and corresponding learning parameters in time, during
the absolute conditioning protocol for 2-Hex as the conditioning odour (A) and 2-Oct
as the test odour (B), for three glomeruli. (a) PN responses as spike density function
of spike trains. Responses of the neuron that has learning synapses is shown in green,
other neurons with simple synapses is shown in black. (b) Eligibility traces and the
reward signal. (c) ORN-PN conductances (d) DN responses. (Color figure online)

weakened during A+, which results in suppression of this glomerulus during B−
(Fig. 3a, left). On the other hand, glomerulus 23 responds to 2-Hex and 1-Hex
but not to 2-Oct, therefore learning results in a slight increase of its response
to 2-Oct (Fig. 2a, right). Other glomeruli that have average response levels are
slightly modulated, according to their eligibility that depends on the level of their
activity (Fig. 2b). The resulting change in conductance is shown in Figs. 2 and
3c. Changes in the spiking activity is then detected by the learner DN: it starts
to fire after the 4th or the 5th conditioning trial (Figs. 2 and 3d), due to random
initialisation of the conductances. During the test trial, it responds to the similar
odour (Fig. 3d) but not to the dissimilar odour (Fig. 2d), which shows that the
model could successfully learn to discriminate the dissimilar odour while it gen-
eralises to the similar odour. After the first A− trial, the DN stops to respond as
the odour is not associated with reward anymore, which is a phenomenon known
as extinction.

4 Discussion

We presented a novel model for associative learning which involves modulation
of AL activity by plasticity. This is much more akin to sensory learning than
to usual associative learning models, like the classical perceptron. There are a
number of alternative mechanisms that could underlie this type of learning. It
could be based on recurrent network activity which provides a type of short-
term memory and would facilitate the recurrent activation of PNs relevant to
a rewarded stimulus. However, this is somewhat unlikely given that persistent
spiking activity is not observed neither in calcium imaging, nor in electrophys-
iological recordings [4,10]. Another alternative hypothesis would be changes in
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Fig. 3. Same as Fig. 2, for 2-Hex as odour A and 1-Hex as odour B.

neuronal properties of involved PNs or LNs, as has been observed in the snail
feeding system [9]. The most likely substrate, however, are synaptic changes
either between ORNs and PNs, as assumed here, or in the local network of the
AL. This view is supported by the observation that associative learning induces
changes in the spiking activity of the neurons in the AL [2,5,15].

The model of associative learning presented here is unusual compared to clas-
sical models such as the perceptron. In essence, this novel learning model is like a
perceptron in which the input neurons learn to respond differently to rewarded
inputs and so encode the knowledge of the world rather than modifying the
synapses towards output neurons to achieve this. Figure 4 illustrates the essence
of the two different solutions. It is natural to ask whether the two solutions are
related and how they compare in classifying an input pattern against a backdrop
of non-rewarded background patterns. To show this, we reduce the two models
to a minimal connectionist description with binary variables as in [8].

For the perceptron, the responses are given by yi = Θ
(∑

j wijxj − θDN

)
,

where the input neurons xj are the PNs, wij is a binary connection matrix,
and θDN the firing threshold. The PNs governed by xj = Θ (cj

∑
k rjk − θPN),

and rjk ∈ {0, 1} are the responses of ORNs of type j, k = 1, . . . , NORN, and cj
is a synaptic connection strength from ORNs to PNs, the same for all k (and
potentially also all j). θPN is the firing threshold of PNs. Learning takes place
through changes in wij , e.g. by applying this simple stochastic binary learning
rule [8] for a rewarded stimulus:

wij(t + 1) =

⎧⎨
⎩

1 with probability p+ if yi = 1 and xj = 1
0 with probability p− if yi = 1 and xj = 0
wij(t) otherwise

(9)

It is straightforward to see that if the same pattern x̂ = (x̂j) is applied repeatedly
and paired with an activation of yi, then, eventually, the connectivity will equal
x̂, i.e. wij = x̂j for all j [8]. The separation of the target input x from other
inputs x then depends on the overlap of the other inputs with x and the value of



60 E. Yavuz and T. Nowotny

2

1

1

"Input−modulation learning"ba Perceptron

ijc

w

"avoid"

wij

"approach" "approach"

"avoid"

c

w

r r

12

22

1n

2n

2

x

x

x

x

x

x

1

11

21

11

12

r1m

11

12

r1m

2

1

1

x

y

y

n

2

y

y

x

x

r r

Fig. 4. Perceptron (a) compared to “input modulation learning” (b) introduced here.
In the perceptron, the weights wij change during learning and there is only one copy
of the “input pattern” in the PNs, and hence only one set of input neurons. In b, there
are multiple copies of PNs, and learning takes place in the input synapses, cij .

θDN. In particular, the total input to yi for an input pattern x = (xj), is given
by

∑
j x̂jxj or, equivalently, x̂ · x.

On the other hand, for the learning system presented here, the responses
are given by yi = Θ

(
wi

∑
j xij − θDN

)
, the PN activitiy is xij =

Θ (cij
∑

k rjk − θPN), and it is the input conductances cij that change during
learning. In the same minimalistic connectionist manner as above [8], an appro-
priate simplified description of the learning rule would be that, if reward is
present,

cij(t+1) =

⎧⎨
⎩

1 with probability p+ if rij = 1 and i is the “reward pathway”
0 with probability p− if rij = 0 and i is the “reward pathway”
cij(t) otherwise

(10)

If no reward is present, all synaptic strengths cij remain unchanged. This scheme
assumes, that there is one output neuron yi per reward or punishment pathway,
or, equivalently, each type of action, e.g. “approach” and “avoid”. With the same
argument as in [8] for the learning rule (9), the outcome of repeated i type reward
for a single input pattern r̂ would be cij = r̂j for all j. In such a case, we can
assume that θPN is such that rjk = 1 would lead to xij = cij , i.e. PNs xij spike
if the corresponding receptors rjk are active and cij = 1. If either the receptors
are silent or cij = 0, no input will be received and no spiking will occur. The
total input to an output neuron yi hence depends essentially on the overlap of
an input r = (rj) with r̂, in particular, this input strength is

∑
j r̂jrj or the

scalar product r̂ · r, which is the same expression as above for the perceptron.
Our results suggest that input-modulation and the standard perceptron lead

to the same results in their essentially reduced form, therefore the two approaches
are equivalent. This indicates that learning can happen via different mecha-
nisms than the traditionally studied ones. Investigating different strategies could
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provide insights to why the bees evolved to use this unusual mechanism, which
is promising for development of novel algorithms for reinforcement learning.
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Abstract. Spontaneous oscillation, which does not occur in the normal
retina, is observed in the retina of the retinal degeneration mutant rd1
mouse, and provides insight into some details of the retinal network. The
simple model by Trenholm et al. (2012) explained a mechanism for the
oscillation, but it is not clear whether this mechanism functions for a
larger, real network. To explore important factors for such an oscillatory
network, we constructed a computational model of the AII amacrine cell
(AII-AC) network and investigated the factors that affected the AII-
AC network state by the varying model parameters, such as the degree
of hyperpolarization of AII-ACs, the connection range, and others. Our
results revealed two major tendencies: the AII-AC network exhibited
oscillation when AII-ACs were hyperpolarized sufficiently, and when the
AII-AC network was made sparse. These results suggest that dysfunction
of photoreceptor cells could prevent formation of the correct AII-AC
network.

Keywords: Retina · AII amacrine cell · Spontaneous oscillation

1 Introduction

The retina is the front-end neural network responsible for conversion of light
stimuli into electrical signals that are interpreted by the brain. Fundamental
functions of the retina have been clarified, but much of the detail of how the
retina processes visual information is still unclear, in part because of the large
variety of cell types, and the multiple pathways that link them [1].

The typical responses of a normal retinal network, i.e., ON and OFF
responses, are generated by the output cells of the retina, retinal ganglion cells.
The ON response is evoked with the onset of light stimulus, whereas the OFF
response is evoked by the offset of light stimulus. Ganglion cells exhibit low
activity without any light stimulus. In contrast, the retina of the retinal degen-
eration rd1 mouse shows no response, even when a light stimulus is presented,
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 63–71, 2016.
DOI: 10.1007/978-3-319-44778-0 8
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because the rd1 mouse retina completely loses photoreceptor function. Instead,
the abnormal retina exhibits a spontaneous oscillation at a low frequency [2–7].
A previous study showed that Na+ channels expressed on the membranes of
AII amacrine cells (AII-AC), and gap junctions between the AII-ACs and ON
cone bipolar cells largely contributed to the generation of oscillations in the rd1
retina, and the authors proposed a simple concept model for the generation of
spontaneous oscillation [6]. However, it is unclear whether the proposed mecha-
nism actually functions in real retinal networks, as the concept model consists
of only three neurons: one bipolar cell and two AII-ACs.

In this study, we focused on the properties of the AII-AC network, considered
the generator of the spontaneous oscillation, to see if the oscillation would persist
when the network is composed of a larger number of AII-ACs. It is expected that
the generation of the spontaneous oscillation is highly dependent on the network
connectivity between AII-ACs through gap junctions, and on the heterogeneity of
membrane properties of AII-ACs. This is because the dense network through gap
junctions is likely to stabilize and smooth membrane potentials between neurons,
which would prevent such spontaneous oscillation from occurring. Therefore,
we investigated the dependence of the network state on parameters such as
network connectivity to determine the parameters required for the generation of
the spontaneous oscillation in the AII-AC network.

2 Methods

We constructed a model of the AII-AC network in a mouse retina based on the
previously proposed model [6]. Our model consists of 20 AII-AC models, each
of which is a single compartmental conductance-based model with the Hodgkin-
Huxley formalism.

2.1 Neuron Model

Each AII-AC has a fast sodium current INa, a potassium current IK, and a
leakage current IL [6]. The dynamics of the membrane potential of the ith AII-
AC, Vi is described by

Cm
dVi

dt
= −INa − IK − IL −

∑
j

g(Vi − Vj) + Iinput, (1)

INa = gNam∞(Vi)hi (Vi − ENa) , (2)
IK = gKni (Vi − EK) , (3)
IL = gL (Vi − EL) , (4)

where gX are the maximal ionic conductances and EX are reversal potentials.
m, h and n are the gating variables, the dynamics and functions of which are
represented by the following equations:
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dh

dt
=

h∞(V ) − h

τh
, (5)

dn

dt
=

n∞(V ) − n

τn(V )
, (6)

y∞ (V ) =
1
2

(
1 + tanh

(
V − Vy1

Vy2

))
, y = m,h, n, (7)

τn (V ) =
(

φ cosh
(

V − Vn1

2Vn2

))−1

. (8)

φ is the time constant of the recovery process to the equilibrium state at Vi

determined by Eq. (7). The fourth term of the right-hand side in Eq. (1) rep-
resents the sum of currents through gap junctions from all neurons connected
with the i neuron [9]. The conductances of the gap junctions were all assumed
to have an identical strength g. The last term of the right-hand side in Eq. (1) is
the input current Iinput, using a negative value to represent the hyperpolarizing
current, depicting the loss of spontaneous release of excitatory neurotransmitter
onto the AII-ACs.

The membrane capacitance is Cm = 1 µF/cm2. The reversal potentials are
EL = −60 mV, ENa = 40 mV, and EK = −100 mV. The parameters for the
steady states and the time constants of the gating variables are Vm1 = −1.2 mV,
Vm2 = 20.5 mV, Vn1 = 2 mV, Vn2 = 15 mV, Vh1 = −28 mV, Vh2 = −1 mV,
φ = 0.039 and τh = 2 ms.

In order to incorporate heterogeneity into the membrane properties of
AII-ACs, conductance of the leakage current and the fast sodium cur-
rent were randomly set. The maximal ionic conductances used were gL =
0.02 to 0.035 mS/cm2, gNa = 0.36 to 0.525 mS/cm2 and gK = 0.1 mS/cm2.
This heterogeneity yielded different base levels of the resting membrane
potential.

2.2 Network Connectivity

A retina has a sheet-like structure and the AII-AC network is thought to spread
in a plane parallel to the retinal sheet. Therefore, it could be assumed that AII-
ACs were on a 2D plane. In our model, 20 AII-ACs were placed at randomly
chosen grid points (out of 10 × 10 = 100 grid points) on the plane (Fig. 1a).
If the distance between a pair of cells is smaller than the connection range
parameter r, the cells are randomly coupled to one another with a gap junction.
This manipulation was carried out for all pairs of cells to constitute the AII-
AC network. If r is small, the network might have only sparse connections such
that it is divided into disconnected subnetworks. As r is increased, each AII-AC
tends to have multiple connections with other AII-ACs, that is, the AII-ACs
would form a dense network.
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2.3 Model Simulation

Simulation was conducted with the NEURON simulator [8]. The simulation time
was 10000 ms. The hyperpolarizing condition was given at the latter half of the
simulation time (5000–10000 ms) following the control condition (no hyperpolar-
izing input current, 0–5000 ms). The parameters we set out to investigate were
the connection range parameter (r), gap junction conductance (g), and hyper-
polarizing input current (Iinput). The range of the parameters are r = 0 – 10, g
= 0.02 – 0.1 nS and Iinput = −0.12 – 0 pA.

The issues we looked to address are as follows:

– whether hyperpolarization of the AII-ACs induces a spontaneous oscillation,
and

– how the spontaneous oscillation of the AII-AC network depends on the con-
nection range parameter (r) and the gap junction conductance (g).
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Fig. 1. Locations of cells and connection patterns of the AII-AC network with gap
junctions. a. Locations of 20 AII-ACs on a 2D plane. Each cell (a red dot) was placed at
a grid point that was randomly sampled out of 10×10 = 100 grid points. b. Connection
patterns between the AII-ACs for different values of the connection range parameter r.
If a pair of cells fell within the distance r, the cells were randomly connected. A green
line indicates the gap connection between a pair of cells. b1. The connection pattern
for r = 3. b2. The connection pattern for r = 4. (Color figure online)

3 Results

An example of the network used in the present study is shown in (Fig. 1). As
shown in Fig. 1a, the locations of 20 AII-ACs were distributed uniformly, but
randomly. Figure 1b demonstrates the network connectivity for the connection
range parameter r = 3 and r = 4. Connections in the network with r = 3
(Fig. 1b1) were sparse; the AII-ACs were divided into isolated cells and some
clusters. On the other hand, if r was set to 4 (Fig. 1b2), almost all the cells were
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connected to the network, and each the cell had more collateral connections than
the r = 3 condition.

We conducted numerical simulations of the AII-AC network, varying the
potentially influential parameters. From time courses of the membrane potentials
in a steady state, we obtained amplitude signals from all the cells to determine
if the conditions defined by the set of parameters had induced an oscillatory
state. We found significant effects on the oscillatory state with three parameters:
hyperpolarizing input currents Iinput, the connection range parameter r, and the
conductance of gap junctions g. To examine the effect of one of the parameters,
we generally fixed the other parameters. We tried randomly generated different
network patterns and obtained similar dependences of results on each parameter
(data not shown).

3.1 Effect of Hyperpolarizing Input Currents

An example time course of the membrane potential of one of the AII-ACs is
illustrated in Fig. 2a. No input was applied from 0–5000 ms; then a constant
hyperpolarizing current with amplitude Iinput was applied to all of the cells.
As the current amplitude was increased, the spontaneous oscillations started,
and the amplitude of the oscillation was gradually increased. Hyperpolarization
brought about variability of resting membrane potentials due to different values
of the leak conductance. Consequently, the varied resting membrane potentials
initiated the oscillations through the effect of gap junctions and active channels.
However, the oscillation was suppressed under very strong hyperpolarizing cur-
rents (data not shown). This is presumably because excessive hyperpolarization
prevents Na+ channels from being activated, which is consistent with the result
in the previous study: blockade of Na+ channels could stop the oscillation [6].

In Fig. 2b, the results of varying the hyperpolarizing input current are sum-
marized: As the current gets stronger, it tends to enhance the spontaneous oscil-
lation.

3.2 Effect of Network Connectivity of the AII-AC Network

Next we varied the connection range parameter (r) to reveal the relation-
ship between network connectivity and generation of spontaneous oscillations.
Figure 3 depicts the dependence of the amplitude of oscillation on the connec-
tion range parameter. When the hyperpolarizing current was weak (Fig. 3a), only
AII-ACs in the r = 3 network model exhibited the oscillation; even so, the ampli-
tudes remained very small. With a stronger hyperpolarizing current (Fig. 3b),
the number of oscillating AII-ACs and the amplitudes of the oscillation were
greatly increased for the networks where r ≤ 4. In other words, even with a
high hyperpolarizing current, densely connected networks with r ≥ 5 failed to
generate spontaneous oscillation.
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Fig. 2. Effect of hyperpolarizing input currents on generation of the spontaneous oscil-
lation. The connection range parameter and the gap junction conductance were set to
r = 4 and g = 0.06 nS, respectively. a. Time courses of the membrane potential of
an AII-AC. Colors indicate different amplitudes of constant input currents. b. Depen-
dence of oscillation amplitudes on the intensity of the hyperpolarizing input currents.
An open circle illustrates an amplitude of an AII-AC whereas the error bars indicates
the standard deviations over 20 AII-ACs.
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Fig. 3. Impact of the connection range on the oscillatory activity. The figures are
similar to Fig. 2b except for the abscissa axis. The gap junction conductance was set
to g = 0.06 nS. a. Iinput set to −0.02 pA. b. Iinput set to −0.12 pA.

3.3 Role of Gap Junctions Between AII-ACs

We varied the gap junction conductance to verify its role (Fig. 4). The spon-
taneous oscillation occurred for most values of g except g = 0. The oscillation
amplitudes did not necessarily change systematically when the network connec-
tivity was set to r = 3 (Fig. 4a). In this case, the largest amplitude was observed
for g = 0.01 nS. In the case of the network with r = 4, shown in Fig. 4b, the
oscillation occurred only for g = 0.01 nS, suggesting that in a more dense net-
work, even slightly large gap junction conductances prevent the network from
generating spontaneous oscillations.
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Fig. 4. Effect of the gap junction conductance on the oscillatory activity. Iinput was
set to −0.02 pA. a. Connection range parameter set to r = 3. b. Connection range
parameter set to r = 4.

3.4 Dependence of the Frequency of the Parameters

Finally, we investigated what parameter determined the frequency of the oscilla-
tion (Fig. 5). The frequency only slightly changed depending on the connection
range (Fig. 5a) whereas the change in the gap junction conductance had more
effect on the frequency for this set of parameters (Fig. 5b). However, the fre-
quency was determined by combinations of several parameters on the AII-AC
network connectivity.

Fig. 5. Effect of the connection range and the gap junction conductance on the fre-
quency of the spontaneous oscillation. (Iinput = −0.12 pA). a. The dependence on the
connection range parameter. (g = 0.06 nS) b. The dependence on the gap junction
conductance. (r = 3)
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4 Discussion

Our results show that as the intensity of the hyperpolarizing input current was
increased, the number of oscillating neurons and the amplitude of the oscilla-
tion were increased, if the connection range parameter was set to specific values.
From the results, we conclude that the hyperpolarization of AII-ACs is likely to
trigger spontaneous oscillation. In addition, the connection range parameter has
a strong impact on whether the AII-AC network exhibited spontaneous oscilla-
tion or not. In our model, the network with r = 2 to r = 4 exhibited spontaneous
oscillation. Interaction by gap junctions was not strong for the network with a
small r, because the number of connections was too few. For larger r (r ≥ 5), the
connections by gap junctions were dense. The balancing effect by the dense gap
junctions was too strong to allow spontaneous oscillation. AII-ACs in the normal
retina surely form a gap junction network, and normally exhibit no oscillation.
This suggests that the degenerative mouse retina has a sparser AII-AC network
than the normal retina; in other words, that the connection range of the degen-
erative mouse retina is smaller than that of the normal retina. Except for the
network with r = 3, increased gap junction conductance tended to prevent the
AII-ACs from oscillating. This is presumably because the increased gap junction
conductance exerts a higher balancing effect to the membrane potentials between
cells. From our model, the spontaneous oscillation observed in the degenerative
mouse retina could be attributed to insufficient formation of the AII-AC net-
work, particularly the loss of AII-AC collaterals to other AII-ACs, with their
gap junctions and excitatory connections, stemming from the degeneration of
the photoreceptor cells.
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Abstract. In the cortex, spontaneous neuronal avalanches can be characterized
by spatiotemporal activity clusters with a cluster size distribution that follows a
power law with exponent –1.5. Recordings in the striatum revealed that striatal
activity was also characterized by spatiotemporal clusters that followed a power
law distribution albeit, with significantly steeper slope, i.e., they lacked the large
spatial clusters that are commonly expected for avalanche dynamics. In this study,
we used computational modeling to investigate the influence of intrastriatal inhib‐
ition and corticostriatal interplay as important factors to understand the experi‐
mental findings and overall information transmission among these circuits.

Keywords: Corticostriatal network · Neuronal avalanches · Striatum · Basal
ganglia · Cortex

1 Introduction

Neuronal avalanches are a type of spontaneous activity first detected in vitro by
recording local field potentials in cortical neural networks using slices of rat cortex as
well as cultured networks [1]. It was observed that the sizes of these events (clusters),
where the size was determined by the number of participating electrodes during each
single activity burst, were distributed according to a power law with a characteristic
exponent of –1.5. Power laws are ubiquitous in the brain on multiple scales, and this
phenomenon has also been linked to many complex systems in nature, such as earth‐
quakes, landslides, and forest fires [2].

Later on, neuronal avalanches have been shown to be the emerging dynamics at
which various measures important for cortical information processing are maximized,
such as dynamic range, burst pattern entropy and phase synchronization variability
[3–6]. Neuronal avalanches display long-term stability and diversity [7], and it has been
proposed that this type of activity reflects the transient formation of cell assemblies in
the cortex [8].

Cortical networks in vivo are heavily connected to striatum, main input stage of the
basal ganglia. The striatum is a recurrent inhibitory network, and how striatum responds
to cortical inputs has crucial importance for clarifying the overall functions of the basal
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ganglia. Our previous work revealed that striatal cluster size distributions were charac‐
terized by strongly reduced spatial correlations when compared to the cortex, and we
also showed that one particularly high activation threshold of striatal nodes can repro‐
duce power law-like distribution with a coefficient similar to the one found experimen‐
tally [9]. In this research, we extend our model in order to explore the role of intrastriatal
inhibition, different activation thresholds, and increased cortical activity in shaping
striatal responses to cortical neuronal avalanches. We tested different activation proba‐
bilities for the striatal nodes, from linear to highly skewed, and observed that the striatal
network has to have an internal representation of the structure in the input space in order
to reproduce the experimental results. By changing the ratio of excitation and inhibition
in our cortical model, we saw that increased activity in the cortex strongly influenced
striatal dynamics, which was reflected in a less negative slope of cluster size distributions
in the striatum and increased firing of striatal nodes. Lastly, when we added inhibition
to our model, cluster size distributions had a prominently earlier deviation from the
power law distribution (lower probability for large events) compared to the case when
inhibition was not present. Further, intrastriatal inhibition shapes striatal distribution by
reducing the firing rate and duration of clusters.

2 Methods

2.1 Corticostriatal Network Model

First, we developed an abstract cortical model that reproduces statistics observed in
experimental data [1, 3]. We set average connectivity between the N (N = 30; corre‐
sponding to the number of recording sites in experiments) cortical nodes to be 10 as
suggested by the experimental data [3], and then applied the preferential attachment rule,
where each node was attached to other nodes in proportion to the designated out-degrees
of those nodes. In this way, we acquired a node degree linearly related to the average
node strength for in and out degrees. Experimental data revealed that the weight distri‐
bution of the links has an exponentially decaying tail, demonstrating the presence of a
few links with large traffic [3], thus we picked transmission probabilities pij (from node
j to node i) from exponential distributions. In our model, there were neither any self-
connections nor more than one connection between attached pairs. We scaled the
weights, so the branching parameter σ (the average number of nodes activated in the
next time step, given a single node being active in the current time step) for the entire
network was set to 1:

(1)

The probability that node i fired (reached the activation threshold) at time t + 1 was
equal to:
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(2)

where J(t) was the set of nodes that fired at time t. Only if piJ > ϵ, where ϵ was a random
number from a uniform distribution on [0, 1], node i fired in the next time step. Each of
the N nodes in the striatum was randomly connected with a certain number of nodes in
the cortex. We systematically varied the number of connections (Nk) between the cortex
and striatum, assumed to be needed for evoking activity in the striatal nodes, in order to
check how it influenced the observed striatal statistic. In the striatum, we had all-to-all
or locally coupled nodes (without self-connections) where transmission probabilities
psij (from node j to node i) were randomly chosen from uniform distribution and were
than scaled, so the striatal parameter σ1 (where σ1 ≤ 0) for the entire network could be
tested for different values:

(3)

The probability that node i in the striatum fired at time t + 1 was equal to:

(4)

where i = 1,.., N. Node i fired at time t + 1 only if Pi(t + 1) > ϵ1 (ϵ1 was also a random
number from a uniform distribution on [0, 1]). Excitation was equal to 1 if the full pattern
in the cortex assigned to node i was present; in the case of an uncompleted pattern, it
was set to be very low (< 0.005). Probability of inhibition for node i was equal to:

(5)

and Js(t) was the set of striatal nodes that fired at time t.
We elicited population events by randomly choosing and triggering a single node in

the cortex while simultaneously collecting resulting activity in the cortex and striatum
(this procedure was repeated 30,000 times for each trial).

2.2 Data Analysis

Power law exponents were estimated using the Kolmogorov-Smirnov (KS) statistic [10].
In cortical networks, the cut-off is typically at the system size, which is given by the
number of electrodes in the cortical array [11]. Thus, cortical event size distributions
were fitted on the range from 1 to the number of electrodes in the cortical array [9]. In
most cases, striatal cluster sizes did not extend to the system size, in which case cluster
size distributions were fitted from 1 to the maximum cluster size.

The KS test was used to determine whether the power law or exponential distribution
was fitting the data better. Specifically, the distribution with the smallest KS distance
between the model fit and data was considered the better fit.
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We additionally estimated the degree of correlation between each pair of nodes with
the Jaccard correlation coefficient, which shows the degree to which the positive events
co-occur.

All values are expressed as mean ± standard error if not stated otherwise.

3 Results

We developed an abstract model of the corticostriatal network to investigate whether
experimental findings regarding striatal processing of cortical avalanches can be
explained by corticostriatal interactions and/or intrastriatal inhibition. First, we wanted
to see how the sole connectivity pattern between cortex and striatum influences the
observed dynamics by giving different activation probabilities to striatal nodes as a
function of cortical activity. We did that by varying the number of cortical nodes (Nk)
assigned to each striatal node. Simultaneously recorded activity in the cortex and
striatum produced by the model has generally shown substantially more sparse activity
in the striatum compared to the cortex (Fig. 1a). Similarly, experimental data have also
revealed that the number of significantly negative local field potential (LFP) peaks was
also much higher in the case of cortical LFP traces [9]. Thus, we set firing of these (Nk)
cortical nodes as a precondition for the striatal node to fire, and in this way we obtained
different activation probabilities for the striatal nodes, from linear to highly skewed
(Fig. 1b). By increasing the number of cortical nodes assigned to each striatal node, we
observed more negative estimations of the power law exponent (α) in the striatum
(Fig. 1c and d). Under the assumption of a low activation threshold of striatal nodes
(Nk = 2), the recorded distribution in the striatum was similar to the one found in the
cortex. Specifically, under the assumption of a particular high activation threshold of
striatal nodes (Nk = 4), we can reproduce power law-like distributions with a coefficient
similar to the one found experimentally (Fig. 1e, upper plot, p < 0.01). The obtained
distributions were also much more in favor of power law distributions compared to the
exponential one (Fig. 1e, lower plot). Furthermore, average pairwise correlation was
considerably higher in the cortex compared to the corticostriatal activity (Fig. 1f).

In order to investigate how additional striatal inhibition shapes observed striatal
dynamics, we systematically varied the striatal parameter (σ1) in our computational
model. The value of σ1 defines the probability of striatal nodes to be inhibited in the next
time step by a single currently active presynaptic striatal node. We investigated two
different striatal network topologies. In the first, the nodes were connected in an all-to-
all fashion (Fig. 2a, left panel). The second network topology comprised nodes that were
connected on a two-dimensional lattice with a nearest neighbor connectivity (four
neighbors; Fig. 2a, right panel). Striatal nodes in this case were connected as a torus in
order to avoid dissipation of activity due to border effects, and the connectivity strength
between nodes was equal to σ1/4. When inhibitory connections were imposed, cluster
size distributions had a slightly decreased likelihood of occurrence of small events, but
the decrease in the likelihood of medium and especially large events was prominent
compared to the case when inhibition was not present. Kolmogorov-Smirnov statistics
showed that power law distribution after introducing inhibition in the model became
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steeper (–3.22 ± 0.36, p < 0.01, σ1 = –4) compared to the control case without inhibition
(–2.94 ± 0.27, Fig. 2b, upper plot). Inhibition also reduced the firing rate as well as
duration of avalanches in the striatum (Fig. 2b, lower plot, p < 0.05).

Fig. 1. Influence of activation threshold on striatal dynamics. (a) Raster of activity in the cortex
and striatum produced by the model. (b) Probability of activation for striatal node depending on
the number of randomly activated cortical nodes. (c) Cluster size distributions in the striatum for
multiple runs. Black line indicates a power law with α = –1.5 for comparison. (d) Average cluster
size distributions in the striatum (averaged over 50 trials, Nk = 4). (e) Average power law exponent
for cortex and striatal distribution given in (d) (Kolmogorov-Smirnov statistics, upper plot) and
Kolmogorov-Smirnov distance for striatum (D, lower plot). (f) Average pairwise correlation in
cortex and between cortex and striatum (Nk = 4).

Fig. 2. Influence of intrastriatal inhibition on striatal dynamics. (a) Influence of intrastriatal
inhibition on cluster size distributions in the striatum in the case of all-to-all (left panel) or local
(right panel) connectivity in the striatum (50 trials, constant corticostriatal connectivity, Nk = 4,
assumed). (b) Comparison between average power law exponent values (Kolmogorov-Smirnov
statistics, upper plot) and firing and duration counts (lower plot) in the striatum in the case when
inhibition is present (σ1 = –4) and in the case without inhibition.
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By changing the ratio of excitation and inhibition in our cortical model (σ), we
wanted to test the influence of increased cortical activity on striatal dynamics. For σ < 1
an activated node triggers activity in less than one node, on average, resulting in a hypo‐
excitable state. For σ > 1, a node activates, on average, more than one node in the next
time step, resulting in a hyperexcitable condition. When the system was hyperexcitable
and inhibitory synaptic transmission was reduced, distribution had an increased likeli‐
hood for large activity clusters. Increased activity in the cortex influenced strongly
striatal dynamics, which was reflected in a less negative slope of cluster size distributions
in the striatum and increased firing of striatal nodes. We tested different values of the
branching parameter in the cortex for two scenarios, without inhibition and with inhib‐
ition in the striatum (Fig. 3a). We observed in both cases that by increasing the value of
σ, cluster size distributions in the striatum started to approach the power law distribution
found in the cortex under normal conditions. Specifically, for a branching parameter in
the cortex higher than 1.25, we observed a distribution in the striatum very similar to
the one found in the cortex in the case of a balanced network (σ = 1, Fig. 3b).

Fig. 3. Influence of input correlations on striatal dynamics. (a) Cluster size distributions in the
striatum with and without intrastriatal inhibition for different values of excitation (σ) in the cortex
(σ1 = –4, Nk = 4). (b) Comparison between average power law exponent values (Kolmogorov-
Smirnov statistics, upper plot) and firing counts (lower plot) for striatal distributions given in (a)
for different values of excitation (σ) in the cortex.

4 Discussion

Medium spiny projection neurons (MSNs) are the dominant neuron type in the striatum,
and they also have membrane properties that give them a high threshold for activation.
A single striatal MSN receives input from more than 5,000 cortical neurons, which
represent a massive convergence of cortical inputs [12]. Striatal MSNs tend to remain
in a stabilized, silent state, except when they receive strong excitatory input. We have
tested different connectivity patterns between cortex and striatum, from linear to those
with a high threshold for activation of striatal nodes, in order to reproduce experimental
data. Specifically, under the assumption of a particular high activation threshold of
striatal nodes, we can reproduce power law-like distributions with a coefficient similar
to the one found experimentally. How information is transferred among the circuits in
the cortex and striatum has been unanswered, but our results suggest that the striatal
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network has to have an internal representation of the structure in the input space. Dimen‐
sionality reduction in the nervous system can be depicted as compression of the infor‐
mation encoded by a large neuronal population to a smaller number of neurons, and the
number of corticostriatal neurons exceeds the number of striatal neurons by a factor of
10 [12]. This process is extremely useful, because it allows the transmission of a large
amount of information within a limited number of axons. Other models have also
assumed that the striatum performs dimensionality reduction and decorrelation of cort‐
ical information [13, 14]. In those models, lateral connections were only needed during
the learning phase and become weak after a representation of the input statistics. Thus,
striatum might be able to extract the correlation structure of high-dimensional cortical
states after the network has achieved an internal representation of the cortical space.

There are at least two inhibitory circuits in the striatum that are activated by cortical
inputs and which control firing in MSNs. The first is feedforward inhibition via the small
population of fast spiking interneurons (FSIs), and the second is feedback inhibition
from the axon collaterals of the MSNs themselves [15]. When we added inhibition to
our model, cluster size distributions had a prominently earlier deviation from the power
law distribution (lower probability for large events) compared to the case when inhibi‐
tion was not present. The same statistics were observed in the case of globally as well
as locally applied inhibition. Further, intrastriatal inhibition shapes striatal activity by
decorrelating the output rate across striatal nodes as well as between cortical and striatal
nodes, and this was reflected in reduced firing rate and duration of clusters.
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Abstract. A crucial challenge for both clinical and systems neuro-
science is reliable mapping of brain networks to higher-order cognitive
functions in both health and disease. In this paper, we map the brain’s
emerging language network in the human connectome based on data from
rTMS studies on healthy volunteers as well as brain tumor patients. The
key finding is that cortical areas which are involved in the language net-
work are more likely to be connected to Wernicke’s and Broca’s areas
based on standard graph theoretic measures. In addition, the higher the
connectivity of a particular area to the classic language areas, the more
likely it is that region is involved in the language network. We comment
on the clinical value that these structure-function connectome maps can
have for planning and aiding neurosurgical procedures.

Keywords: Brain mapping · Connectomics · Neurosurgery

1 Introduction

In neurosurgery, eloquent cortex refers to the cortical area that is indispensable
for a given function, such as language [18]. When a brain tumor occurs near
language cortical areas, great care must be taken by the neurosurgical team
to maximize the extent of the resection while avoiding any functional deficits.
Localizing the areas of eloquent cortex is generally done presurgically or intra-
operatively, utilizing methods such as Cortical Stimulation Mapping (CSM),
functional Magnetic Resonance Imaging (fMRI), and repetitive navigated Tran-
scranial Magnetic Stimulation (rTMS). While CSM remains the gold standard
for peritumoral mapping, rTMS is gaining increasing importance in presurgical
language mapping [15,17].

Evaluating eloquent cortex in regards to language function is particularly
challenging due to a number of factors: (1) there is an extensive network of corti-
cal areas which are involved in language, (2) there is considerable inter-individual
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variation of the language network, and (3) any brain pathology, such as tumors,
can lead to extensive reorganization of the language network [19]. While it is
currently well-accepted that language processing in the brain is supported by
an extensive network of many different regions [11], the traditional 19th cen-
tury anatomical-based model of language still persists today. This model, which
describes Wernicke’s area as important for language comprehension and Broca’s
area as important for language production is the classic model still taught in
medical schools and neurology textbooks [10]. We were interested in exploring
a connection between the modern emerging language network and these classic
anatomical areas.

In the context of the language network, positive brain regions were defined as
those giving rise to any type of language error when that region was stimulated
by TMS, and negative brain regions were defined as those that did not give rise
to any language deficit when stimulated [15]. We hypothesized that (1) positive
brain regions were more likely to be connected to Wernicke’s and Broca’s areas
than negative brain regions, and that (2) the higher the induced language error
rate in a given positive brain region, the more strongly connected that cortical
area would be to Wernicke’s and Broca’s areas.

2 Methods

In order to explore the connectivity between the language network and the clas-
sic language areas, we utilized the functionality of BrainX3 [2–4]. BrainX3 is a
large-scale simulation of the human brain with real-time interaction, rendered in
3D in a virtual reality environment [5–7,16]. BrainX3 incorporates a large-scale
simulation of the human connectome, grounded on structural connectivity data
obtained from diffusion spectrum imaging [12].

2.1 rTMS Mapping

The cortical distribution of language areas in healthy subjects and brain tumor
patients was based on the experiments done by Krieg et al. [15] and Rosler
et al. [19], respectively. Repetitive navigated TMS was performed on 50 right-
handed monolingual healthy volunteers and 50 right-handed patients with left-
sided gliomas in the vicinity of language-eloquent areas. Healthy subjects under-
went rTMS of the left hemisphere and Brain Tumor patients underwent rTMS of
both hemispheres while performing an object-naming task provided by the Nexs-
tim NexSpeech module. Frequency maps of elicited errors were created based on
the Cortical Parcellation System, which parcellates the cortex into 37 anatomical
areas bilaterally, making a total of 74 total cortical areas [9].

2.2 Efferent Mapping

Through Efferent Mapping, BrainX3 allows the user to select the specific nodes
making up the cortical regions in question and map the projections from those
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nodes to all other connected nodes. Figure 1 shows an example of efferent map-
ping from representative nodes within the language network of healthy individ-
uals. All nodes, parcellated by the 74 areas were selected in a semi-automatic
fashion, and the connected nodes and connection weights were outputted.

Fig. 1. Efferent mapping in BrainX3. Connectome projections highlighted from repre-
sentative points within regions with > 25 % naming errors in healthy subjects.

2.3 Data Analysis

We analyzed the zone-zone connectivity from all 74 areas to Wernicke’s and
Broca’s areas individually, as well as to Wernicke’s or Broca’s area collectively.
Zone-zone connectivity was measured by three standard measures, shown in
Eqs. 1 to 3 below [14].

CACS
Zone(Ai, Aj) =

∑
∀rm∈Ns

i

ζrm +
∑

∀rn∈Ns
j

ζrn (1)

CACD
Zone (Ai, Aj) =

CACS
Zone(Ai, Aj)
|Ns

i | + |Ns
j |

(2)

CACP
Zone(Ai, Aj) = max

(
max

∀rm∈Ns
i

ζrm , max
∀rn∈Ns

j

ζrn

)
(3)

Anatomical Connection Strength (ACS)is related to the cross sectional area
of the fiber bundle connecting the two zones. Anatomical Connection Density
(ACD) is a measure of the fraction of the surface area involved in the connection
with respect to the total surface of both areas. Anatomical Connection Proba-
bility (ACP) is a measure of the probability of the two areas being connected at
least by a single connection [14]. One-tailed T-tests were performed to compare
the zone-zone connectivity from positive vs. negative brain regions to classic
language areas along all 3 measures in order to test hypothesis 1. In order to
test hypothesis 2, linear regressions were performed for all positive brain regions
to compare their zone-zone connectivity to classic language areas vs. their error
rate, defined as the percentage of all stimulations in that area that produced any
kind of language error [19].
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3 Results

3.1 The Language Connectome

Figure 2 demonstrates the Language Connectome in healthy subjects and
patients with left-sided gliomas. Only nodes within positive brain regions were
included, and only connections between included nodes are displayed. In recon-
ciling rTMS language mapping with large-scale connectomics, we found that the
language network spans across the frontal, temporal, and parietal lobes, wherein
the classic language areas are major hubs. In addition, as it is well-documented
in the literature [20], the left hemisphere is dominant for language in the vast
majority of right-handed healthy individuals. Furthermore, it has also been well
documented that patients with left-sided brain pathologies are more likely to
have atypical language networks, and indeed to have functional language reor-
ganization bilaterally due to plasticity, as seen in the bilateral distribution of
nodes and connections in the brain tumor language connectome [1,13,19].

Fig. 2. The Language Connectome in Healthy Subjects (A, B) and Brain Tumor
Patients (C, D). The number of nodes and connections within the left hemisphere
of the healthy language connectome (A) is 169 and 3690, respectively. Right Healthy
(B): 35, 280. Left Brain Tumor (C): 196, 4750. Right Brain Tumor (D): 197, 4750.
Total available nodes and connections within the human connectome: 998 and 14,000.

3.2 Zone-Zone Connectivity from Modern Language Network
to Classic Language Areas

Figures 3 and 4 target our first hypothesis. When viewed as connectivity to
Wernicke’s or Broca’s area individually, positive brain regions in general have
higher connectivity to the classic language areas with some exceptions. When
analyzed as connectivity to either Wernicke’s or Broca’s area, positive brain
regions always had significantly higher zone-zone connectivity to the classic lan-
guage areas as compared with negative language areas, which was in line with
our hypothesis. We interpret the higher statistical significance when connectivity
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Fig. 3. A-C. One-tailed T-tests of positive vs. negative left hemisphere brain regions
in zone-zone connectivity measures ACS, ACD, and ACP to unilateral Wernicke’s
and Broca’s areas individually in healthy subjects. D-F. One-tailed T-tests of positive
vs. negative left-sided brain regions in zone-zone connectivity measures to unilateral
Wernicke’s or Broca’s areas collectively. P-values: A. p = .023, p = .110 B. p = .030,
p = .148 C. p = .142, p = .049 D. p = .002 E. p = .004 F. p = .016

Fig. 4. A-C. One-tailed T-tests of positive vs. negative right hemisphere brain regions
in zone-zone connectivity measures ACS, ACD, and ACP to unilateral Wernicke’s and
Broca’s Areas individually in brain tumor patients. D-F. One-tailed T-tests of positive
vs. negative right-sided brain regions in zone-zone connectivity measures to unilateral
Wernicke’s or Broca’s areas collectively. P-values: A. p = .017, p = .003 B. p = .021,
p = .006 C. p = .070, p = .004 D. p = .001 E. p = .004 F. p = .004

to either classic area is analyzed to be due to the fact that the object-naming
task engages all three major language production functions: meaning, form, and
articulation [15]. Figure 5 targets our second hypothesis, proving that there are
graph theoretic measures of zone-zone connectivity to the classic language areas
which correlate with rTMS-induced naming error rates, in health as well as in
disease.
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Fig. 5. Linear Regression models of positive brain regions Zone-Zone connectivity to
classic language areas vs. all naming error percentage when that region is TMS stimu-
lated. Each point on the graph represents a positive language area A. ACP to Broca’s
area in the left hemisphere of healthy subjects. B. ACS to Broca’s area in the right
hemisphere of brain tumor patients. C. ACD to Broca’s area in the right hemisphere
of brain tumor patients.

4 Discussion

In this paper, we have presented a novel method to aid in non-invasive language
function localization. It is becoming more and more apparent that language
functional organization in the cortex must be viewed as a large network of cortical
areas which contribute to language function to different degrees. However, in
clinical practice, neurosurgical patients with tumors near the classic language
areas are thought to be at risk of damaging language function during surgery.
In this paper, we investigated the connectivity between the language network
and the classic language areas. We determined that language-positive regions are
significantly more likely to be connected to Wernicke’s or Broca’s area both in the
dominant left hemisphere in healthy subjects as well as in the expanded language
network involving the right hemisphere in brain tumor patients. Furthermore, we
have shown that regions with higher connectivity to the classic language areas
also produce a higher language error rate when stimulated by rTMS.

We interpret this finding as meaning that the more connected a particular
area is to the classic language areas, the more likely it is that area is involved
within the language network. This means that it is possible to predict the likeli-
hood that a particular area is involved in the language network simply by ana-
lyzing it’s zone-zone connectivity to the classic language areas. Although TMS is
a very powerful tool, it has its limitations: it is impossible to determine exactly
how much cortical area is affected with each TMS pulse, and only surface struc-
tures of the brain are accessible with TMS [8]. By building language networks
within the connectome, it may be possible to predict areas that are involved
in language function without relying on TMS. Prediction of language-involved
cortex is very important, as it guides the surgeon in managing the risks involved
in the surgery and accurately counseling the patient on those risks. The method
of analysis presented in this paper can contribute to this prediction effort and
aid in the introduction of connectomics to the clinical practice of neurosurgery.
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Abstract. To understand information processing in the brain, it is
important to clarify the neural network topology. We have already pro-
posed the method of estimating neural network topology only from
observed multiple spike sequences by quantifying distance between spike
sequences. To quantify distance between spike sequences, the spike time
metric was used in the conventional method. However, the spike time
metric involves a parameter. Then, we have to set an optimal parame-
ter in the spike time metric. In this paper, we used the SPIKE-distance
instead of the spike time metric and applied a partialization analysis
to the SPIKE-distance. The SPIKE-distance is a parameter-free mea-
sure which can quantify the distance between spike sequences. Using
the SPIKE-distance, we estimate the network topology. As a result,
the proposed method exhibits higher performance than the conventional
method.

Keywords: Partialization analysis · SPIKE-distance · Neural network
structure · Connectivity · Spike sequence

1 Introduction

In neural networks, neurons interact with other neurons, then very complicated
behavior is often observed. To analyze, modelize, or predict such complicated
behavior, it is important to understand the connectivity between neurons as
well as the dynamics. Recent advances in measurement techniques make it pos-
sible to observe multiple spike sequences. Although many methods of estimating
network structures for smooth and continuous time series have been proposed
[1–4], spike sequences are discrete and discontinuous time series. Then, it is
not straightforward to apply conventional measures to spike sequences, and it
is important to develop a method of estimating connectivity between neurons
from multiple spike sequences.

To resolve this issue, we have already proposed an estimation method of
network structure only from observed multiple spike sequences [5,6]. In these
method, we measured a distance between spike sequences by using the spike
time metric which is proposed by Victor and Purpula [7]. The spike time metric

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 91–98, 2016.
DOI: 10.1007/978-3-319-44778-0 11



92 K. Kuroda and M. Hasegawa

involves a parameter that sets the timescale. Therefore, we have to decide an
optimal parameter value. Although we have proposed the method of how to
decide the parameter [6], it is a heuristic method. In this paper, we use another
measure the SPIKE-distance [8] instead of the spike time metric. The SPIKE-
distance is a parameter-free measure which can quantify the distance between
spike sequences [8].

At the same time, we cannot estimate the neural network topology only
from the distance information because of the spurious correlation. To remove
the spurious correlation, the partialization analysis is effective. Then, in the
proposed method, we apply the partialization analysis to the SPIKE-distance.

To check the validity of the proposed method, we apply the proposed method
to the observed multiple spike sequences from a mathematical neuron model. In
numerical simulations, we show that the proposed method can estimate the
neural network topology with higher estimation accuracy than the conventional
method.

2 SPIKE-distance

SPIKE-distance is a parameter-free measure which can quantify distance
between spike sequences [8]. Let us denote the kth spike timing in the ith spike
sequence as t

(i)
k . We also denote the time of the preceding spikes as

t
(i)
P (t) = max

k
(t(i)k | t

(i)
k ≤ t), (1)

and the time of the following spikes as

t
(i)
F (t) = min

k
(t(i)k | t

(i)
k > t), (2)

and the instantaneous interspike interval as

x
(i)
ISI(t) = t

(i)
F (t) − t

(i)
P (t). (3)

We denote the instantaneous absolute differences of preceding and following
spike times between the ith spike sequence and the jth spike sequence as

Δt
(i)
P (t) = min

k
(| t

(i)
P (t) − t

(j)
k |) (4)

and

Δt
(i)
F (t) = min

k
(| t

(i)
F (t) − t

(j)
k |) (5)

respectively. We denote the intervals to the previous and the following spikes for
the ith spike sequence as

x
(i)
P (t) = t − t

(i)
P (t) (6)
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and

x
(i)
F (t) = t

(i)
F (t) − t. (7)

The weighted distance for the spike time differences of the ith spike sequence
reads

Si(t) =
Δt

(i)
P (t)x(i)

F (t) + Δt
(i)
F (t)x(i)

P (t)

x
(i)
ISI(t)

, (8)

and similarly Sj(t) is obtained for the jth spike sequence. Then, these local
distances are weighted by the local interspike intervals and normalized by the
mean interspike interval. This yields

Sij(t) =
Si(t)x

(j)
ISI(t) + Sj(t)x

(i)
ISI(t)

2〈x(n)
ISI (t)〉2n

, (9)

where 〈x(n)
ISI (t)〉n = 1

2 (x(i)
ISI(t) + x

(j)
ISI(t)). Finally, integrating over time leads to

the distance between spike sequences i and j

Dij =
1
T

∫ T

0

Sij(t)dt, (10)

where T denotes the duration of the spike sequences. The SPIKE-distance Dij

takes a value between 0 and 1. If Dij takes zero, the ith and jth spike sequences
are identical spike sequences.
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Fig. 1. Illustration of the SPIKE-distance. The definitions of interspike-intervals and
time differences required for the calculation of the SPIKE-distance.

3 Partialization Analysis

To estimate the connectivity between neurons from spike sequences, we quantify
the distance between two spike sequences. However, we cannot estimate the
connectivity between neurons because of the spurious correlation.
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For example, if two neurons, i and j, are not coupled, the distance between
two spike sequences is close to one because these spike sequences are very dif-
ferent. However, if two neurons are driven by a common input, or indirectly
connected but not directly connected, their spike sequences can have spurious
correlation. To remove such a common influence, the partialization analysis is
effective.

The most general measure in the partialization analysis is the partial corre-
lation coefficient. The partial correlation coefficient can be calculated by using
elements of the inverse matrix of the correlation matrix.

To apply the partialization analysis to the SPIKE-distance, the SPIKE-
distance coefficient is defined as

Cij = 1 − Dij . (11)

Cij is similar to the correlation coefficient. It takes a value between 0 and 1. If
ith and jth spike sequences are same, Cij takes a value of one, otherwise, Cij is
close to zero.

However, it can be spuriously biased if the two neurons are driven by a
common input from other neurons. To avoid such a bias, as in the case of deriv-
ing a partial correlation coefficient from the correlation coefficient, the partial
SPIKE-distance coefficient (PSDC) between the ith and jth spike sequences is
defined as

Pij =
∣∣∣∣

α(i, j)√
α(i, i)α(j, j)

∣∣∣∣,

where α(i, j) is the (i, j)th entry of the inverse matrix of Cij . The PSDC can
reveal the unbiased correlation between the two spike sequences by removing
any spurious correlation as the partialization analysis does. In other words, the
PSDC works as a partial correlation coefficient between the two spike sequences
based on the SPIKE-distance. Using the PSDC, we can find hidden relations
between neurons and estimate the network structure.

4 Simulation

To evaluate the proposed method, we use a neural network constructed from
a mathematical model, or the Izhikevich simple neuron model [9]. We gener-
ated multiple spike sequences using the Izhikevich simple neuron model. The
dynamics of the ith neuron in the neural network is described by the following
equations:

v̇i = 0.04v2
i + 5vi + 140 − ui + Ii,

u̇i = ai(bivi − ui), (12)

if vi ≥ 30[mV], then
{

vi ← ci,
ui ← ui + di,
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where vi is the membrane potential, ui is the membrane recovery variable and
ai, bi, ci and di are dimensionless parameters. We set ai = 0.02, bi = 0.2, ci =
−65+15r2i , and di = 8−6r2i where ri is uniform random numbers between [0, 1].
The network is heterogeneous; the neurons are regular spiking (RS), intrinsically
bursting (IB), and chattering (CH) neurons. The variable Ii is the sum of the
external and synaptic inputs from coupled neurons. The synaptic weight is set
to six and the amplitude of the external inputs to five times G, where G is a
Gaussian random number with a mean value and standard deviation of zero and
unity, respectively. The neurons are mutually connected. We set delays between
neurons to 2[ms] to 4[ms] randomly. For the sake of simplicity, the neural network
is composed of only excitatory neurons.

We conducted numerical experiments according to the following procedures.
First, we constructed the neural network whose elements are the Izhikevich sim-
ple neuron model (Eq. (12)), and observed multiple spike sequences. We gener-
ated a ring lattice network structure in which the number of edges is four. Then,
the distance Dij between spike sequences was calculated by using the SPIKE-
distance. Next, we applied the partial SPIKE-distance coefficient to the observed
multi spike sequences. If two neurons are coupled, Pij might be large, otherwise it
might be small. We calculated a threshold dividing the coupled or the uncoupled
pairs. The threshold was decided by the Otsu thresholding [10] which is based on
a linear discriminant analysis. We constructed an estimated network structure
whether the values of Pij take over the threshold or not. Finally, to confirm the
estimation accuracy, we compared the structure of an estimated network with
that of the original network. We used an index defined by

E =

N∑
i,j=1

(βij β̃ij + (1 − βij)(1 − β̃ij))

N(N − 1)
, (13)

where βij and β̃ij are the (i, j)th element of the adjacency matrix of the original
and the estimated network structure, respectively. If the ith and jth neurons are
coupled, βij and β̃ij take unity. If they are not coupled, βij and β̃ij take zero. If
E is close to unity, our method estimates the original network structure well.

5 Results

We compared the proposed method which uses the SPIKE-distance and the
conventional method [6] which uses the spike time metric as the distance between
spike sequences. Figure 2 shows the estimation accuracy E when the network size
is changed. In the conventional method, the variance of E bocomes large as the
network size become large. However, the estimation accuracy E in the proposed
method is higher than the conventional method and variance of E is small for
all network sizes.

Further, we investigated the estimation accuracy when the coupling strength
is changed. The results are shown in Fig. 3. When the coupling strength is 4,
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Fig. 2. Estimation accuracy of the network structure for several network sizes. We set
the coupling strength is 6, and the temporal epoch is 50[s]. The solid line indicates the
proposed method, and the dashed line indicates the conventional method. Error bars
indicate minimum and maximum values with 10 trials.
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Fig. 3. Estimation accuracy of the network structure for several coupling strength. We
set the network size is 100, and the temporal epoch is 50[s]. The solid line indicates the
proposed method, and the dashed line indicates the conventional method. Error bars
indicate minimum and maximum values with 10 trials.

the estimation accuracy E in the proposed method is lower than the conventional
method. However, when the coupling strength is stronger than 6, the proposed
method shows higher estimation accuracy than the conventional method.

We also examined how the estimation accuracy depends on the temporal
epoch for observed spikes. The results are shown in Fig. 4. The estimation accu-
racy in both methods is close to unity as the temporal epoch is long. When the
temporal epoch is 30[s], both methods exhibit almost same estimation accuracy.
However, when the temporal epoch is longer than 30[s], the proposed method
shows higher estimation accuracy than the conventional method.
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set the network size is 100, and the coupling strength is 6. The solid line indicates the
proposed method, and the dashed line indicates the conventional method. Error bars
indicate minimum and maximum values with 10 trials.

From the results, the proposed method exhibits very high estimation accuracy
under certain conditions.

6 Conclusion

In this paper, we proposed a new method for estimating networ topology only
from observed multiple spike sequences by using SPIKE-distance. In the con-
ventional method, the spike time metric which involves a parameter is used
for quantifying the distance between spike sequences, and we have to set the
parameter in the spike time metric. Although we have proposed the method of
how to decide the parameter, the decided parameter is almost appropriate but
not optimal. Then, in the proposed method, we used the SPIKE-distance which
is a parameter free measure for quantifying distance between spike sequences
and applied the partialization analysis to the SPIKE-distance. As a result, the
proposed method exhibits higher performance than the conventional method.

The research of KK was partially supported by Grant-in-Aid for Young
Scientists (B) (No. 15K21232).
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Abstract. The evolution of a simulated feed-forward neural network
with recurrent excitatory connections and inhibitory forward connec-
tions is studied within the framework of algebraic topology. The dynam-
ics includes pruning and strengthening of the excitatory connections. The
invariants that we define are based on the connectivity structure of the
underlying graph and its directed clique complex. The computation of
this complex and of its Euler characteristic are related with the dynam-
ical evolution of the network. As the network evolves dynamically, its
network topology changes because of the pruning and strengthening of
the onnections and algebraic topological invariants can be computed at
different time steps providing a description of the process. We observe
that the initial values of the topological invariant computed on the net-
work before it evolves can predict the intensity of the activity.

Keywords: Graph theory · Network invariant · Directed clique com-
plex · Recurrent neural dynamics · Synfire chain · Synaptic plasticity

1 Introduction

A network is a set of nodes satisfying precise properties of connectedness. This
description allows the construction of topological spaces that can be studied
with the tools of algebraic topology. Network theory aims to understand and
describe the shape and the structure of networks, and the application of the
tools developed within the framework of algebraic topology can provide new
insights of network properties in several research fields.

The directed clique complex [6,13] is a rigorous way to encode the topological
features of a network in the mathematical framework of a simplicial complex,
allowing the construction of simple invariants such as the Euler characteristic
and the Betti numbers and to make the constructions of persistent homology.
These constructions have been applied successfully to the field of data science
[4], proving to be a powerful tool to understand the inner structure of a data
set by representing it as a sequence of topological spaces, and more recently to
neuroscience [6,8,13,14].

c© Springer International Publishing Switzerland 2016
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In an evolving network, each node is represented by a unit whose activity
is necessarily related to a set of precise rules defining the combined activity
of the afferent nodes transmitted by the connecting edges. Re-entrant activity
occurs in the presence of reciprocal connections between certain nodes. Selected
pathways through the network may emerge because of dynamical processes that
shape selected activity-dependent connection pruning. Hence, network topol-
ogy and dynamics combine and play a crucial role in defining the evolution
of a network [7]. In a previous study we introduced topological invariants [13]
and suggested their application to integrate-and-fire recurrent neural networks
with convergent/divergent layered structure [2] with an embedded dynamics of
synaptic plasticity. Spontaneous development of synchronous layer activation in
a self-organizing recurrent neural network model that combines a number of dif-
ferent plasticity mechanisms has been described [20]. However, the question to
what extent the initial network topology can be predictive of the evolved circuit
remains to be further investigated.

The current study extends further our previous investigation [13] because
global background activity is introduced and inhibitory connections have now
been included in the network. The results provide new evidence that the topo-
logical invariants presented here offer as a valid descriptor for predicting how a
network may evolve under the effect of pruning dynamics. The family of network
studied here represents an important step towards the direction of a simulation
with more refined biologically-inspired models.

2 Methods

2.1 Graphs, Clique Complexes and Topological Invariants

An abstract oriented simplicial complex K [9] is the data of a set K0 of vertices
and sets Kn of lists σ = (x0, . . . , xn) of elements of K0 (called n-simplices),
for n ≥ 1, with the property that, if σ = (x0, . . . , xn) belongs to Kn, then any
sublist (xi0 , . . . , xik) of σ belongs to Kk. The sublists of σ are called faces.

We consider a finite directed weighted graph G = (V,E) with vertex set V
and edge set E with no self-loops and no double edges, and denote with N the
cardinality of V . Associated to G, we can construct its (directed) clique complex
K(G), which is the directed simplicial complex given by K(G)0 = V and

K(G)n = {(v0, . . . , vn) : (vi, vj) ∈ E for all i < j} for n ≥ 1. (1)

In other words, an n-simplex contained in K(G)n is a directed (n + 1)-clique or
a completely connected directed subgraph with n + 1 vertices. Notice that an
n-simplex is though of as an object of dimension n and consists of n+1 vertices.

By definition, a directed clique (or a simplex in our complex) is a fully-
connected directed sub-network: this means that the nodes are ordered and there
is one source and one sink in the sub-network, and the presence of the directed
clique in the network means that the former is connected to the latter in all the
possible ways within the sub-network as illustrated by Fig. 1.
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Fig. 1. The directed clique complex. (A) The directed clique complex of the represented
graph consists of a 0-simplex for each vertex and a 1-simplex for each edge. There is
only one 2-simplex (123). Note that ‘2453’ does not form a 3-simplex because it is not
fully connected. ‘356’ does not form a simplex either, because the edges are not oriented
correctly. (B) The addition of the edge (52) to the graph in (A) does not contribute
to creating any new 2-simplex, because of its orientation. The edges connecting the
vertices 2, 3 and 5 (respectively 2, 4 and 5) are oriented cyclically, and therefore they do
not follow the conditions of the definition of directed clique complex. (C) By reversing
the orientation of the new edge (25), we obtain two new 2-simplices: (235) and (245).
Note that we do not have any 3-simplex. (D) We added a new edge (43), thus the sub-
graph (2435) becomes fully connected and is oriented correctly to be a 3-simplex in
the directed clique complex. In addition this construction gives two other 2-simplices:
(243) and (435).

The directed clique complex is the basic topological object that allows us to
introduce invariants of the graph: the Euler characteristic of the directed clique
complex K(G) of G is the integer defined by χ(K(G)) =

∑N
n=0(−1)n |K(G)n| or

in other words the alternating sum of the number of simplices that are present
in each dimension. The number of simplices in each dimension (in particular 1-
and 2-simplices is also used as invariant of a network.

Notice that the construction of the directed clique complex of a given network
G does not involve any choice, and therefore, since the Euler characteristic of a
simplicial complex is a well-defined quantities for a simplicial complex [9], our
constructions produce quantities that are well-defined for the network G, and
we shall refer to them simply as the Euler characteristic of G.
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2.2 Network Structure and Dynamics

The artificial recurrent neural networks consist of a finite number of Boolean
integrate-and-fire (IF) neurons organized in layers with a convergent/divergent
connection structure [2]. The networks are composed by 50 layers, each of them
with 10 IF neurons.

The first layer is the layer that receives external stimulations (also referred
to as the input layer) and all its 10 neurons get activated at the same time at a
fixed frequency of 0.1, i.e. every 10 time steps of the history.

Each neuron in a layer is connected to a randomly uniformly distributed
number of target neurons f belonging to the next downstream layer. The aver-
age distribution of the number of incoming connections is shown in Fig. 2. The
networks include recurrence in their structure, meaning that a small fraction g
of the neurons appears in two different layers. This means that a neuron k that is
also identified as neuron l, is characterized by the union of the input connections
of neurons k and l, as well as by the union of their respective efferent projections.

We extended the networks constructed in [13] to include inhibition and back-
ground activity. A fixed proportion (10%) of the neurons are inhibitory, the
remaining (90%) are excitatory. The state Si(t) of a neuron i takes values 0
(inactive) or 1 (active) and all IF neurons are set inactive at the beginning of
the simulation. The state Si(t) is a function of the its activation variable Vi(t),
such that Si(t) = H(Vi(t) − 1). H is the Heaviside function, H(x) = 0 : x < 0,
H(x) = 1 : x ≥ 0, and neurons have a refractory period of one time step after
activation. At each time step, the value Vi(t) of the activation variable of the ith

neuron is calculated with the formula Vi(t + 1) =
∑

j Sj(t)wji(t) + bi(t), where
bi(t) is the background activity, wji(t) are the weights of the directed connec-
tions from any jth neuron projecting to neuron i. The background activity bi(t)
is sampled from a Poisson distribution of parameter λ = 1 multiplied by a fixed
factor of 0.15.

The weights of the excitatory connections have been limited to three values,
i.e. w1 = 0.1, w2 = 0.2, and w3 = 0.4. At the beginning of the simulations all
connection weights are randomly uniformly distributed among the three possible
values. On the opposite, all inhibitory connections are set to w4 = −0.2. The
weights of all excitatory connections are updated synchronously at each time
step.

The network dynamics implements activity-dependent plasticity of the exci-
tatory connections. Whenever the activation of a connection does not lead to
the activation of its target neuron during an interval lasting a time steps, its
weight is weakened to the level immediately below the current one. Whenever
the weight of an excitatory connection reaches the lowest level without any
increase in a time steps, then the connection is removed [10]. The pruning of the
connections changes the topology of the network. Similarly, whenever an excita-
tory connection with a weight wm is activated at least m + 1 consecutive time
steps, the connection weight is strengthened to the level immediately higher than
the current one. Note though that in the current implementation the inhibitory
connections are never pruned and their weights remain constant.
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Fig. 2. Cumulative distributions of the efferences within one neural circuit at the begin
of the simulation. Network parameters: layer-to-layer downstream connections: 90%;
fraction of recurrent neurons: 10 %; weakening dynamics threshold: 25 steps. (A) exci-
tatory efferent connections to excitatory cells (e→e) and to inhibitory cells (e→i). (B)
inhibitory efferent connections to excitatory cells (i→e) and to inhibitory cells (i→i).

Hence, the parameter space of our simulations was defined by three parame-
ters: the number f of layer-to-layer downstream connections in the range 1–10
by steps of 3, the small fraction g of the neurons appearing in two different
layers in the range 5–10 % by steps of 5 %, and the interval a of the weakening
dynamics of the connections in the range 10–26 by steps of 8.

2.3 Implementation of the Simulations

The simulation software was implemented from scratch in Python. The net-
work evolved with the dynamics explained above and the program computed
the directed clique complex at each change of the network topology. The simula-
tion was stopped after 200 time steps, or earlier if the activity died out because of
the pruning. For the entire network, the directed clique complex was computed
each time the connectivity changed because of pruning. For the sub-network of
the active nodes, the computation was carried out at each step of the simulation.

The computed directed clique complexes were used to compute the Euler
characteristic both for the complexes representing the entire network and for
the sub-complexes of the active nodes. To compute the directed clique complex
of a network, we used the algorithm implemented in the igraph Python package
[5], adapted to find directed cliques, run in parallel on several CPUs using the
tool GNU Parallel [16].

3 Results

We considered a directed graph with nodes representing individual neurons and
oriented edges representing the connections between the neurons with a weight
corresponding to the connection strength. The network topology is based on
a simplified model of feed-forward neural network with convergent/divergent
layered structure with few embedded recurrent connections and 10 % inhibitory
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units at the begin of the simulation. We have computed the Euler characteristic
and its variation during the evolution of such networks in order to detect how
the structure changes as the network evolves. The nodes of the input layer are
activated at regular time intervals.

We observed that the Euler characteristic of the entire network could detect
the pruning activity during the neural network evolution (Fig. 3). In particular,
the step to step variation of the Euler characteristic matched the number of con-
nections pruned over time. The Euler characteristic appears as a good estimator
of the activity level within the network and of its topological changes.

Fig. 3. The evolution of the Euler characteristic. The plot shows the variation of the
Euler characteristic (averaged across all the networks in the family) over time during
the network evolution (solid line), compared with the plot of the pruning activity
(dashed line). We observe that the Euler characteristic of the direct clique complex of
the entire network detects the changes in the network topology caused by the pruning
activity.

Moreover, despite the more complex dynamics considered in the current sim-
ulation, we found new evidence in favor of the main finding of our previous
study [13]: the type of dynamics undergoing the neural network evolution and
the structure of the directed clique complex of that network at the very begin-
ning of the simulation (i.e. before the occurrence of connection pruning) were
correlated. In particular, the average number of active units during the simula-
tion was correlated to the number of simplices, in the directed clique complex,
of dimension two (Pearson correlation coefficient r(190) = 0.50, p < 0.001) and
dimension three (r(190) = 0.50, p < 0.001).
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Even in presence of different network dynamics, the initial connectivity struc-
ture of the network contains a algebraic-topological information that can be used
to predict the type of evolution that the network is going to have. The rationale
for it being correlated with the number of high (2 and 3) dimensional simplices
is that directed cliques are fully connected sub-networks, i.e. sub-networks with
an initial and a final node that are connected in the highest possible number of
ways, and thus they contribute to the propagation of the activation.

4 Discussion

Network topology and dynamics are closely related: the convergent/divergent
networks with neurons organised in layers in a feed-forward structure, which we
considered here, are closely associated with synfire chains [1,2]. These networks
are characterized by a highly correlated activity of the neurons within each later,
propagated from a layer to the next one, which is the kind of behaviour that we
observed in our simulations. The temporal patterns of activation displayed by
synfire chains are of central importance in the transmission of neural information
[11], and experimental results in electrophysiology show the emergence of precise
patterns of activation [15,17], associated with neural functions such as sensory
encoding and cognitive responses.

The networks considered here are a version of synfire chains, with the sim-
plification that the chain structure forms the entirety of the network: for this
reason we do not investigate the important problem of the emergence of syn-
fire chains embedded in bigger networks. This question has been investigated in
relation with several network features, as a function of network topology and
plasticity rules [18–20]. Our simulations show that the excitatory-inhibitory and
the background noise are central elements in the maintenance of a steady and
irregular activity level [3,12]: the maintenance of a non-saturated activity level
for the duration of the simulations is necessary in order to correlate the average
activity of the networks with the topological invariants that we have presented
here. The addition of inhibitory neurons and background activity with respect
to our previous study [13] gave richer and more complicated dynamics, and yet
we found that our tools can shed light on the links between network topology
and pruning dynamics. The algebro-topological framework of analysis presented
here appears as a very promising technique and deserves further study in order
to investigate the deeper relations between temporal activation patterns and
network topology in biologically inspired networks.

Acknowledgments. This work was partially supported by the Swiss National Science
Foundation grant CR13I1-138032.
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Abstract. We investigate scaling properties of human brain functional
networks in the resting-state. Analyzing network degree distributions,
we statistically test whether their tails scale as power-law or not. Ini-
tial studies, based on least-squares fitting, were shown to be inade-
quate for precise estimation of power-law distributions. Subsequently,
methods based on maximum-likelihood estimators have been proposed
and applied to address this question. Nevertheless, no clear consensus
has emerged, mainly because results have shown substantial variability
depending on the data-set used or its resolution. In this study, we work
with high-resolution data (10K nodes) from the Human Connectome
Project and take into account network weights. We test for the power-
law, exponential, log-normal and generalized Pareto distributions. Our
results show that the statistics generally do not support a power-law, but
instead these degree distributions tend towards the thin-tail limit of the
generalized Pareto model. This may have implications for the number of
hubs in human brain functional networks.

Keywords: Power-law distributions · Functional connectivity · Gener-
alized pareto · Model fitting · Maximum likelihood · Connectome · Brain
networks

1 Introduction

Much interest in theoretical neuroscience has revolved around graph-theoretic
scaling properties of the network of structural and functional correlations in the
human brain. Some authors have described the degree distribution of nodes in
brain functional networks as scale-free; that is, these networks follow a power-law
degree distribution P (k) ∼ k−α with an exponent close to 2 [7,11], indicating the
c© Springer International Publishing Switzerland 2016
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presence of a small number of hub-nodes that connect widely across the network.
Other studies have suggested that functional brain networks are not scale-free,
but instead are characterized by an exponentially truncated distribution [1,8,10].
The scaling characteristics of these networks are associated with the number and
organization of network hubs and consequently may have implications with our
understanding of how the brain responds to disease or damage [1,2]. This calls for
a rigorous statistical methodology to infer underlying models that best describe
the degree distribution of brain functional networks.

Initial studies were based on least-square fitting of log-log plots of fre-
quency distributions to answer this question. This approach, although seemingly
straightforward, is inadequate from a statistical point of view as elaborated in
[6]. Least-square fitting may give systematically biased estimates of the scaling
parameters and most of the inferential assumptions for regression are violated.
Moreover, in all these studies no statistical testing was mentioned to measure
the goodness-of-fit of each fitted degree distribution. As an alternative, Maxi-
mum Likelihood Estimation (MLE) of the scaling parameters should be used
and alternative distributions should be also tested. In [6] an analytical frame-
work for performing such tests for power-law models is provided, which has
been subsequently extended for testing other distributions as well. However, it
has been noted that results are still very much dependent on the way the data
is preprocessed, how the network is extracted, its dimensions and whether one
uses region or voxel-based networks. For instance, Hayasaka et al. [10] found
that, although degree distributions of all analysed functional networks followed
an exponentially truncated model, the higher the resolution, the closer the dis-
tribution was to a power-law.

In this work, as a first step to address this issue we analyzed the resting-
state fMRI (rs-fMRI) data of 10 subjects obtained from the Human Connectome
Project database. Using the MLE method, advocated in [6], we estimate the scal-
ing parameters for the best possible fit for a model distribution and then check
the goodness-of-fit for this distribution by comparing it to synthetic generated
data. We do this for four model distributions: power-law, exponential, log-normal
and generalized Pareto. The reason for choosing the generalized Pareto model is
due to the fact that it interpolates between fat-tail and thin-tail distributions,
including the power-law and exponential as special cases. In what follows, we
find that at a resolution of 10 K nodes, the statistics favor the generalized Pareto
thin-tail distributions.

2 Materials and Methods

2.1 Subjects, Imaging Data and Network Extraction

High-quality, high-resolution resting state fMRI scans of 10 subjects from the
Human Connectome Project (Q1 data released by the WU-Minn HCP consor-
tium in March 2013 [13]) were analysed in this study (age range: 26–35, 16.7 %
male). Individual rs-fMRI data were acquired for ∼15 min providing a total of
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Fig. 1. A. Overview of the processing steps used to generate graph-based brain con-
nectivity functional networks (see the main text for further details about the overall
procedures). B. Degree distributions for three different values of the functional corre-
lation threshold for a representative subject (top) and averaged over the 10 data-sets
included in the study (bottom).

∼98,300 grayordinates time–series of 1,200 time points each. A schematic illus-
tration of the process used to build the networks is provided in Fig. 1A. Building
and visualizing functional networks was done using the BrainX3 platform [3–5].
For all the subjects, the original data-set was downsampled to ∼10,000 nodes by
averaging the time-series of neighbouring grayordinates within a 5 mm3 cube.

Pearson’s correlation coefficients were calculated between each possible pair
of nodes to build a N ×N functional connectivity matrix, which is symmetric by
construction and with self-connections set to zero. The matrix was then thresh-
olded to derive weighted undirected adjacency matrices. We examined a range
of 18 different thresholds (R) between −0.7 and 0.8, at 0.1 steps. Outside this
range, the functional matrices become too sparse for meaningful analysis. For a
positive threshold, each entry in the correlation matrix is set to 0 if its value is
less than the threshold value and maintains its value otherwise. For a negative
threshold, absolute values of the entries less than the threshold are maintained,
while others are set to 0. In a weighted network, the weighted degree of a node
is defined as the sum of all weighted edges connected to that node. Figure 1B
illustrates the degree distributions of extracted networks across three different
thresholds for a representative subject and averaged over all 10 data-sets.

2.2 Fitting Parametric Models to Weighted Degree Networks

For every network generated from subject data, the vector of degrees x =
[x1, x2, ..., xn] is sorted in ascending order for each threshold. For every xi, fol-
lowing [6], we use the method of maximum likelihood to estimate the scaling



110 R. Zucca et al.

Table 1. Fit results of the exponential (p(x) = Ce−λx) and the power law distributions
(p(x) = Cax−α)

Exponential
Thr λ xmin TL KS p -value TLr

+0.8 0.000 0.000 0.0 0.000 0.0000 0.714
+0.7 0.162 1.186 83.5 0.056 0.3125 0.500
+0.6 0.089 3.887 130.5 0.058 0.4840 0.306
+0.5 0.038 15.544 175.5 0.050 0.6170 0.187
+0.4 0.020 23.051 440.5 0.037 0.7305 0.160
+0.3 0.012 44.067 805.0 0.030 0.3305 0.167
+0.2 0.008 44.049 1552.5 0.024 0.0895 0.205
+0.1 0.006 25.520 4350.5 0.031 0.0015 0.433
+0.0 0.007 545.110 1597.0 0.037 0.0290 0.159
−0.0 0.021 123.255 1678.0 0.021 0.0485 0.168
−0.1 0.023 53.151 141.0 0.072 0.1835 0.014
−0.2 0.095 7.104 123.0 0.170 0.0170 0.105
−0.3 0.348 0.330 95.5 0.224 0.0000 0.534
−0.4 0.000 0.000 0.0 0.000 0.0000 0.876
−0.5 0.000 0.000 0.0 0.000 0.0000 0.881
−0.6 0.000 0.000 0.0 0.000 0.0000 0.510
−0.7 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.0 0.000 0.0000 -

Power law
Thr α xmin TL KS p -value TLr

+0.8 0.000 0.000 0.0 0.000 0.0000 0.655
+0.7 2.257 1.427 83.0 0.120 0.0005 0.437
+0.6 2.324 4.387 94.5 0.099 0.0070 0.336
+0.5 2.765 21.077 201.0 0.085 0.0275 0.141
+0.4 2.946 48.800 300.0 0.079 0.0020 0.099
+0.3 3.711 180.624 224.0 0.079 0.0650 0.045
+0.2 5.541 360.395 281.5 0.079 0.0060 0.036
+0.1 8.615 745.120 208.0 0.0666 0.1490 0.021
+0.0 12.594 931.660 246.5 0.059 0.1810 0.025
−0.0 5.303 142.645 1249.0 0.021 0.5085 0.124
−0.1 2.402 11.896 2352.5 0.044 0.0000 0.236
−0.2 2.417 3.349 521.5 0.052 0.0030 0.277
−0.3 2.367 1.089 118.5 0.088 0.0105 0.319
−0.4 0.000 0.000 0.0 0.000 0.0000 0.332
−0.5 0.000 0.000 0.0 0.000 0.0000 0.399
−0.6 0.000 0.000 0.0 0.000 0.0000 0.510
−0.7 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.0 0.000 0.0000 -

All data are expressed as median values. Legend: Thr, R threshold; λ, α model parameters; xmin, lower bound
for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model;
TLr , proportion of non-zero nodes in the tail.

parameter α providing the best possible fit for the hypothetical power-law dis-
tribution P (x) ∼ Cx−α for the tail of the observed data in the range xi to xn.
Next, we calculate the Kolmogorov-Smirnov (KS) statistic for this power-law dis-
tribution with respect to xi. Out of all possible xi from the data, the one with
the smallest KS statistic corresponds to the lower bound xmin for power-law
behavior in the data. The next step is to verify whether this is indeed a good fit
for the data. For that, a large number of synthetic data-sets are sampled from a
true power-law distribution with the same scaling parameter α and bound xmin

as the ones estimated for the best fit of the empirical data. We fit each synthetic
data-set to its own power-law model and calculate the KS statistic for each one
relative to its own model. An empirical p-value is then calculated as the fraction
of the time the empirical distribution outperforms the synthetically generated
ones (by having a smaller KS statistic value). If p-value � 0.1, the power-law
hypothesis can be ruled out as a non plausible explanation of the data. Never-
theless, large p-values do not guarantee that the power-law is the best model
and the power-law fit has to be compared to a class of competing distributions.

3 Results

Power-law testing was performed on Matlab (Mathworks Inc., USA) using [6].
Further, for testing exponential, log-normal and generalized Pareto models we
adapted the framework provided in [6] to include these competing hypothesis.
For each subject, we analyzed thresholds in the range −0.7 to 0.8, with 0.1 incre-
ments. The parametric goodness-of-fit test was conducted over 1,000 repetitions,
ensuring precision of p-value up to two decimal digits.

Our results are summarized in Tables 1 and 2, respectively. An hypothesis is
considered plausible if the p-value is larger than 0.1. Averaging over subjects, the
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Table 2. Fit results of generalized Pareto distribution (p(x) = 1
σ
(1 + k x−xmin

σ
)−1− 1

k )

and of log-normal distribution (C 1
x
exp[−(ln(x)−μ)2

2σ2 ]).

Generalized Pareto
Thr k σ xmin TL KS p -value TLr

+0.8 0.000 0.000 0.000 0.0 0.000 0.0000 0.696
+0.7 0.000 3.663 1.539 58.5 0.049 0.1315 0.531
+0.6 0.118 11.094 2.943 172.5 0.048 0.3305 0.440
+0.5 0.031 28.656 20.072 338.5 0.034 0.7380 0.229
+0.4 0.001 62.035 34.191 372.5 0.027 0.6155 0.174
+0.3 -0.128 102.619 85.215 638.5 0.021 0.7975 0.176
+0.2 -0.178 152.365 136.945 938.5 0.014 0.8275 0.135
+0.1 -0.226 241.640 201.475 2387.0 0.010 0.7555 0.238
+0.0 -0.224 218.500 380.050 4681.5 0.009 0.6750 0.467
−0.0 0.182 32.619 127.480 1195.5 0.012 0.8425 0.119
−0.1 0.426 12.883 9.690 1469.0 0.020 0.1725 0.149
−0.2 0.439 2.549 0.763 820.5 0.030 0.1890 0.457
−0.3 0.433 0.996 0.649 101.5 0.062 0.0105 0.405
−0.4 0.000 0.000 0.000 0.0 0.000 0.0000 0.253
−0.5 0.000 0.000 0.000 0.0 0.000 0.0000 1.000
−0.6 0.000 0.000 0.000 0.0 0.000 0.0000 1.000
−0.7 0.000 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.000 0.0 0.000 0.0000 -

Log normal
Thr μ σ xmin TL KS p -value TLr

+0.8 0.000 0.000 0.000 0.0 0.000 0.0000 0.639
+0.7 0.618 0.599 1.141 58.0 0.039 0.1033 0.466
+0.6 1.804 0.957 2.589 110.5 0.040 0.1867 0.381
+0.5 3.363 0.794 15.167 246.5 0.033 0.7017 0.223
+0.4 3.459 0.799 24.044 543.5 0.027 0.4883 0.186
+0.3 4.809 0.535 72.627 525.0 0.023 0.4633 0.114
+0.2 5.754 0.434 209.015 759.5 0.023 0.3950 0.100
+0.1 6.143 0.299 418.120 852.0 0.019 0.6450 0.085
+0.0 6.299 0.236 472.295 1684.5 0.015 0.3150 0.168
−0.0 4.298 0.588 81.662 4837.0 0.010 0.3500 0.482
−0.1 2.176 1.197 7.105 1764.0 0.019 0.3600 0.180
−0.2 0.486 1.317 0.610 879.0 0.034 0.0167 0.599
−0.3 -0.243 1.237 0.543 106.0 0.072 0.0050 0.592
−0.4 0.000 0.000 0.000 0.0 0.000 0.0000 0.825
−0.5 0.000 0.000 0.000 0.0 0.000 0.0000 0.607
−0.6 0.000 0.000 0.000 0.0 0.000 0.0000 -Inf
−0.7 0.000 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.000 0.0 0.000 0.0000 -

All data are expressed as median values. Legend: Thr, R threshold; k, σ, μ model parameters; xmin, lower bound
for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model;
TLr , proportion of non-zero nodes in the tail.

p-values indicate that the power law hypothesis is rejected in the 83.3% of the
analyzed thresholds. Instead, 61.1% of the examined thresholds are consistent
with a generalized Pareto hypothesis, 55.6% with a log-normal hypothesis and
in 33.3% of the cases with the exponential hypothesis, with several of these
thresholds passing multiple tests. Median p-values are consistently larger for the
generalized Pareto hypothesis (Fig. 2).

For each threshold examined, we then perform log-likelihood ratio tests to
check which one among the consistent models is the most plausible in describ-
ing the empirical data. For all the positive thresholds up to 0.7 the evidence
strongly goes in favor of the generalized Pareto distribution. Overall, the gener-
alized Pareto model is outperforming the other candidate models in 41% of the
examined cases (all subjects and all thresholds). In a 13% of the comparisons
the log-normal distribution resulted in a better fit, 3% were better fitted by an
exponential model, 2% by a power law, whereas the remaining 41% could not be
explained by any model (due to insufficient data points and extreme thresholds).

For several positive thresholds the k parameter is equal or close to zero, thus
approaching an exponential distribution, whereas for other thresholds in the
positive range, the generalized Pareto model passes with negative k, meaning a
suppressed tail (Fig. 3).

4 Discussion

In this study we sought to systematically analyze scaling properties of human
brain functional networks in the resting state, obtained from high-resolution
fMRI data. We constructed networks of 10,000 nodes. Our analysis took into
account actual weighted degree distributions from the data and we scanned
through the full range of positive as well as negative correlation thresholds. For
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Fig. 2. Population averaged goodness-of-fit tests (left) and percentage of the tail of
the distribution explained by the model (right) across different thresholds for each of
the four distributions. Horizontal dashed lines in the boxplots indicate the acceptance
criteria for a model to be considered plausible (p-value > 10%). The central mark is the
median, the edges of the boxes are the 25th and 75th percentiles. Asterisks correspond
to outliers.
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Fig. 3. Population averaged estimates of λ (top-left), α (top-right), k (bottom-left) and
σ (bottom-right) model parameters for the four tested distributions across different
thresholds.

model selection, we imposed a criterion of p-value > 0.1 and we conducted a
log-likelihood ratio test among the different hypothesis.

We have shown that the degree distribution of the nodes does not follow
a scale-free topology, as reported in [7]. The power law hypothesis is strongly
rejected in the majority of the thresholds we examined. Indeed, it is the general-
ized Pareto distribution that is consistently preferable to the competing models
for most of the thresholds.

These results suggest that after taking into account continuously weighted
rather than binary networks, the dynamics of brain functional networks might
not be governed by as many ultra-high degree hubs as a typical scale-free network
might suggest. This bodes well for real brain networks when considering resilience
to attacks, compared to their scale-free counterparts. For future work, we intend
to test whether these distributions hold for different network resolutions and
parcellations. Moreover, it would be interesting to see how these results compare
to the “core-periphery” organization of brain structural networks [9,12], which
shows a preference for a distributed core, rather than few ultra-high degree hubs.
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Abstract. We study the attractor dynamics of a Boolean model of the
basal ganglia-thalamocortical network as a function of its interactive
synaptic connections and global threshold. We show that the regulation
of the interactive feedback and global threshold are significantly involved
in the maintenance and robustness of the attractor basin. These results
support the hypothesis that, beyond mere structural architecture, global
plasticity and interactivity play a crucial role in the computational and
dynamical capabilities of biological neural networks.

1 Introduction

Experimental studies suggest that spatiotemporal patterns of discharges, i.e.,
ordered and precise interspike interval relationships [1–3], as well as specific
attractor dynamics [4,5] are likely to be significantly involved in the processing
and coding of information in the brain. The association between attractor dynam-
ics and spatiotemporal patterns has been demonstrated in nonlinear dynamical
systems [6] and in simulations of large scale neuronal networks [7], thus suggest-
ing that spatiotemporal patterns might be considered as witnesses of underlying
attractor dynamics – which itself would be a key feature of neural coding.

On the basis of these bioinspired considerations, we study the attractor
dynamics of a Boolean model of the basal ganglia-thalamocortical network [8].
We investigate the richness of the attractor dynamics of this network as a func-
tion of its interactive synaptic connections – which are assumed to be signif-
icantly involved in the crucial exchange of information between the network
and its environment – as well as of its global threshold – which represents a
global notion of plasticity [9–14]. We show that the regulation of the interactive
feedback and global threshold are significantly involved in the maintenance and
robustness of optimal attractor potentialities. It is noteworthy that experimen-
tal evidence of a context-dependent modifiable central feedback to projection
neurons has been reported in the invertebrate neural circuit [15].

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 115–122, 2016.
DOI: 10.1007/978-3-319-44778-0 14
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2 Boolean Recurrent Neural Networks

It has early been observed that Boolean recurrent neural networks are compu-
tationally equivalent to finite state automata [16,17]. More precisely, recurrent
neural networks composed of McCulloch and Piits’s cells [18] can simulate and
be simulated by finite state automata. The translation from a Boolean networks
to a corresponding finite automaton is illustrated in Fig. 1. The converse trans-
lation is not illustrated here.
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Fig. 1. Translation from a given Boolean neural network N to a corresponding finite
automaton A. The nodes of A are the different states of N (represented as colored
triple dots that depict the three internal quiet or firing cells of N ). There is an edge
from node s to node s’ labelled by x in A if and only if the network N moves from
state s to s’ when receiving input x . (Color figure online)

According to the construction of Fig. 1, the possible dynamics of a given
Boolean network correspond precisely to the possible paths in the graph of its
associated automaton. Hence, the attractors of the Boolean network – i.e., the
cyclic dynamics – correspond exactly to the cycles of the automaton. Conse-
quently, in order to compute the attractors of a Boolean network, it suffices
to construct its corresponding automaton and then list all the cycles of this
automaton. Note that in this context, whenever the dynamics of Boolean net-
works is falling into some periodic attractor, the activity of the network units is
necessarily characterized by some associated recurrent spatiotemporal pattern of
discharges, as illustrated in Fig. 2.

This theoretical framework is illustrated by a simulation of a network formed
by interconnected thalamocortical modules of spiking units described else-
where [19]. This model accounts for a first order dynamics of the membrane
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Fig. 2. In a Boolean neural networks, the attractor dynamics of the internal cells are
the precise phenomenon that underly the emergence of spatiotemporal patterns of
discharges. In fact, the raster plot of internal cells involved in some periodic attractor
dynamics corresponds precisely to some spatiotemporal pattern of discharge.

potential characterized by a kinetic constant and for global excitability of the
circuit. These parameters are controlled by the modulatory inputs that act dif-
ferentially on the capacitance and resistance of the cell membrane. Monoamines
and acetylcholine may regulate properties of voltage-sensitive ion channels [20]
through the action of cellular second messengers. These mechanisms affect the
shape of the postsynaptic potentials – i.e., the half-width of the decay – without
modifying the membrane resistance which is related to the membrane potential.
Modulatory projections from the brainstem may also affect the overall excitabil-
ity of the thalamocortical network in relation to arousal, sleep-waking activity,
and their role in modulation of sensory processes has been recognized long time
ago [21,22].

In the absence of background activity and noisy inputs, all the dynamics
is deterministic, such that when an input pattern of activity is provided at the
beginning of the simulation, the network activity stabilizes either to an extinction
of the activity – no more units are firing – or to a cyclic pattern of activity –
an attractor dynamics – which in turn induces a corresponding spatiotemporal
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Fig. 3. Examples of raster displays showing repeating spatiotemporal patterns. The
rows of the rasters correspond to each unit of a circuit composed of two coupled thala-
mocortical modules activation pattern. At time 1 the cells 5, 6, 8 and 25 were initially
set active. The time constant of the membrane potential was fixed at 2.92 ms. Global
excitability parameter was set at a lower level ep = −31 in panel (a) then in panel (b)
where ep = −29. The spatiotemporal pattern started to repeat at time 34 with a cycle
duration of 24 time steps and at time 50 with a cycle duration of 16 for panel (a) and
panel (b), respectively.

pattern of discharges. The period of the attractor and the specificities of the
associated spatiotemporal pattern may change greatly to tiny differences in the
values of the two dynamical parameters for the same initial pattern of activation
as illustrated by Fig. 3. Notice that with the same initial stimulation and same
membrane dynamics, a change in the global excitability parameter may also lead
to the extinction of the activity.

3 Boolean Model of the Basal Ganglia-Thalamocortical
Network

We assume that the encoding of a large amount of the information treated by
the basal ganglia-thalamocortical network is performed by recurrent patterns
of activity circulating in the information transmitting system of this network.
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Fig. 4. (a) Simple Boolean model of the basal ganglia-thalamocortical network and (b)
its adjacency matrix. Each brain area is represented by a single node in the Boolean
neural network model: superior colliculus (SC), Thalamus, thalamic reticular nucleus
(NRT), Cerebral Cortex, the striatopallidal and the striatonigral components of the
striatum (Str), the subthalamic nucleus (STN), the external part of the pallidum (GPe),
and the output nuclei of the basal ganglia formed by the GABAergic projection neurons
of the intermediate part of the pallidum and of the substantia nigra pars reticulata
(GPi/SNR). We consider also the inputs (IN) from the ascending sensory pathway
and the motor outputs (OUT). The excitatory pathways are labeled in blue and the
inhibitory ones in orange. Part of the motor outputs are recurrently connected via the
interactive connections int1 and int2. (Color figure online)

We extend our simplified model of the basal ganglia-thalamocortical network [8]
in order to include interactive connections, enabling a feedback of information
from the network activity to combine with the external inputs, see Fig. 4. We
study the attractor dynamics of this network as a function of its interactive
connections int1 and int2 and of its global excitability.

4 Results

We study the attractor dynamics of our simplified model of the basal ganglia-
thalamocortical network, as a function of perturbations of its interactive con-
nections (int1 and int2) and global threshold (θ). Overall, we notice that the
regulation of the interactive feedback plays a crucial role in the maintenance of
an optimal attractor-based level of complexity. There is always an optimal region
for the interactive weights outside of which the number of attractors of the net-
work significantly decreases. We also show that the network’s attractor dynamics
depends sensitively on the value of its global threshold. Small perturbations of
the threshold significantly affect the attractor dynamics of the network.

More precisely, for each of the four threshold values θ = 0.4, θ = 0.6, θ =
0.8 and θ = 1.0, we preformed 1681 simulations to compute the number of basic
attractors1 of the network as a function of its two interactive weights int1 and int2,
1 The basic attractors of a Boolean network are given by the basic cycles of its corre-

sponding automaton, i.e., the cycles that do not visit the same vertex twice.



120 J. Cabessa and A.E.P. Villa

Fig. 5. Number of basic attractors of the network as a function of the interactive
weights int1 and int2, and for different values of the global threshold θ of the cells.
Four patterns of variation are observed and reported in the subfigures (a)–(d). The
green point corresponds to no interactivity. (Color figure online)

where these latter are varying from−2 to 2 by steps of 0.1. The results are reported
in Fig. 5. In each case, we notice the existence of an optimal region for the values
of int1 and int2 where the number of attractors takes maximal values of 22 (in
cases (b), (c), and (d)) or 25 (in case (a)). Around this optimal region, the
number of attractors was much lower. This optimal region is ‘continuous’, in
the sense of forming a well defined block without holes, as opposed to smaller
discontinuous blocks that would be disseminated across the map. Hence, in the
‘center’ of this optimal region, the interactive weights int1 and int2 can vary
in a relatively consequent neighborhood without compromizing the attractor
dynamics of the network.

Furthermore, we notice that the variation of the threshold θ affects signifi-
cantly the attractors dynamics of the network. A higher excitability, i.e. a lower
threshold (θ = 0.4), favors the emergence of richer attractor dynamics in the
optimal region (25 attractors in case (a) as opposed to 22 in the three other
cases). However, this optimal region is surrounded by regions of lower complexi-
ties than in the other cases. Hence, an increase of the excitability (i.e. lowering of
the threshold) acts as a “polarization” of the attractor dynamics: it increases the
complexity of the optimal region and lowers the complexity of its neighbourhood.
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5 Discussion

We have considered a simplified Boolean model of the basal ganglia-thalamocor-
tical network, and provided new evidence of the effects that the global excitabil-
ity and “interactivity” have on its dynamical properties. The interactivity is
expresses in the form of a feedback informational loop, where the network’s
output together with the external environment produce a combined stream of
information which is re-entered into the input layer of the network. This infor-
mation can be assumed to represent precise contextual and explicit information
recorded by the primary ascending (i.e. lemniscal) sensory channels via a thala-
mic relay [23]. The sensory information is also reaching modulatory centers in
the brainstem and hypothalamus that may exert their modulatory influence by
changing the global excitability of the network [24].

More generally, our results show that the interactive connections and global
excitability of Boolean neural networks play a significant role in the maintenance
and robustness of their attractor-based complexity. The networks are consid-
ered as dynamical systems operating in a range of control parameters. A global
change in their excitability combined with selected interactively-generated input
patterns will induce their dynamics to evolve into specific attractor dynamics,
and in turn, into repeating spatiotemporal firing patterns. Those patterns should
not be considered as high-order Morse codes, but rather as co-representations
of contextual information, including a certain “central arousal” modulated by
dopaminergic [25], cholinergic [26] and serotoninergic [27] pathways.
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Abstract. Predictions on sequential data, when both the upstream and
downstream information is important, is a difficult and challenging task.
The Bidirectional Recurrent Neural Network (BRNN) architecture has
been designed to deal with this class of problems. In this paper, we
present the development and implementation of the Scaled Conjugate
Gradient (SCG) learning algorithm for BRNN architectures. The model
has been tested on the Protein Secondary Structure Prediction (PSSP)
and Transmembrane Protein Topology Prediction problems (TMPTP).
Our method currently achieves preliminary results close to 73 % correct
predictions for the PSSP problem and close to 79 % for the TMPTP prob-
lem, which are expected to increase with larger datasets, external rules,
ensemble methods and filtering techniques. Importantly, the SCG algo-
rithm is training the BRNN architecture approximately 3 times faster
than the Backpropagation Through Time (BPTT) algorithm.

Keywords: Scaled Conjugate Gradient · Bidirectional Recurrent
Neural Networks · Protein Secondary Structure Prediction · Transmem-
brane Protein Topology Prediction · Computational intelligence · Bioin-
formatics

1 Introduction

Even though a number of Machine Learning (ML) algorithms have been designed
to process and make predictions on sequential data, the mining of such data types
is still an open field of research due to its complexity and divergence [1]. Analy-
sis and development of optimisation algorithms for specific ML techniques must
c© Springer International Publishing Switzerland 2016
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take into account (a) how to capture and exploit sequential correlations, (b) how
to design appropriate loss functions, (c) how to identify long-distance interac-
tions, and (d) how to make the optimisation algorithm fast [2]. One of the most
successful classes of models which has been designed to deal with these questions
is Recurrent Neural Networks (RNNs) [3]. The most common learning algorithm
for such models is the Backpropagation Through Time (BPTT) [4,5], which is
based on the gradient descent algorithm. Unfortunately, this kind of algorithms
have a poor convergence rate [6]. Moreover, they depend on parameters which
have to be specified by the user and are usually crucial for the performance of
the algorithm. In order to eliminate these drawbacks, more efficient algorithms
must be developed. One such algorithm is the Scaled Conjugate Gradient (SCG)
[6], a second-order learning algorithm, that has been found to be superior to the
conventional BPTT algorithm in terms of accuracy, convergence rate and the
vanishing-gradient problem [7]. In addition, the original form of the algorithm
[6] does not depend on any parameters.

Predictions on sequential data are particularly challenging when both the
upstream and downstream information of a sequence is important for a specific
element in the sequence. Application examples include problems from Bioinfor-
matics such as Protein Secondary Structure Prediction (PSSP) [8–10] and other
related problems (e.g., Transmembrane Protein Topology Prediction (TMPTP)
[11]). In such sequence-based problems the events are dynamic and located down-
stream and upstream, i.e., left and right in the sequence. A ML model designed
for such data must learn to make predictions based on both directions of a
sequence. To predict these events, researchers utilise Bidirectional Recurrent
Neural Network (BRNN) architectures [8]. The BRNN has proved to be a very
efficient architecture for the PSSP problem with accuracy of approximately 76 %
[8], while for the TMPTP problem to the best of our knowledge the BRNN archi-
tecture has not been used so far. The BRNN architectures are currently trained
with an extension of the BPTT algorithm [5] with the error propagated in both
directions of the BRNN. However, the SCG algorithm has not been developed
for this architecture.

This paper introduces the mathematical analysis and development of the
SCG learning algorithm for the BRNN architecture. The implemented model
and learning algorithm is then tested on the PSSP and TMPTP problems.

2 Methodology

2.1 The BRNN Architecture

The BRNN architecture of Baldi et al. [8] consists of two RNNs and a Feed
Forward Neural Network (FFNN). The novelty of this architecture is the con-
textual information contained in the two RNNs, the Forward RNN (FRNN) and
the Backward RNN (BwRNN). The prediction at step t, for a segment in a
sequence, is processed based on the information contained in a sliding window
Wa. The FRNN iteratively processes the (Wa − 1)/2 residues located on the left
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side of the position t to compute the forward (upstream) context (Ft). Simi-
larly, the BwRNN iteratively processes the (Wa − 1)/2 residues located on the
right side of the position t to compute the backward (downstream) context (Bt).
Hence, the two RNNs are used to implement Ft and Bt. These RNNs correlate
each sequence separately and hold an internal temporary knowledge to form the
network’s internal memory [3].

Fig. 1. The BRNN architecture

The BRNN architecture in Fig. 1 is inspired by the work of Baldi et al. [8].
Layer 0 in Fig. 1 is not an active layer, layers 1 and 2 have a hyperbolic tangent
transfer function, while layer 3 is a softmax output layer which is calculated
based on the result of Eq. 1. Box U stands for input nodes, F for the set of
forward states and B for the set of backward states. The links between boxes
oF and F and between boxes oB and B represent the recursive connections
providing the information of the given number of states of current input U.

oUi = softmax

(
1

2ψ

Nφ∑
j=1

wFij · fi,t +
Nβ∑
j=1

wBij · bi,t +
NhU∑
j=1

wUij · hUi,t

)
(1)

where ψ is the number of training patterns. Nφ, Nβ and NhU are the dimensions
of oF, oB and hU layers, respectively. i stands for the position of a neuron in
oU. wFij , wBij are the connection weights between layer 2 and 3, and wUij

between layer 1 and 3. Finally, fi,t, bi,t and hUi,t are the outputs of each neuron
at time t of oF, oB and oU, respectively.

2.2 Development of the SCG Algorithm for BRNNs

As the Scaled Conjugate Gradient (SCG) learning algorithm [6] has not been pre-
viously developed for the BRNN architecture, we have mathematically analysed
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and developed the corresponding learning formulas and optimisation procedure.
These formulas were based on an unfolded BRNN. Since stationarity is assumed,
the connection weights do not change over time and the unfolding architecture
of the BRNN is as indicated by the work of Baldi et al. [8]. We have used the
straightforward cost function given by 2:

E =
1

2ψ

ψ∑
p=1

s∑
i=1

(yp,i,t − yp,i,t)2 (2)

where s the number of neurons in the output layer, yp,i,t the target output and
yp,i,t the system output for an input pattern p.

The partial derivatives with respect to the weights are hidden in the system
output as usual. Consequently, the general formula of the partial derivative of
E with respect to any weight in Fig. 1 can be written as below:

∂E

∂w
=

1

ψ

(
∂E

∂yp,i,t
· ∂yp,i,t

∂oUt
· ∂oUt

∂w

)
=

1

ψ

(
(yp,i,t − yp,i,t) · yp,i,t · (1− yp,i,t) · ∂oUt

∂w

)
(3)

Finally, based on Eq. 3, we have calculated the derivatives which are used in
the SCG algorithm for training the weights of the BRNN architecture in Fig. 1.
After the partial derivatives of the cost function of Eq. 2 with respect to indi-
vidual weights were calculated, they were directly applied to the SCG algorithm
in the work of Møller [6] and represent the formulas of updating weights in the
unfolded version of the BRNN.

One of the most undesirable difficulties during the training of a RNN is
the vanishing gradient problem. A mechanism introducing shortcut connections
between the forward and backward states of the sequence was used (as in [8]),
forming shorter paths along the sequence where gradients can be propagated.
Therefore, the gradient information at each step t includes a strong signal from
the whole sequence to encounter for the vanishing gradient problem and conse-
quently avoid long range dependencies elimination.

Furthermore, we have introduced a couple of minor modifications on the SCG
algorithm to increase the convergence rate and the ability of the algorithm to
search for the best solution in a complicated error surface of such a network:

1. An Adaptive Step Size Scaling Parameter ScSS was introduced at step 7
of the SCG algorithm (see [6]). We have modified the algorithm’s update weight
vector rule to Eq. 4:

wk+1 = wk + ScSSakpk (4)

where ak is the step size and pk is the search direction. During the first itera-
tions this scalar is high, assuming that the algorithm has identified a direction
to a minimum. Hence, we force the algorithm to use bigger step size in a spe-
cific direction to approach a minimum faster. The adaptive scaling parameter is
exponentially decreasing as the algorithm approaches a minimum to avoid losing
the lowest point of the curve. Furthermore, this parameter is redefined each time
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the SCG algorithm restarts. Empirically, the use of this parameter is mandatory
for training a complicated BRNN architecture with the SCG algorithm.

2. Restart Algorithm Condition: The original SCG algorithm is restarted if
the number of learning iterations surpasses the number of the network’s para-
meters. However, this condition is successful only if the algorithm is used to
optimize a quadratic function. Clearly, in the case of the BRNN architecture this
condition fails because the error surface is more complicated than a quadratic
function. Hence, we have chosen to restart the algorithm only if the training
process develops slowly (improvement in training error <10−7) and after the
constant number of 20 iterations. Furthermore, our algorithm, before a restart,
stores all the weight vectors and the respective training errors. Finally, after the
algorithm reaches the final training iteration, it returns a trained model with
the weight vector which was assigned to the lowest training error. Consequently,
this version of the algorithm is widely exploring the respective error surface and
is less likely to get stuck for a long time in a local minimum.

2.3 Application Domains and Data

High quality datasets for training and validation purposes are mandatory when
constructing a prediction model. Therefore, we have chosen two well known
bioinformatics problems which are suited to the BRNN architecture.

Protein Secondary Structure Prediction: The prediction of a protein’s Sec-
ondary Structure (SS) from its Primary Structure (PS) is an important interme-
diate step to the identification of a protein’s three-dimensional (3D) structure,
which is crucial because it specifies the protein’s functionality. Experimental
methods for the determination of a protein’s 3D structure are expensive, time
consuming and frequently inefficient [8]. A protein is typically composed of 20
different amino acid types, which are chemically connected, folding into a 3D
structure by forming short-, mid- and long-range interactions. When an exper-
imentally determined 3D structure is available, each amino acid residue can
be assigned to a SS class, usually under a commonly accepted scheme: helix
(H ), extended (E ) and coil/loops (L). We use the CB513 [13], a non-redundant
dataset, which has been heavily used as a PSSP benchmark dataset. Multi-
ple sequence alignment (MSA) profiles have been shown to enhance machine
learning-based PSSP, since they incorporate useful evolutionary information
for the encoding of each position of a protein. More specifically, each protein
sequence position is replaced by a 20-dimensional vector, which corresponds to
the frequencies of 20 different amino acid types as calculated from a PSI-BLAST
[12] search against the NCBI-NR (NCBI: http://www.ncbi.nlm.nih.gov/) data-
base.

Transmembrane Protein Topology Prediction: Knowledge of the struc-
ture and topology of Transmembrane (TM) proteins is important since they
are involved in a wide range of important biological processes and more than
half of all drugs on the market target membrane proteins [11]. However, due to

http://www.ncbi.nlm.nih.gov/
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experimental difficulties, this class of proteins is under-represented in structural
databases. Similarly to the PSSP problem, a TMPTP dataset consists of the
proteins’ PS and each amino acid can be assigned to a topology class: inside
a cell (I ), outsite a cell (O) and inside a cell’s membrane (T ). Such a dataset
has been introduced by Nugent and Jones [11] which contained 131 sequences
(TM131) with all available crystal structures, verifiable topology and N-terminal
locations. As in the PSSP problem, MSA profiles have been used to represent a
sequence’s PS.

3 Results and Discussion

The developed SCG learning algorithm for BRNNs has been implemented and
tested on both PSSP and TMPTP problems. To train the BRNNs, we have
used the already mentioned CB513 and TM131 datasets. More specifically, the
model’s input vector was a sliding window on a protein’s PS. The target output
class was the SS class for PSSP and topology class for TMPTP which was
assigned to the segment at the middle point of a sliding window.

A single BRNN has been trained each time. At this stage, we carried out
multiple experiments to tune up our model and extract preliminary results,
which are shown in Tables 1 and 2. One of the most important parameters with
a big impact on the results is the sliding window size. Particularly, we have used
3 window size parameters. Parameter Wa stands for the sliding window size on
the PS sequence. The first (Wa − 1)/2 residues of the sliding window are used
as input to Ft and similarly the last (Wa − 1)/2 residues are used an input to
Bt. The Wc window parameter represents the number of Wa residues which are
located at the center of the window and are used as input to hU . Finally, the
Wfb window parameter represents the number of residues that are used as input
to Ft and Bt at each step. Each one of the 3 window size parameters is multiplied
by 20 which is the length of each amino acid MSA representation. Furthermore,
we had to tune up the parameters that determine the network’s architecture.
The parameter n is the length of the context vectors oF and oB. In addition,
the parameter hn is the number of hidden units in hU layer and similarly hfb is
the number of hidden units in hF and hB layers. We have also used the already
mentioned adaptive step size scaling parameter ScSS. Finally, we have used the
Sfb and Sout, which are the numbers of additional consecutive context vectors
in the future and the past of Ft/BT and Ot, respectively. In all experiments,
the 2/3 of the datasets were used to train the model and the 1/3 for validation
purposes. The performance of our model has been evaluated by the Q3 metric,
which corresponds to the percentage of the correctly predicted residues [14].

Firstly, we have trained the BRNN architecture on the PSSP problem. For
the purpose of tuning up the network’s parameters we have used a subset of
CB513 dataset, which contained 150 randomly selected protein sequences. The
results can be seen in Table 1. After we have tuned up the network architecture,
we have noticed that in order to maximize the algorithm’s performance the three
windows Wa, Wfb and Wc must have values of 25, 3 and 3, respectively. Thus,



Training BRNN Architectures with the SCG Algorithm 129

shorter sliding window does not provide the network with enough information
and longer sliding window cannot be captured by the network. As it can be seen
from experiments 2 and 5 in Table 1, the correct tuning up of the sliding window
parameter Wa can increase the algorithm’s performance more than 3 %. Further-
more, we have noticed that the ScSS parameter should be set to 100 to increase
the convergence rate for this problem. As it can be seen from experiments 1, 3
and 5 in Table 1, this parameter can increase the performance of the algorithm
near to 4 %. The final Q3 metric has also increased by 2 % after we dropped the
Sfb and Sout parameters from 3 to 2, as it can be seen from experiments 6 and
7 in Table 1. Finally, the best Q3 result was 73.90% which has been achieved
in 500 training iterations, the 1/3 of BPTT learning iterations.

Table 1. Experimental results using 1/3 of the CB513 subset as a test set (see text
for description of the parameters)

A/A Wa Wfb Wc ScSS n hn hfb Sfb Sout Q3(%)

1 25 3 3 10 11 11 11 2 2 69.64

2 31 3 3 100 11 11 11 2 2 70.26

3 25 3 3 1000 11 11 11 2 2 69.10

4 25 3 3 100 9 9 9 2 2 67.56

5 25 3 3 100 11 11 11 2 2 73.03

6 25 3 3 100 14 14 14 2 2 73.90

7 25 3 3 100 14 14 14 3 3 71.26

Similarly, we have used the TM131 dataset to train the model with the results
shown in Table 2. The network needed for this problem was much bigger com-
pared to the one used for the PSSP problem. Importantly, the Wfb window had
to be always set to 1, as larger size windows reduced the algorithm’s perfor-
mance. Furthermore, the ScSS parameter was set to 10 to increase more than
2 % the algorithm’s Q3 accuracy, as it can be seen from experiments 2 and 3 in
Table 2. Surprisingly, the network cannot converge with any value more than 0
for the Sout parameter. The best Q3 achieved was 78.85%. This Q3 accuracy
was achieved with no external rules, ensemble methods or filtering techniques,
which will be used in our final methodology and we expect to increase the perfor-
mance of our system. Consequently, our results are lower than the 89 % correct
predictions of Nugent and Jones [11] on the same dataset. This observation shows
that, at least with regards to the output layer, context networks seem to be less
important compared to the PSSP problem. This fact was actually expected, since
TM regions are on average much longer than SS elements in globular proteins.

The preliminary results on the PSSP and TMPTP problems have shown that
a BRNN trained with our version of the SCG learning algorithm can capture pat-
terns and make predictions on complicated sequences where the information in
both upstream and downstream direction is important. Furthermore, the SCG
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Table 2. Experimental results using 1/3 of the TM131 as a test set (see text for
description of the parameters)

A/A Wa Wfb Wc ScSS n hn hfb Sfb Sout Q3(%)

1 25 1 25 10 40 40 40 3 3 54.20

2 25 1 25 10 40 40 40 3 0 72.56

3 25 1 25 100 40 40 40 3 0 70.36

4 25 1 25 10 37 37 37 3 0 73.06

5 25 1 25 10 30 30 40 3 0 77.73

6 25 1 25 10 25 25 25 3 0 78.85

7 25 1 15 10 40 40 40 3 0 70.09

learning algorithm needs much less training iterations than the conventional
BPTT learning algorithm. This is very important if we take into account the
latest developments in the field which demand very big datasets and network
architectures, which consequently increase exponentially the training time. In
addition, many of these methods are used in ensemble methods (as in Baldi
et al. [8]) where the training time is increased even further. Furthermore,
our experiments have shown that in the absence of the ScSS parameter, the
SCG algorithm training the BRNN architecture could not converge (results not
shown).

Importantly, our final methodology will be based on our previous work in
[9,10]. Our current preliminary results, for the PSSP problem, are slightly lower
than the 76 % Q3 accuracy of Baldi et al. [8], as no big datasets, external rules,
ensemble methods or filtering techniques have yet been used, through which we
expect (based on the results of our previous work [9,10]) to increase the final
Q3 accuracy for both the PSSP and TMPTP problems. Moreover, we do not
have in this paper a direct comparison with the results of Baldi et al. [8] because
the dataset used is different. Consequently, the final results of training a BRNN
with SCG on the PSSP and TMPTP problems and the direct comparison with
similar methods will be presented at the conference.
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Abstract. Recurrent Neural Networks (RNNs) are powerful architec-
tures for sequence learning. Recent advances on the vanishing gradient
problem have led to improved results and an increased research inter-
est. Among recent proposals are architectural innovations that allow the
emergence of multiple timescales during training. This paper explores
a number of architectures for sequence generation and prediction tasks
with long-term relationships. We compare the Simple Recurrent Net-
work (SRN) and Long Short-Term Memory (LSTM) with the recently
proposed Clockwork RNN (CWRNN), Structurally Constrained Recur-
rent Network (SCRN), and Recurrent Plausibility Network (RPN) with
regard to their capabilities of learning multiple timescales. Our results
show that partitioning hidden layers under distinct temporal constraints
enables the learning of multiple timescales, which contributes to the
understanding of the fundamental conditions that allow RNNs to self-
organize to accurate temporal abstractions.

Keywords: Recurrent Neural Networks · Sequence learning · Multiple
timescales · Leaky activation · Clocked activation

1 Introduction

Until recently RNNs were mainly of theoretical interest as their initially per-
ceived shortcomings proved too severe to be used in complex applications. One
deficiency that has been reported early on is the vanishing gradient problem [1].
When RNNs are trained with backpropagation, error signals over time vanish
exponentially in RNNs. This has led to multiple highly specialized architectures
such as the Long Short-Term Memory (LSTM [2]). Their success has sparked
a renewed research interest in RNNs, which has led to a number of recently
proposed RNN architectures, including those that try to improve control over
the self-organization of temporal dynamics by learning on multiple timescales.
However, as these novel approaches have not yet been rigorously compared,
the fundamental principles that allow the capturing of dynamics on different
timescales are still unknown.
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In this paper, we therefore aim at contributing to the following research ques-
tion: what are key concepts that allow RNNs to build long-term memory and
learn on multiple timescales? We approach this question by investigating the
Clockwork RNN (CWRNN [3]), which has been shown to allow emergence of
multiple timescales by restricting update frequencies to temporal constraints.
A different method with the same effect is the use of leakage and hysteresis
parameters that constrain the amount of change within a system between time
steps. The concept of leakage is most popularly used in the Echo State Network
(ESN [4]) but has also been shown to improve the Simple Recurrent Network
(SRN [5]). A related concept can be found in the Recurrent Plausibility Net-
work (RPN [6]) which introduces a related hysteresis parameter ϕ to perform
time-averaging. It also has shortcut connections, which provide shorter error
propagation paths for the temporal context layers. Shortcuts have been shown
to allow better training in very deep networks [7]. Both shortcuts and leaky
units are used in the Structurally Constrained Recurrent Network (SCRN [8])
that additionally partitions its layer into modules, similarly to the CWRNN.

As the RPN, SCRN, and CWRNN share similar architectural concepts such
as leakage, shortcuts, and partitioning the hidden layer into modules, their inves-
tigation is of particular interest for studying the effect of these concepts on the
self-organization of the temporal dynamics. We evaluate these architectures on
sequence generation and prediction tasks, using the SRN and the LSTM as a
baseline. Even though the LSTM has no specific time scaling mechanism, it is
included in the experiments due to its reported ability to capture long-term
dependencies.

2 Recurrent Neural Networks

2.1 Recurrent Plausibility Network

The Recurrent Plausibility Network (RPN) was originally developed to learn
and represent semantic relationships while disambiguating contextual relation-
ships [9]. It is based on the state of an unfolded SRN during truncated BPTT
(see Fig. 1(a)), i.e. each hidden layer h has its own set of m context layers ck
(k ∈ {1, ...,m}) which store past activations. The main difference to an unfolded
SRN is the use of temporal shortcut connections for shorter context propagation
paths, making vanishing or exploding gradients less likely (compare Fig. 1(b)).
For time step t, the units of the hidden layer h are activated as follows:

h(t) = fh

(
x(t) Wxh +

m∑
k=1

c(t−1)
m Wmh

)
, (1)

where the vector c denotes the context layers, that are activated by shifting their
contents with c(t)m−1 = c(t−1)

m . The respective context activation for units in cm
is further constrained under the hysteresis parameter ϕ [10]:

c(t)k =

{
(1 − ϕn) · h(t−1) + ϕ · c(t−1)

k iff k = 1,

c(t−1)
k−1 otherwise

(2)
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Fig. 1. Comparison of investigated RNN architectures. Figure (a) shows an SRN
unfolded in time. The RPN (b) extends the SRN with its temporal shortcuts and

the hysteresis ϕ. In case of a deep RPN, each vertical layer h
(t)
n can have its own hys-

teresis value ϕn. The SCRN (c) has an additional layer s(t) that learns slower than in
h(t) due to its high leakage α = 0.95. The modules Tk of the CWRNN (d) are sorted
by increasing numbers from left to right and are only updated for t mod Ti = 0.

The hysteresis mechanism allows for a finer adjustment of context memory than
in the SRN. Rather than accumulating past activations in a single feedback loop,
the network is able to specifically learn the contribution between specific time
frames due to the temporal shortcuts.

2.2 Structurally Constrained Recurrent Network

The Structurally Constrained Recurrent Network (SCRN) was recently proposed
by Mikolov et al. [8]. The motivation behind the architecture is to achieve spe-
cialization of hidden layers by partitioning them into parallel “modules” that
operate independently and under distinct temporal constraints. This theoreti-
cally allows to train on multiple timescales. While the left path in the SCRN
equals a SRN with a regular hidden layer h(t), the additional module s(t) has
units with different temporal characteristics (compare Fig. 1(c)). It is initialized
with the recurrent identity matrix and its updates constrained by a leakage para-
meter α ∈ [0, 1]. The authors set this leakage to 0.95, causing the states to change
on a much slower scale than in h(t). Similarly to the RPN, this architecture makes
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use of shortcut connections (Wsh) that allow h(t) to access long-term context
which is learned in s(t). The update rules of the SCRN are as follows:

s(t) = (1 − α)Wxs x(t) + α s(t−1), (3)

h(t) = fh(Wsh s(t) + Wxh x(t) + Whh h(t−1)), (4)

y(t) = fy(Why h(t) + Wsy s(t)), (5)

where fh and fy are the respective activation functions for the hidden and output
layers.

2.3 Clockwork Recurrent Neural Network

The discussed idea of partitioning the hidden layer into parallel modules with dis-
tinct temporal properties can also be found in the Clockwork Recurrent Neural
Network (CWRNN). However, the main difference is that multiple timescales
are not achieved by varying leakage but rather an external clock that determines
when a module gets updated. This means that a module k is only updated if its
clock period Tk satisfies the criterion t mod Tk = 0. Otherwise, the module is
inactive in which case the previous activation h(t−1)

k gets copied over:

h(t)
k =

⎧⎪⎨
⎪⎩

fh

(
x(t) Wxk +

n∑
l=k

h(t−1)
l Wlk

)
iff t mod Tk = 0,

h(t−1)
k otherwise

(6)

An additional constraint is that Tl > Tk for l < k, i.e. the modules are ordered
by increasing numbers from left to right (compare Fig. 1(d)). Therefore, modules
on the left are updated more frequently than those on the right. Consequently,
modules with greater periods (on the right) will self-organize slower and to long-
term dependencies while those with small periods (on the left) change more
often, focusing on short-term dependencies.

3 Experiments

All five architectures, the SRN, RPN, SCRN, CWRNN, and LSTM have been
evaluated on two tasks; sequence generation of a sinusoid wave and sequence pre-
diction of words created by embedded Reber grammar. They have been trained
with RMSProp, which divides the current gradient by a sliding average of recent
gradients [11]. Momentum was empirically set to 0.9 and the networks trained
for a maximum number of 5000 epochs using early stopping. Weights were ini-
tialized using normalized initialization, sampling from N (0, 1/

√
n + m) where n

is the number of incoming and m the number of outgoing weights in the respec-
tive layer [12]. Linear and non-linear activation (tanh) were explored. The forget
gate bias was initialized with a higher value of 2 to avoid initial forgetting [13].
All other hyperparameters were set empirically for each network and task. Each
setup was run 100 times with different random initializations.
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3.1 Sequence Generation

In the first task, the networks have to learn how to generate a target sequence.
They receive no input while a single sequence is sequentially presented as the
target. This sequence of length 256 is a composition of three different sine waves,
normalized to [−1, 1]. A single output unit yt encodes the respective sequence
value at time step t. All networks were trained to minimize the mean squared
error (MSE) with a learning rate of γ = 10−4 and 64 hidden units. For the
RPN, a context width m = 5 and m = 15 was explored with hysteresis values
of ϕ ∈ {0.1, 0.2, 0.5}. Two variants of the SCRN were trained: (i) a constant
leakage of α = 0.95 and (ii) an adaptive leakage αt that is trained as described
in [8]. For the CWRNN, 8 equally sized modules with clock periods growing
by the powers of 2 (P1 = {1, 2, 4, 8, 16, 32, 64, 128}) are compared with a more
coarse setup of 4 modules with the periods P2 = {1, 4, 16, 64}.

The results for the best networks are depicted in Fig. 2. The CWRNN gener-
ates the most accurate sequences, which indicates an ability to capture the under-
lying subfrequencies, learning multiple timescales. It was also found that the
investigated clock-timings P1 (8 modules) and P2 (4 modules) perform equally
well. The SRN on the other hand merely captures the most dominant subfre-
quency of the sequence while the LSTM gives a sliding average. The SCRN
always converges to the mean, being the only network which seems to be com-
pletely unable to learn this task. Similar to the SRN, the RPN is able to capture
only one subfrequency. For the tested ϕ values, only 0.1 and 0.2 lead to con-
vergence that is not located around the mean. There is also a slight difference
that can be observed between these values: increasing ϕ from 0.1 to 0.2 causes
an increasing phase shift, i.e. the prediction gets increasingly delayed over time.
This effect can be explained by the fact that the temporal context, which is
time-averaged by the hysteresis, will span a larger time window with growing
hysteresis values.

3.2 Embedded Reber Grammar

In the second task, the networks are trained to sequentially predict the next
symbol produced by Embedded Reber Grammar (ERG). The ERG is a well-
known test for RNNs, since a SRN cannot be trained with BPTT to learn the
grammar due to the presence of long-term dependencies. It is defined as follows:

S → btRte | bpRpe A → sA | x C → xBD | s

R → btACe | bpBDe B → tB | v D → pC | v

We randomly generate two different sets with respective sequence lengths of 20
and 30. Both data sets consist of 250 sequences and are further split into 60 %
training, 20 % test, and 20 % validation sets for cross validation. Each symbol
is encoded with a feature vector of size 7 (1 unit per symbol), while softmax
activation in the output layer yields the symbol probabilities. The minimized loss
function is the Kullback-Leibler divergence [14]. For all networks, the number
of hidden units was set to 15. For the SCRN, a learning rate of γ = 0.01 was
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Fig. 2. Top: Sequences with the lowest MSE for the best trials. Generated sequences
(solid lines) are plotted against the target sequence (dotted, red line). Bottom: MSE
for each network. Boxes show 25 % and 75 % quartiles as well as the median (black
line). The shown best trials were achieved with ϕ = 0.2, m = 15 for the RPN and
P2 = {1, 4, 16, 64} for the CWRNN (P1 produced nearly identical results). (Color
figure online)
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Fig. 3. Average edit distances (number of wrongly predicted symbols) for sequences
of length |S| = 20 (left, blue) and |S| = 30 (right, green). Boxes show 25 % and 75 %
quartiles as well as the median (black line). The best RPN trials were achieved with
ϕ = 0.2. (Color figure online)

found to be optimal, whereas γ = 10−4 worked best for the other architectures.
The CWRNN’s hidden layer was partitioned into 5 modules with the periods
P = {1, 2, 4, 8, 12}. All other hyperparameters are set as in the first task.

The results for the best trials are depicted in Fig. 3. When trained with
sequences of length 20, the SCRN with α = 0.95 emerges as the best perform-
ing architecture, whereas the CWRNN seems to have the most difficulties. The
LSTM shows an average accuracy, while the RPN seems to be less prone to bad
initialization than the SRN. Especially for longer sequences, a large number of
SRNs yield considerably more prediction errors than all other networks, which
in turn share a similar overall performance.

4 Discussion

In this paper, we have explored various design concepts that allow emergence of
multiple timescales and long-term memory in RNNs. Leaky and clocked activa-
tions have been investigated together with partitioning hidden layers into mod-
ules and using shortcut connections by comparing a number of architectures on
the tasks of sequence generation and learning embedded Reber grammar.

Our results show that parallel hidden layers, which learn under different
temporal constraints can lead to an emergence of multiple timescales in RNNs.
Furthermore, shared weights in the form of shortcut connections (such as in the
SCRN and CWRNN) allow units which self-organize to short-term context, to
take long-term dependencies into account from specialized units that operating
on a larger timescale. While the SCRN achieves this by means of leakage, the
CWRNN utilizes clocked module activations. For the sequence generation task,
the CWRNN was the only architecture to learn the decomposition of the trained
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sinusoid wave into all its subfrequencies. All other networks converged to the
mean or a single subfrequency. This suggests that the CWRNN is able to store
the entire sequence in the memory of the clocked modules, although it has half
as much parameters as the SRN [3]. For the second task, the complete opposite
can be observed; the SCRN is able to outperform all other networks for sequence
lengths of 20 while the CWRNN has difficulties. Our findings suggest that the
SCRN and RPN seem to work better for discrete, symbolic long-term decisions
while the CWRNN is better at decomposing real-valued signals. Partitioning
hidden layers with distinct temporal constraints has shown to be a viable method
to capture different timescales. Future research should therefore concentrate on
further exploring time scaling mechanisms on more challenging tasks such as
sequence classification or language modeling.
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Abstract. This paper investigates Recurrent Neural Networks (RNNs)
in the context of virtual High-Throughput Screening (vHTS). In the pro-
posed approach, RNNs, particularly Bidrectional Dynamic Cortex Mem-
ories (BDCMs), are trained to derive the chemical activity of molecules
directly from human readable strings (SMILES), uniquely describing
entire molecular structures. Thereby, the so far obligatory procedure of
computing task-specific fingerprint features is omitted completely. More-
over, it is shown that RNNs in principle are capable to incorporate con-
textual information even over entire sequences. They can not only gain
information from this raw string representation, they are also able to pro-
duce comparably reliable predictions, i.e. yielding similar and partially
even better AUC rates, as previously proposed state-of-the-art methods.
Their performance is confirmed on different publicly available data sets.
The research reveals a great potential of RNN-based methods in vHTS
applications and opens novel perspectives in computational drug design.

Keywords: Recurrent Neural Networks · Bidirectional dynamic cortex
memories · virtual High-Throughput Screening · Sequence learning

1 Introduction

Virtual screening refers to the computational processing of molecules in the field
of pharmacy to predict their suitability as potential new drugs. To this end,
machine learning methods are valuable tools in the process of ligand-based drug
design. They can build models on the basis of existing libraries of molecular
compounds with known effect on other macro-molecules in the human body. In
general, a virtual screening problem can be described as a set of compounds that
were already tested against a certain biological target, i.e. whether it is labeled as
active or not. Compounds with unknown activity can be tested with said mod-
els to predict their fitness based on the similarity or consensus of their features
with the ones the machine learning model regards as important. Virtual High-
Throughput Screening (vHTS) is a well explored field, in which several machine
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learning methods such as support vector machines [10] (SVMs), Bayesian learn-
ing [2], and Artificial Neural Networks (ANNs) [20] are frequently employed.

Particularly, SVMs perform very well on molecular 2D features presented as
fingerprint bit vector, which encodes the presence or absence of a certain sub-
structure in a compound. Popular representatives of these fingerprints are the
connectivity fingerprints ECFP and FCFP. However, computing fingerprints gen-
erally causes a loss of information. Accordingly, selecting a particular fingerprint
and finding a well suited parametrization requires domain-specific investigations
to yield reliable results, which is usually the most crucial part in vHTS. Even
though preliminary experiments showed that ANNs have difficulties to keep up
with SVMs using the upper mentioned bit features (they tended to overfit),
they have an important property, which is interesting regarding a more general
methodology: they can implicitly compute their own features. At the base of the
feature computation process in vHTS, molecules are given as encoded represen-
tations, which, on the one hand, carry the structure of the molecules but, on
the other hand, provide a systematical processing, i.e., feature extraction. One
such commonly used representation are SMILES strings [21]. SMILES strings
convey the full 2D chemical information and thus allow unique descriptions of
molecules. Their syntactical structure follows simple grammatical rules, making
it easy to interpret them – they are even human readable. This language-like,
essentially sequential representation is the starting point of our investigation.

In the last decade, Recurrent Neural Networks (RNNs), foremost Long Short
Term Memories [11], have been shown to unfold impressive capabilities in the
context of sequential pattern recognition. Since their upcoming, LSTMs were
proven to be the first neural network architecture ever capable of learning intrin-
sic grammatical concepts, such as context free and context sensitive grammars
[7], just from basic examples using simple gradient descent. Nowadays, LSTM-
like methods are successfully applied even in one of the so far most ambitious
sequence mapping applications, namely, automatic text translation [19]. Follow-
ing these findings, the main contribution of this paper is to answer the question
of whether RNNs are suitable for processing SMILES strings in vHTS scenarios
directly without any previous task-specific feature computation. To the best of
our knowledge, this has not been done yet. Indeed we show, that RNNs, in prin-
ciple capable to incorporate contextual information even over entire sequences,
can not only gain information from this “raw” string representation, they are also
able to produce comparably reliable predictions, i.e. yielding similar AUC rates,
as previously proposed state-of-the-art methods. Their performance is confirmed
on different publicly available data sets. Thus, our research reveals a great poten-
tial of RNN-based methods in vHTS applications and opens novel perspectives
to computational drug design.

2 Bidirectional Recurrent Neural Networks

In contrast to traditional RNNs, the before mentioned LSTM model [11], which
can be seen as a differentiable memory cell, overcomes the problem of vanish-
ing gradients. LSTMs are capable to handle even very long time lags up to 10 000
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time steps. Due to this and other capabilities, e.g., precise timing, precise value
reproduction, or counting, LSTMs unleash an impressive learning potential.

In this paper we used a special LSTM type called Dynamic Cortex Memory
(DCM) [12], which provides a gate communication infrastructure. A DCM block
is an LSTM block with forget gate [5] and peep-hole connections [6] but also con-
sists of local self-recurrent connections of the gates (gate state) and connections
from each gate to each other gate within one block (cortex) enabling the gates
to share information and, thus, avoid redundant learning. For some problems
DCMs were shown to converge faster during training and produce even better
results than vanilla LSTMs [12,13].

Classical recurrent network architectures are considered as unidirectional –
they compute in a temporal-causal way, since input sequences are presented to a
network only in forward direction. Thereby, the input history is accumulated in a
network’s “past context”. However, in some cases a past-context only is not suffi-
cient enough to learn the problem satisfactorily. The information of what-comes-
next provided by a “future context” might be helpful to recognize the local,
possibly disturbed part of an input sequence. Obviously, such a future context
violates causality, since it can only be entirely provided, if the input sequences
are also entirely given at the point of computation. The concept of Bidirectional
Recurrent Neural Networks (BRNNs) introduced in [16] incorporates recurrent
computing with both past context and future context in the following manner.
Consider an RNN with just a single recurrent hidden layer, which we refer to
as forward hidden layer. Now, a second recurrent hidden layer – the backward
hidden layer – is added and connected with the input layer as well as with the
output layer but explicitly not with the forward hidden layer. The computation
in a BRNN proceeds in three phases. First, a given input sequence is presented
to the input layer regularly in forward direction. Only the forward hidden layer
computes and all its activations for each time step are stored. Second, the input

I

F1 F2

B1 B2

K

Fig. 1. Illustration of the bidirectional cross-architecture (xBRNN). Each arrow rep-
resents a full connection scheme. Like in one-layered bidirectional architectures, entire
activation sequences are computed layer-wise. Differently, the forward context (pro-
vided by F1) and backward context (provided by B1) are already fused in both
second hidden layers F2 and B2 and not in the output-layer. Afterwards again past-
respective and future-respective activation sequences are computed separately by F2

and B2 respectively and then finally incorporated by the output layer K.
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sequence is presented in backward direction. Now, only the backward hidden
layer computes and all its activations are stored as well. Third, the output layer
produces the output sequence by fusing the information coming from the past
provided by the forward hidden layer and the information coming from the future
provided by the backward hidden layer at each time step. The idea of bidirec-
tional layers was later applied to LSTM networks analogously in [8]. In this
paper we particularly focus on bidirectional DCMs (BDCMs) [13]. Moreover, it
should be mentioned that the best results were achieved using a bidirectional
cross-architecture (xBRNN) with two forward and two backward hidden lay-
ers as pointed out in Fig. 1. This architecture provides two-stage bidirectional
sequence processing.

3 Experimental Results

In this study we used four data sets to compare the machine learning methods.
The first data set was produced by Fontaine et al. [4] and consists of 435 factor
Xa inhibitors, 156 low-active compounds as decoys and 279 highly active ones.
Because of its plainness from the machine learning point of view, we used this
data set as baseline to validate our experimental setup. The remaining three
data sets originate from a study of Heikamp et al. [9] and were already used in a
study of Dörr et al. [3]. They describe the molecular activity against three bio-
logical targets of the cytochrome P450 family. For our proof of concept, we only
extracted the compounds that are active against one of the three targets or not
active at all into the three separate data set CYP2C19 (152 actives), CYP2D6
(294 actives), and CYP3A4 (556 actives), with 2901 decoys each. Compounds
with an erroneous SMILES representation were omitted.

For the SVM, we computed the wide-spread circular topological extended-
connectivity fingerprint (ECFP) [15] with a bond diameter of 6 and a hashspace
of 220 bits with the Java library jCompoundMapper [10] and applied the Tan-
imoto kernel. We chose the range {0.1, 1, 10, 100, 1000} for the regularization
parameter C. The RNNs were given converted SMILES [21] strings with explicit
hydrogens generated with CDK [17,18]. On all data sets we used a two layered
BDCM cross-architecture in which each of the four hidden layers consisted of
10 DCM blocks, since it was identified as consistently well performing in pre-
liminary experiments. The architecture had only one sigmoidal output neuron
and the cross-entropy error was used as objective function for BPTT. The learn-
ing rate was set to 0.001 and the momentum rate to 0.8. For the RNN related
experiments we used the JANNLab neural network framework [14].

3.1 String Representation for RNNs

A SMILES string is a human readable description of a molecule’s composition
and structure. The vocabulary of smiles describes the atom and bond types
occurring in molecules, as well as their configuration via some grammar rules.
Therefore, it is a language for molecular description and can be used to train
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RNNs for structure-activity prediction. A benefit of SMILES is, that it offers a
unique string for each molecule besides several generic ones. This allows for a
setup of test sets with only unique strings, since each molecule has always the
same unique SMILES expression. The training set can then be filled with addi-
tional generic strings for each molecule that effectively are synonyms. The RNN
is presented with the consecutive symbols of a SMILES string transformed into
an input pattern for each symbol. Table 1 describes our conversion of SMILES
into RNN patterns. Figure 2 exemplarily shows the 2D image of an arbitrary
molecule from the CYP2C19 data set and its translation. In some cases, mul-
tiple properties can apply simultaneously or context is directly assigned to the
respective symbol in a string. For instance, a carbon atom contained in aromatic
ring system results in the three properties carbon atom, aromatic atom, and ring
membership. We tried to process the SMILES symbols as much as possible in
the order given in each string. However, hydrogens atoms are initially counted,
removed from the string, and directly assigned to the respective heavy atom
they are attached to. This approach is similar to the ECFP fingerprint, that
also assigns the number of attached hydrogens to heavy atoms. Square brackets
also enclosing the formal charge are not treated as solitary symbol, but their
properties are assigned to the associated atom.

Table 1. Conversion of SMILES symbols

Property Symbol(s) Conversion

Atom type C, N, O, S, Neuron for each chemical element in a data
set

Bond type −,=, # Neurons for the bond type (single, double,
and triple)

Aromaticity c, n, o, s, Neuron for the aromaticity of atoms

Attached hydrogens [H] Neuron for the number of attached
hydrogens

Atom charge [N+] Neuron for the pos./neg. charge of an atom
(here: nitrogen)

Branching (and) Neurons for the start or closure of a branch
in a molecule

Ring number 1,..., n 2 neurons for the start and end of a cyclic
structure

Ring membership c1 [...] c1 Neuron for the membership of an atom in a
cyclic structure (here: a carbon opens a
ring and another closes it)

We applied a 5-fold cross-validation on each data set resulting in five dis-
tinct subsets. Four of those parts were used for training and the remaining fifth
for testing. The cross-validation produced the same splits for SVM and RNN
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Fig. 2. 2D depiction of a representative molecule from the CYP2C19 data set and
its computation with a bidirectional architecture. First, the hydrogens are removed
from the original string ([H]OC(=O)C([H])([H])c1c([H])nc([H])c([H])c1[H]) and inter-
nally assigned to the respective heavy atoms. Then, each symbol is transformed into a
vector representation, which can be fed into the network (there are particular input neu-
rons for each possible symbol and related conditions). The transformed input sequence
is presented in forward direction as well as in backward direction. The bidirectional
contextual information is fused in the output layer of the neural network at each com-
putation step. The overall prediction for a sequence is the mean output accumulated
over the entire output sequence.

whereby the results are directly comparable. In drug discovery, getting an early
enrichment of active compounds is considered to be important in order to save
time and money. Hence, we used the area under the ROC curve (AUC) as per-
formance metric. It shows how likely an active compound will be ranked higher
than an inactive one.
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3.2 Evaluation

The results of our virtual screening experiments can be seen in Table 2. We out-
lined the best AUC for each method on every fold and the overall AUC on each
data set. Regarding the RNN two results are shown for each data set, whereas
(u) denotes training based on unique strings only and (us) refers to training with
a unique string and single synonym for each compound. The results of the vHTS
on the Fontaine data set show that RNNs together with the proposed SMILES
conversion are in general capable of learning the basic chemical properties to
distinguish active compounds from decoys, since they perform comparably well.
On the CYP2C19 data set the RNNs performed even better than the SVMs.
Conclusively, it is considerable that training with synonyms can improve the
results.

Table 2. Comparison of RNNs and SVMs on various data sets.

Data set Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean AUC

Fontaine SVM 1.0 1.0 0.9994 0.9624 0.9858 0.9895

RNN (u) 0.9941 0.9815 0.9815 0.9259 0.9525 0.9671

RNN (us) 0.9935 0.9988 0.9665 0.9366 0.9414 0.9674

CYP2C19 SVM 0.7936 0.7717 0.8375 0.7650 0.7598 0.7855

RNN (u) 0.8183 0.7274 0.818 0.7790 0.7429 0.7771

RNN (us) 0.7916 0.8017 0.8291 0.7805 0.7582 0.7923

CYP2D6 SVM 0.9211 0.9103 0.8842 0.8601 0.8879 0.8927

RNN (u) 0.8872 0.8958 0.8424 0.8624 0.8428 0.8661

RNN (us) 0.8942 0.9001 0.8557 0.8661 0.8730 0.8778

CYP3A4 SVM 0.9219 0.9088 0.9222 0.9086 0.8870 0.9097

RNN (u) 0.8281 0.8695 0.8496 0.8789 0.8521 0.8556

RNN (us) 0.8357 0.8812 0.8596 0.8825 0.8551 0.8628

4 Conclusion

We showed that RNNs can successfully be trained with nothing but the informa-
tion directly contained in SMILES strings without any parametrization like in
other feature extraction methods. With this, a performance can be achieved in
virtual high-throughput screening that is comparable to the frequently used com-
bination of SVMs with connectivity fingerprints. It should be possible to further
increase the performance by tweaking the RNN structure and the conversion of
the SMILES strings. The toxicity and mutagenicity of molecular compounds can
in some cases be decided with molecular similarity but often depends on certain
patterns. In this case, our method should have an advantage in predicting such
harmful properties of molecules.
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It is also conceivable to transfer our setup to multi-target screening experi-
ments, that were previously conducted with structured SVMs [1,3]. In this case,
a machine learning method is present with the same features as for single target
screening, but each molecular compound is associated with the labels for several
biological targets at once. The task is then to predict the activity profile of each
compound against all targets simultaneously.
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Abstract. This paper investigates inverse recurrent forward models
for many-joint robot arm control. First, Recurrent Neural Networks
(RNNs) are trained to predict arm poses. Due their recurrence the RNNs
naturally match the repetitive character of computing kinematic for-
ward chains. We demonstrate that the trained RNNs are well suited to
gain inverse kinematics robustly and precisely using Back-Propagation
Trough Time even for complex robot arms with up to 40 universal joints
with 120 articulated degrees of freedom and under difficult conditions.
The concept is additionally proven on a real robot arm. The presented
results are promising and reveal a novel perspective to neural robotic
control.

Keywords: Recurrent Neural Networks · Dynamic Cortex Memory ·
Neurorobotics · Inverse kinematics · Robot arm control

1 Introduction

Moving robotic arms requires typically forward as well as inverse kinematic con-
trol and planning. Planning trajectories of robotic arms in high dimensional
configuration space is nontrivial. This planning process gets even more diffi-
cult under the objective to obtain feasible, smooth and collision free trajectories
or if one includes orientation constraints, for example moving a cup of coffee
without spilling. Consequently, in some cases planners fail to find a solution for
given problem. State-of-the-art algorithms like Rapid Exploring Random Trees
[5] or the Covariant Hamiltonian Optimization Motion Planner [12] need several
hundred milliseconds to several seconds to plan trajectories, depending on the
complexity of the planning task.

In this research we investigate Recurrent Neural Networks (RNNs), particu-
larly Dynamic Cortex Memorys (DCMs) [7,8], for computing inverse kinematics
of robot arms, particularly with many joints. More concretely, we learned to esti-
mate poses for given arm configurations with RNNs, which match the sequential
nature of computing kinematic forward-chains. Back-Propagation Through Time
(BPTT) is used to to generate the inverse mapping. We show that the presented
approach can handle arms even with up to 120 articulated degrees of freedom
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 149–157, 2016.
DOI: 10.1007/978-3-319-44778-0 18
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(DoF) and that it also works on real robot arms. Handling robot arms with many
DoF have studied, e.g., by Rolf et al. in [9] in which the inverse kinematics of
a bionic elephant trunk was learned, making use of known (explored) mappings
from target space to configuration space.

2 Methodology

Our first step towards gaining inverse kinematics is to train a recurrent forward
model. Particularly, the neural network must first learn to estimate end-effector
poses based on configuration vectors, i.e. joint angles. Therefore, a set of configu-
ration vector and pose pairs is required. When the mathematical forward model
of the arm is known, samples can be computed directly. Otherwise, another feed-
back mechanism providing end-effector poses is required, for instance, a tracking
system. The starting point is a general arm model with universal joints, each
providing a yaw-pitch-roll rotation at once with three DoF. Note that this proce-
dure can later be applied to realistic and more specific arms, which usually have
only one DoF per joint. On the other hand, the configuration commands must
not necessarily be angles, but can also be, for instance, muscular contraction
forces, as used in octopus-arms [11].

2.1 Dynamic Cortex Memory Networks

A DCM [7,8] is in principle an LSTM with forget gate [2] and peephole connec-
tions [3], but additionally provides a communication infrastructure that enables
the gates to share information. This infrastructure is established through two
connection schemes. The first scheme is called cortex and connects each gate
with every other gate. The second scheme equips each gate with a self-recurrent
connection providing a local gate-state. In the original study [7] it was pointed
out, that these two schemes used in combination lead to a synergy effect. In
comparison with an LSTM block, a DCM block has nine additional connections
that are all weighted and, hence, trainable.

Beyond the structural modification, DCMs are used exactly like LSTMs and
are trained in the same manner. In this paper all recurrent networks are trained
using gradient descent with momentum term, whereas the gradients are com-
puted with Back Propagation Through Time (BPTT) [10]. The presented exper-
iments were performed using the JANNLab neural network framework [6].

2.2 Learning the Forward Model

Let us consider an arm with n universal joints. The three angles for the j-th
joint are given by a vector ϕ(j) ∈ [−π, π]3. We refer to the entire sequence for
all joints here as configuration state denoted by Φ. Let now M be the forward
model of the robot arm, which maps a configuration state to the corresponding
end-effector frame (denoted by N) relative to the base frame (denoted by 0)

Φ =
(
ϕ(1), . . . ,ϕ(n)

)
M�−→ 0

NA =
[
0
NR 0

Np
0 1

]
, (1)
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where 0
NA ∈ R

4×4 can be decomposed into the rotation, i.e., the orientation of
the end-effector, given by an orthonormal base 0

NR ∈ SO(3) ⊂ R
3×3 and the

translation, i.e., the position of end-effector, given by 0
Np ∈ R

3. It is important
to mention that M also considers the lenghts of the segments and other possible
offsets. They are, however, left out in the formulation, because they are constant
and, moreover, the neural networks do not need them for learning the forward
model. Preliminary experiments indicated that constant translations (joints off-
sets etc.) can be deduced by the networks using trainable biases. Given such
an observable model, our first objective is to train an RNN to become a neural
approximation of M , able to produce pose estimates 0

NÃ for given configuration
states. In the case of universal joints there are three variables per joint. At this
point, the key aspect of the recurrent forward model comes into play: each joint
transformation is considered as a “computing time-step” in the RNN. Accord-
ingly, the RNN requires then only three input neurons, fully independently from
the number of joints. The angle triples are presented to the network in a sequen-
tial manner. Due to this, the network is forced to use its recurrence to handle the
repetitive character of computing chains of mostly very similar transformations.
This forward computing procedure is illustrated in Fig. 1.

Fig. 1. The RNN based forward computation. The angle-triples of the joints are inter-
preted as a sequence. One computation step in the RNN is associated with a certain
joint (3 rotations) and, implicitly, with its corresponding segment (translation). Thus,

each hidden state x
(j)
h of the RNN at time step j is computed based on the associated

angle triple ϕ(j) and the previous hidden state x
(j−1)
h with x

(0)
h =0. The output of the

RNN after n time steps is the pose estimate with regard to the given angles.

While the position can be represented directly using three output neurons,
there are several options to represent the orientation. For this proof-of-concept
we used a vector-based representation of the two base axes z and x, which worked
significantly better than, e.g., 3 rotation angles. Thus, the orientation requires
six output neurons such that the RNNs have overall nine linear output neurons,
whereas we denote the final output vector (after n computing steps) of an RNN
by y ∈ R

9 in which the first three components encode the position estimate 0
N p̃

and the last six components encode the orientation estimate 0
NR̃. In the long

run, however, it could make sense to use a quaternion-based representation in
combination with a special output layer providing normalized outputs directly.
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2.3 Inverse Recurrent Model

During training of the forward model, the network learned to encode and decode
the kinematic behavior of the robot arm using an internal representation – a
recursive superimposition of sigmoidals – that is possibly a simplification of
the “real” kinematic relationships. To gain the inverse mapping, we utilize the
backward-pass of the network, namely, we back-propagate through time a change
in the output space. Note that a similar idea was used earlier for inverting feed-
forward networks in [4]. This allows us to yield a direction in the input space
in which the input must be adapted such that the output gets closer to the
desired output, i.e., the target pose. In an iterative process, starting from any
possible configuration state, when following the negative gradient through the
configuration space, we can obtain a possible solution for the inverse kinematics.
Let Φ be the current configuration state from which we start computing the
inverse kinematic and let 0

N

∗
A be the target pose. First, we perform a forward

pass with the RNN, yielding a pose estimate 0
NÃ with respect to Φ. Second, we

present the target pose 0
N

∗
A as the desired output, like in a regular training step,

and perform the backward pass, which propagates the influence to the output
discrepancy (loss) L reversely in “time” though the recurrent network. Third,
we need to derive the influence of each input to L. Since all δ

(j)
h are known we

can apply the chain rule as a step upon BPTT to yield

∂L
∂ ϕ(j)

i

=
H∑

h=1

[
∂net

(j)
h

∂ ϕ(j)
i

∂L
∂net

(j)
h

]
H∑

h=1

wihδ
(j)
h . (2)

This procedure of computing the input gradient joint-wise is illustrated in Fig. 2.
In LSTM-like networks the gradient can be kept more stable over time during
back-propagation, which plays obviously a major role for the proposed method,
particularly for arms with many joints, since traditional RNNs were not able to
learn the forward model precisely. Fourth, we update Φ by simply applying the
rule

Φ(τ + 1) ←− Φ(τ) − η∇Φ(τ)L + μ [Φ(τ) − Φ(τ − 1)] (3)

where τ denotes the current iteration step, η ∈ R is a gradient scale factor
(cf. learning rate in gradient descent learning). Note that large step size η >
0.5 may cause oscillations during this process. Optionally, we added the last
update step as momentum scaled with the rate μ ∈ R (i.e., μ ≈ 0.5), which
results in a faster convergence. The entire procedure is repeated until the current
pose estimate is sufficiently close to 0

N

∗
A. The proposed method can be applied

offline, where a full solution is searched first and then the controller interpolates
towards it, or online, where the search process is (partially) synchronized with the
arm movement, whereas the motion-trajectory basically represents the gradient-
guided trajectory in configuration space.

A drawback of the approach is that the accuracy of potential solutions is lim-
ited to the accuracy of the neural forward model. However, this can be compen-
sated if the “real” pose of the robot arm with respect to a given Φ is accessible
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Fig. 2. Inverse computing using BPTT. After an input sequence (the current state
of the arm) is presented, the discrepancy between the output and the desired pose is
back-propagated through the network.

either via the exact mathematical forward model or another feedback provided.
The idea is as follows: Instead of presenting the desired target, encoded as a
vector z ∈ R

9 analogously to y in Sect. 2.2, we present a “modified” version z̃.
Let u ∈ R

9 be the true current pose, which encodes 0
Np in the same manner, we

compute z̃ with respect to a given Φ through

z̃ =
[

[yi + γ1(zi − ui)]1≤i≤3

[yj + γ2(zj − uj)]4≤j≤9

]�
, (4)

where γ1, γ2 ∈ [0, 1] are additional scaling factors weighting the influence of the
position discrepancy and the orientation discrepancy respectively. The modifi-
cation causes the networks to converge towards the real target pose.

3 Exerimental Results

The results presented in this section are based on four different simulated arms
with 5, 10, 20, and 40 universal joints. The rotations along the segment axis
z are restricted to angle range [−π/4,+π/4,], whereas both orthogonal rotations
(x, y) are restricted to the angle range [−π/2,+π/2]. A larger angle range for
the z rotation caused problems during earlier experiments and we hence limited
the range as stated above for the moment. To learn these arms 20, 000 random
configurations and associated poses are used. To show that the approach also
works on a real robot arm, we additionally included a CrustCrawler manipulator
in our experiments. This is a light-weight, low budget manipulator with 9 Robotis
Dynamixel servomotors, which we used in a four articulated DoF setup. For
training also 20, 000 random poses were computed using the Trac-IK kinematic
plugin [1] for ROS MoveIt1. Note, that only one parameter per computation step
is required, whereby we do not have to distinguish the rotation axis – the correct
association is ensured by the trained network – such that we can directly use
the angles given in DH (Denavit-Hartenberg) notation. It should be mentioned

1 ROS MoveIT see http://moveit.ros.org.

http://moveit.ros.org
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Fig. 3. Convergence (average MSE over 100 random samples) towards target poses for
different arm models during 500 iterations.

that the position values in all experiments were normalized such that each arm
has a unit-less length of 1.

The experiments are based on RNNs with two hidden layers, each consisting
of 24 DCM blocks for the universal arms and 20 DCM block for the CrustCrawler,
respectively. In both architectures each hidden block contains 3 inner cells and
has variable biases for cells and gates. Further, each hidden layer is not recur-
rently connected to itself, but both hidden layers are mutually fully connected.

Fig. 4. The first two rows show the movement towards the target pose (blue) for a
20-joint arm (top) and a 40-joint arm (middle). In the bottom row it is shown that
inverse kinematics can be produced even under difficult conditions (from left to right):
Unreachable poses, heavily screwed, locked joints.(Color figure online)
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This was the best architecture we discovered in preliminary investigations. Dur-
ing training, the learning rate was repeatedly decreased every 20 epochs (from
0.01 over 5·10−3, 10−3, 5·10−4, 10−4, 5·10−5 to 10−5) and the momentum rate
was fixed to 0.95. However, with 10, 20, and 40 joints there was an issue con-
cerning the covered angle ranges within the training samples. With increasing
the number of joints, the learnable angle ranges descreased. We figured out that
for those arms the forward model can be significantly improved, if the network
is pretrained either on an arm with less joints or with limited angles. For these
retraining procedures we performed similarly as described above but skipped the
first two largest learning rates.

To analyze whether target poses can be reached reliably, we computed ran-
dom configurations for which we then determined their corresponding poses using
the known forward model. For the resulting poses we generated the inverse kine-
matics with the RNNs. Based on this configurations we computed again the pose
using the forward model and finally compared both poses. Figure 3 shows the
the average convergence of the pose error (MSE) over 100 random poses within
500 iterations on different arms.

As can be seen, on all arms the approach shows a relatively similar conver-
gence behavior. Already after 50 iterations the end-effector poses are sufficiently
close to the target poses. The results clearly indicate that for all arms, even for
the one with 40 universal joints, precise solutions could be found consistently.
Note that on the CrustCrawler for some random poses (≈ 10 %) the process
got stuck in a local minimum. These cases were left out for computing the

Fig. 5. In the top row the MoveIT rviz plug-in is displayed. The current configuration
of the arm is rendered in black and the goal in orange. A movement of the marker
changes the arm’s goal pose. The kinematics solver is called and the goal configuration
is rendered. In images from left to right the transition to the goal state is illustrated.
Note that for this image series, we use one of MoveIT’s planning algorithms for the
real arm’s trajectory generation in order to exclude self-collisions – nonetheless each
particular call of the inverse kinematics is solved with the RNN.(Color figure online)
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average curve. Figures 4 and 5 visually confirm the success of our approach,
since the desired target poses are reached exactly. Figure 4 also demonstrates
that good solutions can be found even under difficult conditions. If a target
pose is unreachable the network drives the arm towards a close plausible pose.
But also in the case when an arm is heavily screwed, the target can be reached
robustly. Furthermore, entirely locked joints can also be easily compensated on
the fly.

4 Conclusion

In this paper we introduced an approach for computing inverse kinematics of
many-joint robot arms with inverse recurrent forward models. First, we learned
to estimate poses for given arm configurations with RNNs. While the RNNs
match the sequential nature of computing forward-chains, Back-Propagation
Through Time (BPTT) is used to to generate the inverse mapping.

We verified our method on complex simulated 3D arms with multi-axis spher-
ical joints. It was shown that the approach scales well, since we could effectively
control arms with 5-joint, 10-joint, 20-joints, and even with 40-joints (the latter
has 120 DoF). It is also shown that the approach can produce inverse kinematics
precisely for a real robot arm. This research is to be regarded as a proof-of-
concept and a first step towards a novel perspective on neural arm-control.

Acknowledgments. We would like to thank Martin V. Butz for helpful discussions
concerning the method and its distinction to related approaches, Yann Berquin for
constructive discussions, and Sebastian Buck for valuable technical support.
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Abstract. In order to intercept a moving target a motor schema causes
the hand to aim ahead and to adapt to the target trajectory. During the
performance of perception-action-cycles, a pre-programmed prototypical
movement trajectory, a motor schema, may highly reduce the control
load. From a modelling point of view, a neural network may allow the
implementation of a motor schema interacting with feedback control in
an iterative manner. A neural population net of the Wilson-Cowan type
was allowing the generation of a moving bubble. This activation bub-
ble runs down an eye-centered motor schema and causes a planar arm
model to move towards the target. The bubble provides local integration
and straightening of the trajectory during repetitive moves. The schema
adapts to task demands by learning and serves as a forward controller.

Keywords: Population coding · Neural field · Recurrent nets · Attrac-
tor state · Convolution kernel · Motor control · Inverse dynamics ·
Schema theory

1 Introduction

Goal-directed hand movements are based on an anticipation of the outcome of
a move within the context of the task. The initial conditions of a move dif-
fer widely, and a strategy is required to achieve robust movement control. A
representation in terms of a generalized motor program has to be assumed con-
catenating motion primitives on the basis of the desired trajectory. This leads
to a generalized program, a motor schema, allowing for size and position, and,
especially, for effector independence. During goal-directed movements the motor
schema of a perception-action sequence may be considered as a specific stabi-
lizing entity. Thus, the system has to be protected against a prolonged search
for an acceptable solution. This is the essence of the schema-theory. Similar to
evolutionary algorithms, gained information has to be stored in terms of a motor
schema and its stochastic variations may provide an increased effectiveness of
the trajectory.

With respect to motor schemata neural population coding in recurrent net-
works may provide a flexible attractor definition. An attractor is meant here to
be one of the stable states of a complex system of non-linear differential equa-
tions. Complex patterns may emerge in such systems like spatial neural field
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 158–165, 2016.
DOI: 10.1007/978-3-319-44778-0 19
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models [1,9] or reaction-diffusion equations [6,7] which show dynamic patterns
similar to travelling waves. Temporal asymmetries in population coding may
cause a shift of the activated part of the neural population [2].

2 Methods

2.1 Schema Generation

An attractor network (Fig. 1) of a neural population is constructed out of two
layers of interacting neurons, one layer ue(z) consisting of excitatory neurons
and one layer ui(z) of inhibitory neurons at corresponding positions z = [z1, z2].

τe
∂ ue

∂ t = −ue + he(wee[gee ∗ ue] − wie[gie ∗ ui] + Ie)
τi

∂ ui

∂ t = −ui + hi(wei[gei ∗ ue] − wii[gii ∗ ui] + Ii)
(1)

Assuming two 2D-layers of interacting neurons (Fig. 1) Eq. (1) results. The
four synaptic connection weight-functions between the neurons are defined by
gee, gei, gii and gie. With respect to a given distance |z − z′| the weights decay
monotonically and have an isotropic Gaussian distribution of different width with
short range excitation and long range inhibition. Changes of the activity in layer
ue and ui depend on mutual interaction between the neurons. This is determined
by the synaptic weights and the non-linear sigmoid activation function he and
hi of each neuron, respectively. The positive synaptic weights are indicated by
wee, wei, wii and wie. This leads to a recurrent neural network of the Wilson-
Cowan type [8] with Ie(z, t) and Ii(z, t) as input function and τe and τi as time
constants. In terms of neural field theory this results in an integro-differential
equation possibly eliciting static or dynamic patterns in a neuron population
[4,5,8]. A point-like input pulse Ie(z, t) may result in a local asymptotically
stable attractor state, i.e. a neural activity packet. This attractor state has been
designated as a bubble [9]. It is hypothesized that such an activation bubble
B(z, t) represents a fundamental structural component of a neural population.
Equation (1) can be simplified mathematically by considering only a single layer
u. This reads:

τ
∂ u(z, t)

∂ t
= −u(z, t) + (w [g ∗ h (u(z, t))]) + I(z, t). (2)

e

i

Fig. 1. A simple neural network consists of two layers. One layer of excitatory neurons
ue and one layer of inhibitory neurons ui. The neurons interact with each other.
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A single two dimensional neural layer u(z, t) with sigmoid saturation curve
is embedded in Eq. (2). The connection weight-function g includes excitation
and inhibition by providing either a difference of two Gaussians, or, in order to
simplify numerical computation, by providing a local excitation and a shunting
inhibition as expressed in Eqs. (3) and (4).

∂u(z, t)
∂t

= f(u(z, t)) + D Δu(z, t), (3)

f(u) = −a u +
1

(b + d ū)
u

(c + e u2)
+ I(z, t). (4)

The diffusion of local excitation is determined by DΔu(z, t), Eq. (3), Δ Lapla-
cian. The function f(u) in Eq. (4) is activated by excitation u. Factors a, b, c, d
and e are constants. Inhibition of Eq. (2) is replaced by shunting inhibition,
locally by u2 and globally by ū, that is the average excitation of the neural layer.
Compared with Eq. (2) Eqs. (3) and (4) are strictly simplified for numerical pur-
poses and they result in a typical behaviour of non-linear neural field models.
The border condition is of Dirichlet type with u = 0. Thus, a short point-like
input pulse I(z, t) may generate a stable activation bubble B(z, t) > 0 in the
neural layer u(z, t). Diffusion will be considered as an isotropic or an anisotropic
kernel function g(z, t) according to Eq. (5).

Modelling of the activation bubble B(z, t) is involved in a single two dimen-
sional neural layer u(z, t) of 100 × 100 excitatory neurons according to Eq. (3).
By choosing inhibition according to Eq. (4), a bistable state within neural layer
u(z, t) is obtained which may result in an activation bubble [1,2,9]. A travelling
bubble may be generated by choosing an anisotropic diffusion tensor, the propa-
gation tensor D = dij(t) = [d11(t) d12(t), d21(t) d22(t)]. For modelling purposes
the time dependent anisotropic propagation tensor is computed by applying a
kernel function g(z, t) (matrix 17 × 17) according Eq. (5) to neural layer u(z, t).

h1(z1, t) = d11(z1−8) for (z1 − 8) > 0 else 0
h2(z1, t) = d12(z1−8) for (z1 − 8) <= 0 else 0
h3(z2, t) = d21(z1−8) for (z1 − 8) > 0 else 0
h4(z2, t) = d22(z1−8) for (z1 − 8) <= 0 else 0

g(z, t) = exp(−0.05 (h1
2 + h2

2 + h3
2 + h4

2))

(5)

g(z, t) represents a two-dimensional kernel function. z1, z2 ∈ {1..17}. The
convolution of [g ∗ u](z, t) is performed for every time step t of the simulation:

[g ∗ u](z, t) =

z∫

0

g((z − z′), t) u(z′, t) dz′ (6)

A short local and sufficient excitation pulse I(z, t) may initiate a stable acti-
vation bubble B(z, t) at position z(t). If the excitation is too small the bubble
will disappear. If there are more than one foci of excitation the winner takes all.
If the propagation tensor D is isotropic, i.e. symmetric and positive definite,
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the position of the bubble is stable but not asmptotically stable. If D is
anisotropic with different dij(t) ∈ R

+ the activation bubble B(z, t) moves accord-
ing to Eqs. (3) and (4) within the neural layer u(z, t).

2.2 Movement Dynamics

Considering a redundant human hand-arm system as an open kinematic chain
one has to assume at least 6 degrees of freedom. Six angles q(t) describe the
position of the hand or the position x(t) of an end-effector, i.e. the tip of a
handheld stylus. To make the arm-system accessible to simpler theoretical con-
siderations non-redundant planar arm movements with 2 degrees of freedom
q = [q1, q2]T, shoulder joint q1 and elbow joint q2, were chosen. Given the joint
input torques τ (t) = [τ1 (t) , τ2 (t)]T, direct dynamics allows for the computa-
tion of the resulting joint positions, velocities, and accelerations (q, q̇, q̈), and
the corresponding end-effector positions (x, ẋ, ẍ) with x(t) = [x1(t), x2(t)]T ,
respectively. Conversely, inverse dynamics maps kinematic data (q, q̇, q̈) to the
required joint input torques τ (t) = [τ1 (t) , τ2 (t)]T. Thus, from a kinematic per-
spective start xs, end-effector position x(t), and desired position xd(t) can be
considered equivalent to qs, q(t), and qd(t). Assuming H(q) to represent the
inertia matrix, and C(q, q̇) q̇ the Coriolis and centrifugal forces, the dynamics
of a planar hand-arm system with 2 degrees of freedom can be described as a
set of the following system of coupled non-linear differential Eq. (7). This non-
redundant system will be the basis of further simulations.

H(q) q̈+C(q, q̇) q̇= τ (7)

3 Results

3.1 Trajectories of the Hand

The control task of hitting a moving target presented on a screen consists in
moving the tip of a stylus on a digitizer board and a cursor, from a starting
position xs in the center of the screen, towards a desired target position xd(t).
The target moves on a circular path, 12 cm in diameter, with various velocities.
The actual distance between x(t) and xd(t) can be considered the control error
ew(t) in the workspace, and the joint angles q(t) should change to reach the
target position. Such goal directed hand movements require feedback control. It
is applied by means of mapping control error ew(t) to joint input torques τ (t).

Experimental results were presented in [3]. Randomized initial target posi-
tions and their velocities were detected at the periphery of the eyes, and resulted
in a saccade towards the target. While the eyes were following the target, the cur-
sor was moved towards the target. The trajectories showed a stereotypical motor
pattern (Fig. 2) which is assumed to be pre-programmed during the latency of
the hand movement. The independent experimental variables velocity, direction,
and visibility of the target had been investigated.
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Fig. 2. Experimental sample trajectories towards clockwise moving targets. (a)
v = +2.45 [cm/s], (b) v = +12.3 [cm/s].

3.2 Moving Bubble

Taking specific constraints into consideration a neural population [8,9] net may
be formalized as reaction-diffusion equations [6,7]. Within a two-dimensional eye-
centered neural layer a bubble B(z,t) at position z may be generated. According
to Eq. (5), choosing an anisotropic diffusion tensor D causes the bubble to move
(Fig. 3).

Within the two-dimensional schema layer a motor schema S(zS) at coordi-
nates zS represents a remembered engram of a recent neural activation sequence.
Thus, the motor schema represents an activation sequence of given movement

Fig. 3. Moving bubble. The isotropic synaptic weight function g(z,t) represents the
convolution kernel of the synaptic connection weight function within the excitatory
neural layer. If instead an anisotropic weight function is chosen, the bubble moves.
(a) The bubble is shown in the upper neural layer and the trajectory of following a
circular schema is shown in the lower schema layer S(zS). (b) The bubble is attracted
to a moving target by choosing a corresponding anisotropic weight function which
depends on target distance and direction.
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directions and fits well into the concept of population coding. The interaction
between activation bubble B(z,t) and motor schema S(zS) results in a certain
transition of the bubble position, a motion primitive. The bubble runs along
the motor schema as if following the potential field of a gutter. This is caused
by modifying the anisotropic characteristics of the propagation tensor D which
determines the activity spread within the neural net. The mapping of the posi-
tion of the activation bubble B(z,t) onto the angular positions of the arm is
learned by means of a radial basis network.

3.3 Control and Schema Adaptation

A PID-controller with time-delay is insufficient to intercept a circular mov-
ing target at xd(t) (Fig. 4). In order to reduce the control error the gain may
be increased which inevitably leads to instability, i.e. a ringing effect of the
end-effector position. It was the goal of the presented model considerations to
overcome this problem. The schema learned represents a feed-forward model. It
allows for generating a trajectory which aims ahead with respect to the target
movement, and decreases systematically the final distance to the moving target
by learning.

moving  target
velocity 12.3 cm/s

start

instability caused by
high proportional gain

start

a b

Fig. 4. Basic model considerations revealed that the moving target will not be reached
by applying a PID-controller (a). Trying to increase the feedback gain leads inevitably
to instability (b). This is mainly due to the mass of the arm, the delay-time (latency),
and the required integrator.

The simulation presented is based on a first neural reference engram. This
schema S0(zs) is modified by consecutive moves (Fig. 5). The bubble movement
is determined by propagation tensor D. This tensor is modified by both the
motor schema and the visualized distance from and direction to the target.
These different influences on the bubble movement result in a modified hand
trajectory changing the preceding schema according to a given learning factor.
If all influences on tensor D are balanced then an effective motor schema arises.
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a b

process

process

schema-supported schema-supported

PID-controlled

PID-controlled

bubble-controlled adaptation of schemata
during subsequent moves

Fig. 5. (a) Three types of trajectory simulations are shown: Curve PID-controlled rep-
resents the basic trajectory, bubble controlled: only affected by distance from and direc-
tion towards the target, schema supported: motor control by a learned schema. (b)
Training of new schemata. They are prepared in advance. The resulting trajectories
are smoothed by the intrinsic properties of population dynamics and modified by feed-
back. Dependent on the outcome (error reduction), a new, more effective schema is
adapted.

a b c d

3 cm

Fig. 6. Experimental sample recordings: (a) Topological distortion. (b) Copying of a
cushion like figure, unperturbed. (c) 1st drawing under perturbed conditions, what the
subject draws (solid line) and what the subject sees (dashed line). (d) 9th drawing under
perturbed condition after having tested the topolgy 80 times with different figures.

The start of the learning sequence is based on an initial activation trace which
is strictly generated by a PID-controlled hand movement towards the moving
target. This reference trace represents the initial motor schema S0(zs), which
is the basis for subsequent goal-directed movements. Next, new motor schemata
Si(zs) at modified coordinates zs are established which represent further learn-
ing steps under stochastic variations. Learning requires criteria for evaluation,
i.e. final distance to target. If these criteria do not meet a given threshold the
resulting motor schema is rejected, and the preceding motor schema remains
unchanged. If the criterion meets the threshold, the current schema is improved.

3.4 Schema Perturbation

To differentiate between eye-centered motor schemata and generalized control
strategies systematic perturbations are required. Subjects were asked to copy 9
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alternating figures 10 times each from the left to the right side of a screen by
means of a digitizer board and a stylus. 8 subjects were tested. The process of
copying may be distorted by different topologies, i.e. what the subject draws
is not what the subject sees. Figure 6 provides experimental sample recordings.
However, the subjects were able to adapt even to complex topological distortions
after various trials and may achieve reasonable results with respect to the original
figure. A new schema was developed.

4 Discussion

A general problem of goal-directed motor behaviour is to overcome the com-
plexity of a system comprising a large number of redundant degrees of freedom.
An effective path through the state space has to be found. A motor schema
reduces the complexity of the state space and provides the required constraints.
The Gestalt of the schema is varied stochastically and explores the complex
state space to find solutions for effective goal-directed movements. Even inverse
solutions of redundant systems may be found. Dependent on the contextual con-
ditions of the planned task specific schemata have to be activated for instance by
associative recurrent networks of the Hopfield type. Perturbing a visually antic-
ipated trajectory or the smooth course of a target causes an additional error to
hit the target. Such perturbations may elicit a conflict. This will allow for testing
to what extent the hypothesized motor schema prevails control strategies.
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Abstract. We propose a method of tool use considering the transition
process of a body model from not grasping to grasping a tool using a sin-
gle model. In our previous research, we proposed a tool-body assimilation
model in which a robot autonomously learns tool functions using a deep
neural network (DNN) and recurrent neural network (RNN) through
experiences of motor babbling. However, the robot started its motion
already holding the tools. In real-life situations, the robot would make
decisions regarding grasping (handling) or not grasping (manipulating)
a tool. To achieve this, the robot performs motor babbling without the
tool pre-attached to the hand with the same motion twice, in which the
robot handles the tool or manipulates without graping it. To evaluate the
model, we have the robot generate motions with showing the initial and
target states. As a result, the robot could generate the correct motions
with grasping decisions.

Keywords: Grasping · Recurrent neural network · Deep neural network

1 Introduction

A robot with tool use skills would be useful in human society, as this would enable
the robot to expand its capabilities in performing tasks. However, the modeling
of robot tool use in its environment is challenging owing to the numerous possible
ways to use tools and the easily changeable human environment. To address this
issue, several approaches have been explored, such as model-based methods [4]
and machine-learning-based methods [8].

With model-based methods, a robot estimates an assessment of objects from
the overlapping situations and performs daily tasks such as cooking with a turner
and putting a file into a folder [4]. Model-based methods assumes that all environ-
mental information are known, and the tool model is pre-designed by a human.
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 166–174, 2016.
DOI: 10.1007/978-3-319-44778-0 20
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Therefore, the robot knows where it should grasp and how to use the tools. This
makes it difficult to use unknown tools in an unknown environment.

When modeling the tool and environment is difficult, machine-learning-based
approaches can be employed for motion generation. In [8], a robot performed
object-pulling task. The robot learned the relationship between the movement
of tools and target object movement. Furthermore, the robot decided which
tool should be used from the distance between the robot and the target object.
The study by Tikhanoff et al. required pre-designed tool models and decision
algorithms used mathematical equations.

In order to address these issues, in our previous research [7], we proposed
a tool-body assimilation model in which the robot autonomously learns tool
functions with a DNN and RNN through experiences acquired by motor bab-
bling while holding several types of tools. Tool-body assimilation is the phe-
nomenon where, when humans use a tool, they treat it as an extension of their
own bodies [1]. Motor babbling is the motion process during the early days of
human infants when they acquire their own body models as sensor-motor rela-
tionships [6]. However, the robot started its motion already holding tools. This
means that the robot only has experiences in which it grasps tools. In real-life
situations, the decision of grasping (handling) or not grasping (manipulation) a
tool is necessary.

The objective of this study is to extend our tool-body assimilation model to
perform both grasping and manipulating a tool without grasping it using a sin-
gle model. To achieve this, the robot performs motor babbling without the tool
in-hand performing the same motion twice, in which the robot grasps or manip-
ulates the tool without grasping. The robot can thereby learn the experiences of
both grasping and not grasping the tool.

The rest of this paper is organized as follows. Section 2 describes the method
of body-model transition. Section 3 presents the experimental setup for the sim-
ulated robots. Section 4 presents the experiments by simulations. Section 5 con-
cludes this paper with an outlook for our future work.

2 Body-Model Transition with Motor Babbling

In this section, we propose for body-model transition from not graping to grasp-
ing a tool during motor babbling. Figure 1 shows an overview of the model. The
purpose of this model is to represent the state in which the robot handles the
tools or manipulates the tool without grasping it using a single model. The model
consists of three modules:

– Motor babbling module
– Image feature extraction module: DNN
– Body model module: the stochastic multiple timescale RNN (S-MTRNN)
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Fig. 1. The model for body-model transition from not graping to grasping the tool with
motor babbling. This model consists of three modules: (1) motor babbling module, (2)
image feature extraction module using a DNN, and (3) body model module using the
S-MTRNN. The grasping state is represented in slow context nodes.

2.1 Motor Babbling Considering Tool Grasping Condition

The robot performs the motions of both handling and manipulating the tool
by motor babbling. Then, the robot performs motor babbling without the tool
in-hand at first with the same motion twice, during which if the robot hand
and the tool are in contact, the robot either handles or manipulates the tool
without grasping it (see the motor babbling module in Fig. 1). As a result, the
robot has the experiences of both grasping and not grasping the tool. During
motor babbling, sequences of joint angles, camera images, and grasping states
(i.e., grasping and not graping) of the tool are obtained.

2.2 Image Feature Extraction Using DNN

DNNs such as auto-encoders have the ability to extract image features automat-
ically unsupervised for large number of dimensions and numerous data. DNNs
have recently drawn much attention as feature extraction tools for use with raw
images in the robotics field [5,7]. Auto-encoders can almost completely restore
original data from image features, as training is performed to give output values
that are equal to the input values.

During auto-encoder training, Hessian-free optimization is applied as a 2nd-
order optimization method based on Newton’s method [2]. Details of the imple-
mentation are provided in study [2].

2.3 Body-Model Acquisition Using S-MTRNN

The robot learns the relationships between joint angles and sensors (i.e., image
features and grasping states) to acquire its own body model through motor
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babbling using the S-MTRNN. The S-MTRNN has desirable characteristics for
predicting the next state from the past history of neuron states, and predicts the
variance as prediction accuracy [3] (Fig. 2). The S-MTRNN is composed of four
types of neurons which have different time constants: input-output (IO) nodes,
variance nodes (Iv), fast context (Cf ) nodes, and slow context (Cs) nodes. The
S-MTRNN calculates variance as an estimate of the prediction error of input-
output (IO) nodes. The variance is calculated from the input signal without
a teaching signal. The fast context nodes learn primitive movements from the
data, whereas, the slow context nodes learn the sequence of the primitives of
the data. The S-MTRNN can learn the dynamics of the data by combining
these nodes. In addition, a motion sequence can be generated by searching the
corresponding initial value of the (Cs) nodes. RNNs with context nodes can learn
motion with branching data structures, as the motions are learned as different
motions according to the initial values of the context in order to represent motion
(see the region on representing grasping states in Fig. 1). In this study, during
motor babbling, the robot performs the same motion with grasping and not
grasping a tool. Even though the sequences of joint angles are the same between
grasping and not grasping, image features and grasping states have different
values between grasping and not graping the tool after contact between the robot
hand and the tool. Therefore, the motion data will have a branched structure,
and the slow context would diverge into different dynamics. For training the S-
MTRNN, we use a maximization of likelihood using the gradient descent method.
Details about of implementation are provided in [3].

Fig. 2. Representation of the S-MTRNN which can predict the next state from the
past history of neuron states, and predicts the variance as prediction accuracy with
different time constants: input-output (IO) nodes, variance nodes (Iv), fast context
(Cf ) nodes, and slow context (Cs) nodes. The S-MTRNN calculates variance v as an
estimate of the prediction error of input-output (IO) nodes.
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3 Experimental Setup

3.1 Evaluation Using Simulated Robot Model

For evaluation, we used a simulated robot model based on the structure of the
humanoid robot ACTROID implemented on the robotics simulator OpenHRP3
(see motor babbling in Fig. 1). The simulated robot has a seven-DOF right arm
and camera. In this study, we use three DOFs of the right arm (the shoulder,
elbow, and wrist). The range of joint angles is designed to refer humans. For the
motion, the motor torque command to each joint is calculated by a proportional-
derivative (PD) controller.

In this experiment, a T-shaped object-pulling task with the robot hand in
the plane of the desk (two-dimensional movements) is used (see Fig. 1). This task
is commonly used in tool-body assimilation studies with robots [7,8].

3.2 Procedure of Motor Babbling

To perform motor babbling, we set joint angles within their range of motion and
the initial position of the T-shaped tool. Then, in a sequence, a random set of
desired angles for each joint of the arm is given, and we record the joint angles,
camera images, and grasping states for the duration of 6.0 s (30 steps) at the
sampling intervals of 0.2 s. When the robot performed motor babbling, the robot
handled or manipulated the T-shaped tool without grasping it in contact with
it. The process was repeated 30 times for each (i.e., grasping and not grasping),
comprising 60 instances in total, to generate random motions.

Image data were obtained as color images of 320 × 240 pixels; there were
then converted to gray-scale images of 32 × 24 pixels. The values of the pixels
were normalized to [0.1, 0.9] for training of fully connected DNN auto-encoder.
After training, two dimensions of image features were extracted (Table 1).

For acquisition of the body model, the S-MTRNN was trained with the
recorded 60 sequences of motions data, including joint angles (3 dimensions),
grasping states (1 dimension), and acquired image features (2 dimensions)
(Table 2). The structure of the S-MTRNN is such that input-output (IO) and
variance (Iv) nodes are only connected to the fast context nodes (Cf ), the fast
context (Cf ) nodes are fully connected to all the nodes, and the slow context
(Cs) nodes are only connected to the slow context (Cs) nodes and the fast con-
text (Cf ) nodes. To train the S-MTRNN, the values of joint angles and image
features were normalized to [−1.0, 1.0], and the grasping state were normalized
to [−0.6, 0.6]: 0.6 corresponding to grasping the tool and −0.6 corresponding to
not grasping the tool.

4 Experiments by Simulations

4.1 Representation of Grasping State by the Initial Values
of the Slow Context Nodes

We analyze the internal representation of the body model using the initial val-
ues of the slow context nodes (Cs(0)). Figure 3 shows two out of 20 of Cs(0)
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Table 1. Design of DNN

Number of input–output nodes 768

Number of hidden layers 9

Dimensions of hidden nodes 500-250-100-50-2-50-100-250-500

Number of teaching data 1800 (60motions × 30steps)

Table 2. Design of S-MTRNN

Type of nodes Node name No. of nodes Time constant

Input-output (IO) Joint angles 3 1

Grasping state 1 1

Image features 2 1

Variance (Iv) Variance 6 1

Fast context (Cf ) Fast context 40 5

Slow context (Cs) Slow context 20 20

after the robot learned motor babbling motions. Figure 3 shows that the values
with grasping and without grasping are clustered. The Cs1 represents the grasp-
ing state of the motion sequences. Therefore, we can say that the body model
successfully acquired the grasping state.

Fig. 3. Representation of the grasping states on two out of 20 of Cs(0) after motor
babbling motions. The Cs1 represents the grasping state of the motion sequences.

4.2 Motion Generation from the Initial States and Goal Images

We had the robot generate motion from the initial state (i.e., joint angles, grasp-
ing state, and image) and a target image, which were untrained data. The robot
reproduced motion between initial state and final states. Figure 4(a) and (b)
show the generated motion with handling and manipulating the tool without
grasping, respectively. The graphs from above show the sequence of grasping
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states, variance of each input signal, and the slow context values. The circle
plot in the figure of the initial grasping state is the given data used to generate
motion, and the square plot of the final grasping state is the desired state, which
is not given. The figures on the bottom in Fig. 4 are generated motion images.

In Fig. 4(a) and (b), the positions of the tool and postures of the robot’s
joint angles in the generated motion images are similar to the target image,
respectively. From the results, it can be said that the robot has the ability to
generate motion from an initial state and an untrained target image. The robot
was capable of acquiring its body model as an inverse kinematics model because
the robot could generate joint angles from the image. The grasping signal graph
shows that the robot recognized the grasping state even though the grasping
signal was not given during generation of the motion sequences. This results
suggest that the robot could recognize the grasping state from the final image.

Fig. 4. Generated motions by recognition from the initial state (i.e., joint angles, grasp-
ing states, and images) and the goal state using untrained data. The robot reproduced
the motion between the initial state and the finial state image. (a) shows the robot
grasping the tool, and (b) shows the robot manipulating the tool without grasping
it. The graphs, from the top, show the grasping state, variance of each input signal,
and the values of the slow context plots, respectively. The figures at the bottom are
generated motions from the initial state and the target image. (Color figure online)
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At the moment of contact between the robot hand and the tool, an increase
of the variances of the image features was observed. This was caused by the large
differences in the tool state image features after contact was made. The image
features before contact are the same between for sequences with and without
grasping. This means that variance was increased at the point where prediction
of the image became uncertain.

Through analysis of the slow context in Fig. 4, the changes in the values of
two out of 20 of the slow context nodes were observed. Upon contact between
the robot hand and the tool, when the robot grasped the tool, the values of the
slow context node denoted by the green line show a decrease, while values of the
slow context nodes shown by the blue line show a slight decrease followed by
an increase. On the other hand, when the robot manipulated the tool without
grasping it, the values of the slow context node shown by the blue line showed
a decrease. The green line showed a decrease at the end of the sequence. The
same result was observed in other motions, which suggests that some of the slow
context nodes represent the grasping state.

5 Conclusion

The objective of this research was to express both handling a tool and manip-
ulating a tool without grasping using a single model to extend our tool-body
assimilation model. To do this, the robot learned the motion of motor babbling
without a tool in-hand using the S-MTRNN. Upon contact between the robot’s
hand and the tool, the robot either grasped or manipulated the tool without
grasping it. To evaluate our model, the robot T-shaped object-pulling task was
performed. As a result, the robot generated motion from the initial and target
images with decisions of grasping.
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Abstract. Hubs and anti-hubs are points that appear very close or very
far to many other data points due to a problem of measuring distances
in high-dimensional spaces. Hubness is an aspect of the curse of dimen-
sionality affecting many machine learning tasks. We present the first
large scale empirical study to compare two competing hubness reduc-
tion techniques: scaling and centering. We show that scaling consistently
reduces hubness and improves nearest neighbor classification, while cen-
tering shows rather mixed results. Support vector classification is mostly
unaffected by centering-based hubness reduction.

Keywords: Hubness reduction · Curse of dimensionality · k -NN · SVM

1 Introduction and Related Work

Hubness is a general problem of learning in high-dimensional spaces and has been
recognized as an aspect of the curse of dimensionality in machine learning liter-
ature [7,9]. Hub objects appear very close to many other data objects and anti-
hubs very far from most other data objects. The effect has been shown to have a
negative impact on classification [7], nearest neighbor based recommendation [2]
and retrieval [10], outlier detection [6], clustering [8,12] and visualization [1].

Hubness is related to the phenomenon of concentration of distances, which is
the fact that all points are at almost the same distance to each other for dimen-
sionality approaching infinity [3]. Radovanović et al. [7] presented the argument
that for any finite dimensionality, some points are expected to be closer to the
center of all data than other points and are at the same time closer, on aver-
age, to all other points. Such points closer to the center have a high probability
of being hubs, i.e. of appearing in nearest neighbor lists of many other points.
Points which are further away from the center have a high probability of being
anti-hubs, i.e. points that never appear in any nearest neighbor list.

In order to reduce hubness and its negative effects, we have proposed two
unsupervised methods to re-scale high-dimensional distance spaces [9]: Local
Scaling (LS) and Mutual Proximity (MP). Both methods aim at repairing asym-
metric nearest neighbor relations. The asymmetric relations are a direct conse-
quence of the presence of hubs. A hub y is the nearest neighbor of x, but the
nearest neighbor of the hub y is another point a (a �= x). This is because hubs are

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 175–183, 2016.
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by definition nearest neighbors to very many data points but only one data point
can be the nearest neighbor to a hub. The principle of the scaling algorithms is
to re-scale distances to enhance symmetry of nearest neighbors. A small distance
between two objects should be returned only if their nearest neighbors concur.
Application of LS and MP resulted in a decrease of hubness and an accuracy
increase in k-nearest neighbor classification on thirty real world datasets includ-
ing text, image and music data. The general influence of hubs and anti-hubs
on classifiers beyond simple nearest neighbor approaches is so far largely unex-
plored, with the only result being that removal of certain hubs during support
vector machine (SVM) training decreases classification rates [7].

A different approach to reduce hubness is to center the data either locally or
globally [4,11]. Results so far are encouraging and comparable to those achieved
with scaling. An advantage of global centering is that it computes centered data
vectors whereas scaling and localized centering result in distance and similarity
matrices, respectively, which can be a problem for many machine learning tasks.
Since comparison of centering and scaling so far has only been conducted on
seven datasets, all from the text domain, we present the first comprehensive
empirical study of the two competing approaches on 28 diverse datasets. We
also conduct a first analysis of the influence of centering on SVM classification.

2 Methods and Data

Before presenting our results in Sect. 3, we introduce all evaluation measures,
methods and datasets used in this work.

2.1 Evaluation Measures

The following indices will be used to measure the performance achieved in orig-
inal and re-scaled or centered data spaces.

Hubness (Sn): To characterize the strength of the hubness phenomenon in
a dataset we use the hubness measure proposed by Radovanović et al. [7]. To
compute hubness1 we first define On(x) as the n-occurrence of point x, that is,
the number of times x occurs in the n-nearest neighbor lists of all other objects
in the collection. Hubness Sn is then defined as the skewness of the distribution
of n-occurrences On. A dataset having high hubness produces few hub objects
with very high n-occurrence and many anti-hubs with n-occurrence of zero. This
makes the distribution of n-occurrences skewed with positive skewness indicating
high hubness. All our results are based on n = 5-occurences.

Nearest Neighbor Classification Accuracy (Ck): We report the k -nearest
neighbor classification accuracy Ck using 5-fold cross-validation, where classi-
fication is performed via a majority vote among the k nearest neighbors, with
the class of the nearest neighbor used for breaking ties. We use k = 5 for all

1 Python scripts for hubness analysis are available at: https://github.com/OFAI.

https://github.com/OFAI
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experiments. The classification accuracy measures to what degree the distance
space reflects the class information, i.e. the semantic meaning of the data.

Support Vector Classification Accuracy: For selected datasets we perform
support vector classification using nested cross-validation (CV), tuning the regu-
larization parameter C for the linear kernel in the inner 3-fold CV, and reporting
classification accuracy averaged over the outer 5-fold CV. All SVM calculations
were performed with the scikit-learn package [13] for Python.

2.2 Reducing Hubness

We introduce four hubness reduction methods which either re-compute the whole
distance matrix to so-called secondary distances (NICDM, MP, LCENT), or are
applied to the data vectors directly (CENT).

NICDM: The non-iterative contextual dissimilarity measure [5] is a local scaling
variant that transforms arbitrary distances according to:

NICDM(Dx,y) = Dx,y
μgeom

2

√
μx μy

, (1)

where μx (μy) denotes the average distance between object x (y) and its k nearest
neighbors, and μgeom denotes the geometric mean of all such average distances
in the data. NICDM tends to make neighborhood relations more symmetric by
including local distance statistics of both data points x and y in the scaling.
We use NICDM with k = 10, as it returned the best and most stable results in
previous studies [8].

Mutual Proximity (MP): MP reinterprets the original distance space so that
two objects sharing similar nearest neighbors are more closely tied to each other,
while two objects with dissimilar neighborhoods are repelled from each other [9].
This is done by transforming the distance of two objects into a mutual proximity
in terms of their distribution of distances. We assume that distances Dx,i=1..N

from an object x to all other objects in a dataset follow a certain probability
distribution, thus any distance Dx,y can be reinterpreted as the probability of
y being the nearest neighbor of x, given their distance Dx,y and the probability
distribution P (X). MP is defined as the probability that y is the nearest neighbor
of x given P (X) and x is the nearest neighbor of y given P (Y ):

MP(Dx,y) = P (X > Dx,y ∩ Y > Dy,x). (2)

In this work we assume that distances Dx,i=1..N follow a Gaussian distribu-
tion and that P (X) and P (Y ) are statistically independent. Computing 1−MP
turns the respective similarities into distances.

Centering (CENT): Centering is a common preprocessing step in data analysis
transforming vector data by subtracting the dataset centroid, thus shifting the
origin to the latter. Suzuki et al. [11] use the method for hubness reduction
in inner product similarity spaces, where the similarity of each sample to the
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centroid is equal to zero after centering. Since hubs are then no longer closer to
the centroid than other samples, hubness might be reduced by centering. Since
this holds only for inner product spaces, we replace Euclidean �2 norms with
cosine distances to gain the same effect in case �2 is the original distance for the
given dataset. This is also done in case of localized centering.

Localized Centering (LCENT): Localized centering tries to reduce hubness
by considering local affinity, i.e. the average similarity of a sample x to its k
nearest neighbors [4]. Similarities are calculated as

Sim(x, y)LCENT = Sim(x, y) − Sim(x, cκ(x))γ (3)

where Sim denotes a similarity measure (1−D, where D is a cosine distance) and
c(x) denotes the local centroid of x. We tune the parameters κ (neighborhood
size) and γ (controls penalty) in nested cross-validation with a 3-fold inner loop
in order to optimally reduce hubness.

2.3 Datasets

The four previously introduced hubness reduction methods are evaluated using
28 real-world datasets (Table 1), comprising data from biology, multimedia
retrieval and general machine learning fields. All datasets have previously been
used to evaluate NICDM and MP in [9] and are described further therein. Please
note that we excluded two datasets from this previous study which use the sym-
metrized Kullback-Leibler divergence, since this is not a full metric and therefore
not easy to combine with centering methods.

3 Results

We evaluate all centering and scaling methods on 28 datasets using the eval-
uation measures introduced in Sect. 2.1. Figure 1 shows the results of the eval-
uation, ordered by ascending hubness. Results are given as absolute decreases
or increases in hubness and accuracy relative to the values obtained in origi-
nal similarity spaces given in Table 1. Results are given in light blue (NICDM),
blue (MP), light green (CENT) and green (LCENT) bars. For data sets based
on Euclidean �2 norm, there is an additional black bar (COS) showing the
decrease/increase due to switching to cosine distances alone. If cosine is already
the original distance, this is marked with a small ‘cos’ instead of a black bar.

In accordance with the results from [9], we find that both scaling meth-
ods NICDM and MP consistently reduce hubness. For datasets of high hub-
ness (defined as Sk=5 > 1.4, from dataset ‘corel1000’ onwards) the reduction
is more pronounced and leads to significant increases in classification accuracy
(McNemar’s test, marked with asterisks on right-hand side of Fig. 1). There are
few significant changes among the low hubness datasets.

CENT reduces hubness and improves classification for all datasets, which are
originally based on cosine distances (‘c224a-web’, ‘reuters-transcribed’, ‘movie-
reviews’, ‘dexter’, ‘mini-newsgroups’, ‘c1ka-twitter’). Significant changes in other
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Table 1. 28 real-world datasets are reported in terms of their name, number of classes
(Cls.) and instances (N), dimensionality (d), original distance measure (Dist.) and
classification accuracy (Ck=5). Datasets are ordered by ascending hubness (Sn=5).

Name Cls. N d Dist. Ck=5 Sn=5

LibSVM fourclass (sc) 2 862 2 �2 1.0 0.15

UCI arcene 2 100 10000 �2 0.729 0.25

UCI liver-disorders (sc) 2 345 6 �2 0.594 0.38

LibSVM Australian 2 690 14 �2 0.677 0.44

UCI diabetes (sc) 2 768 8 �2 0.733 0.49

LibSVM heart 2 270 13 �2 0.815 0.50

KR ovarian-61902 2 253 15154 �2 0.917 0.66

LibSVM breast-cancer (sc) 2 683 10 �2 0.972 0.70

UCI mfeat-factors 10 2000 216 �2 0.946 0.79

LibSVM ger.num (sc) 2 1000 24 �2 0.711 0.81

LibSVM colon-cancer 2 62 2000 �2 0.740 0.81

KR amlall 2 72 7129 �2 0.830 0.82

UCI mfeat-karhunen 10 2000 64 �2 0.972 0.84

KR lungcancer 2 181 12533 �2 0.994 1.07

CP c224a-web 14 224 1244 cos 0.898 1.09

UCI mfeat-pixels 10 2000 240 �2 0.975 1.28

UCI duke (train) 2 38 7129 �2 0.582 1.37

Corel corel1000 10 1000 192 �2 0.671 1.45

UCI sonar (sc) 2 208 60 �2 0.513 1.54

UCI ionosphere (sc) 2 351 34 �2 0.875 1.56

UCI reuters-transcribed 10 201 2730 cos 0.478 1.61

PaBo movie-reviews 2 2000 10382 cos 0.696 4.07

UCI dexter 2 300 20000 cos 0.770 4.22

UCI gisette 2 6000 5000 �2 0.957 4.48

LibSVM splice (sc) 2 1000 60 �2 0.706 4.55

UCI mini-newsgroups 20 2000 8811 cos 0.672 5.14

UCI dorothea 2 800 100000 �2 0.891 12.93

CP c1ka-twitter 17 969 49820 cos 0.273 14.63

datasets appear to be either fully (‘gisette’, ‘dorothea’) or at least partially
(‘ionosphere’, ‘splice’) caused by switching to cosine distances rather than cen-
tering, since results for COS are almost as high as those for CENT. In case
of ‘fourclass’ both CENT and COS lead to considerable accuracy decreases. In
two other cases CENT is beneficial for classification (‘diabetes’) or detrimental
(‘mfeat-factors’), with COS alone showing no effect.
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We obtain very mixed results using LCENT. While the method performs
equally in terms of hubness reduction and accuracy to scaling techniques for
some datasets in high hubness regimes (‘ionosphere’, ‘splice’, ‘dorothea’, ‘c1ka-
twitter’), it increases hubness for some datasets and effectively decreases clas-
sification accuracy for ‘fourclass’, ‘ovarian’, ‘mfeat-factors’, ‘mfeat-karhunen’,
‘mfeat-pixels’ and ‘mini-newsgroups’. Neither positive nor negative changes are
strictly coupled to the original distance metric, and there is only a moderate
correlation between changes in hubness and accuracy (Pearson’s r = −0.56).

To sum up our results, whereas both scaling methods NICDM and MP con-
sistently help against the negative effects of hubness, LCENT reaches the same
performance only for some datasets, while at the same time having a higher
computational cost due to tuning of two parameters. CENT on the other hand
is computationally very efficient and effective for all cosine-based datasets.

Table 2. Classification accuracy for linear SVM. Results are given for the complete
dataset (all). Additionally, they are partitioned into hubs (H), normal (N) and anti-
hubs (A). Superscript C indicates centering. Significant changes between non-centered
and centered data are marked with an asterisk (α = .05). Three datasets do not contain
hubs according to the 5 × n criterion (N/A).

Name all H N A allC HC NC AC

c224a-web 0.929 N/A 0.934 0.885 0.906 N/A 0.914 0.846

Sonar 0.620 N/A 0.632 0.467 0.620 N/A 0.627 0.533

Reuters-transcribed 0.582 N/A 0.579 0.75 0.597 N/A 0.594 0.75

Movie-reviews 0.845 0.904 0.844 0.840 0.841∗ 0.885 0.842 0.826

Dexter 0.937 1.0 0.942 0.913 0.93 1.0 0.947 0.875

Gisette 0.972 0.948 0.975 0.950 0.973 0.948 0.976 0.950

Splice 0.793 0.931 0.805 0.751 0.794 0.931 0.805 0.754

Mini-newsgroups 0.954 1.0 0.949 0.970 0.956 0.976 0.952 0.974

c1ka-twitter 0.590 0.733 0.676 0.520 0.614 0.867 0.715 0.530

Centering and Support Vector Classification: Additionally, we investi-
gated the effect of hubness on support vector machines. Among the introduced
hubness reduction methods, only CENT returns vector data instead of distance
matrices. We therefore restrict SVM analysis (i) to this technique and (ii) to
datasets, which exhibit reduced hubness after centering (i.e. all cosine-based
and three other datasets). In this section we refer to objects with an n-occurence
greater than 5 × n as ‘hubs’, to those with n-occurence of zero as ‘anti-hubs’
and to the remaining objects as ‘normal’ (n = 5). We perform support vector
classification (linear kernel), tracking accuracies of hubs, normal points and anti-
hubs before and after centering. Across all datasets (except ‘gisette’) and before
and after centering, hub points show higher accuracy than normal and anti-
hub points, which both seem to perform at a comparable level (Table 2). Using
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Fig. 1. Absolute decrease/increase in hubness (lower is better) and accuracy (higher is
better) evaluated with k = 5. Significant changes are marked with asterisks: *α = .05,
**α = .01, ***α = .001. See Sect. 3 for more information. (Color figure online)
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the same statistical testing procedure as above, we find no significant changes
between centered and uncentered data except for the ‘movie-reviews’ dataset,
for which we observe a minor decrease in accuracy. Centering appears to have
no major impact on linear SVMs.

4 Conclusion

We have presented the first large-scale empirical study to compare scaling and
centering techniques for hubness reduction. Scaling methods outperform center-
ing methods in terms of reduced hubness and improved nearest neighbor classi-
fication in most datasets. They are effective for datasets from various domains,
and for various distance measures. Centering performs equally well for cosine
distances and has the advantage of being applicable to vector data. This is espe-
cially relevant for large datasets, for which operations on similarity matrices
might be computationally intractable. Localized centering is effective only for
few datasets. We find no evidence for improved support vector classification due
to hubness reduction via centering.
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pervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5),
1369–1382 (2015)
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Abstract. Integrated information has recently been proposed as an
information-theoretic measure of a network’s dynamical complexity. It
aims to capture the amount of information generated by a network as a
whole over and above that generated by the sum of its parts when the
network transitions from one dynamical state to another. Several for-
mulations of this measure have been proposed, with numerical schemes
for computing network complexity. In this paper, we approach the prob-
lem analytically. We compute the integrated information of weighted
networks with stochastic dynamics. Our formulation makes use of the
Kullback-Leibler divergence between the multi-variate distribution on
the set of network states versus the corresponding factorized distribu-
tion over its parts. Using Gaussian distributions, we compute analytic
results for several prototypical network topologies. Our findings show
that operating near the edge of criticality is favorable for a high rate of
information integration in complex dynamical networks. This observa-
tion is consistent across network topologies. We discuss the implication
of these results for biological and communication networks.

Keywords: Network dynamics · Complexity measures · Information
theory

1 Introduction

Integrated information, denoted as Φ, was first introduced in neuroscience as a
complexity measure for neural networks, and by extension, as a possible correlate
of consciousness itself [17]. It is defined as the quantity of information generated
by a network as a whole, due to its causal dynamical interactions, and one that
is over and above the information generated independently by the disjoint sum
of its parts. As a complexity measure, Φ seeks to operationalize the intuition
that complexity arises from simultaneous integration and differentiation of the
network’s structure and dynamics. Differentiation refers to specialized neuronal
populations with distinct functionality. The complementary design principle,
integration, results in distributed coordination among these populations, thus
c© Springer International Publishing Switzerland 2016
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enabling the emergence of coherent cognitive and behavioral states. The inter-
play of differentiation and integration in a network generates information that
is highly diversified yet integrated, thus creating patterns of high complexity.
Following initial proposals [15–17], several approaches have been developed to
compute integrated information [3,4,6,8,12]. Some of these were constructed for
networks with discrete/binary states, others for continuous state variables. In
this paper, we will consider stochastic network dynamics with continuous state
variables because this class of networks model many biological as well as com-
munication systems that generate multivariate time-series signals. We want to
study the precise analytic relationship between the information integrated by
these networks and the couplings that parameterize their structure and dynam-
ics. Our main finding is that tuning the dynamical operating point of a network
towards the edge of criticality leads to a high rate of network information inte-
gration and that remains consistent across network topologies.

2 Methods

We consider complex networks with stochastic dynamics. The state of each node
is given by a continuous random variable pertaining to a Gaussian distribution.
For many realistic applications, Gaussian distributed variables are fairly reason-
able abstractions. The state of the network Xt at time t is taken as a multivariate
Gaussian variable with distribution PXt(xt). xt denotes an instantiation of Xt

with components xi
t (i going from 1 to n, n being the number of nodes). When

the network makes a transition from an initial state X0 to a state X1 at time
t = 1, observing the final state generates information about the system’s initial
state. The information generated equals the reduction in uncertainty regarding
the initial state X0. This is given by the conditional entropy H(X0|X1). In order
to extract that part of the information generated by the system as a whole, over
and above that generated individually by its irreducible parts, one computes
the relative conditional entropy given by the Kullback-Leibler divergence of the
conditional distribution PX0|X1=x′(x) of the system with respect to the joint
conditional distributions

∏n
k=1 PMk

0|Mk
1=m′ of its irreducible parts [3]. Denoting

this as Φ, we have

Φ(X0 → X1 = x′) = DKL

(
PX0|X1=x′

∣∣∣∣
n∏

k=1

PMk
0|Mk

1=m′

)
(1)

where state variables X0 and X1 can be decomposed as a direct sum
X0 =

⊕n
k=1 Mk

0 and X1 =
⊕n

k=1 Mk
1 respectively. To have a measure that is

independent of any particular instantiation of the final state x′, we average Eq.
(1) with respect to final states to obtain

〈Φ〉 (X0 → X1) = −H(X0|X1) +
n∑

k=1

H(Mk
0|Mk

1) (2)
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This is the definition of integrated information that we will use [3]. The state
variable at each time t = 0 and t = 1 follows a multivariate Gaussian distribu-
tion X0 ∼ N (x̄0,Σ(X0)) and X1 ∼ N (x̄1,Σ(X1)) respectively. The generative
model for this system is equivalent to a multi-variate auto-regressive process [7]

X1 = A X0 + E1 (3)

where A is the weighted adjacency matrix of the network and E1 is Gaussian
noise. Taking the mean and covariance respectively on both sides of this equation,
while holding the residual independent of the regression variables gives

x̄1 = A x̄0 Σ(X1) = A Σ(X0) AT + Σ(E) (4)

In the absence of any external inputs, stationary solutions of a stochastic linear
dynamical system as in Eq. (3) are fluctuations about the origin. Therefore,
we can shift coordinates to set the means x̄0 and consequently x̄1 to the zero.
The second equality in Eq. (4) is the discrete-time Lyapunov equation and its
solution will give us the covariance matrix of the state variables. The conditional
entropy for a multivariate Gaussian variable was computed in [8]

H(X0|X1) =
1
2
n log(2πe) − 1

2
log [detΣ(X0|X1)] (5)

and depends on the conditional covariance matrix. Substituting in Eq. (2) yields

〈Φ〉 (X0 → X1) =
1
2

log
[∏n

k=1 detΣ(Mk
0|Mk

1)
detΣ(X0|X1)

]
(6)

In order to compute the conditional covariance matrix we make use of the identity
(proof of this identity for the Gaussian case was demonstrated in [7])

Σ(X|Y) = Σ(X) − Σ(X,Y)Σ(Y)−1Σ(X,Y)T (7)

Computing Σ(X0,X1) = Σ(X0)AT and using the above identity, we get

Σ(X0|X1) = Σ(X0) − Σ(X0)AT Σ(X1)−1A Σ(X0)T (8)

Σ(Mk
0|Mk

1) = Σ(Mk
0) − Σ(Mk

0)AT
∣∣
k
Σ(Mk

1)
−1A∣∣

k
Σ(Mk

0)
T

(9)

the conditional covariance for the whole system and that for its parts respectively.
The variable Mk

0 refers to the state of the kth node at t = 0 and A∣∣
k

denotes
the (trivial) restriction of the adjacency matrix to the kth node. Note, that for
linear multi-variate systems, a unique fixed point always exists. We want to find
stable stationary solutions of this system. In that regime, the multi-variate prob-
ability distribution of states approaches stationarity and the covariance matrix
converges, such that Σ(X1) = Σ(X0) (here t = 0 and t = 1 refer to time-points
after the system has converged to its fixed point). Then the discrete-time Lya-
punov equations can be solved iteratively for the stable covariance matrix Σ(Xt).
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For networks with symmetric adjacency matrix and independent Gaussian noise,
the solution takes a particularly simple form

Σ(Xt) =
(
1 − A2

)−1
Σ(E) (10)

and for the parts, we have

Σ(Mk
0) = Σ(X0)

∣∣
k

(11)

given by the restriction of the full covariance matrix on the kth component. Note
that Eq. (11) is not the same as taking Eq. (10) on the restricted adjacency
matrix as that would mean that the kth node has been explicitly severed from
the rest of the network. In fact, Eq. (11) is the variance of the kth node while
it is still part of the network and 〈Φ〉 yields the amount of information that is
still greater than that of the sum of these connected parts. Inserting Eqs. (8),
(9), (10) and (11) into Eq. (6) yields 〈Φ〉 as a function of network weights for
symmetric networks1.

3 Results

Using the mathematical tools described above, we now compute exact analytic
solutions for 〈Φ〉 for the 6 networks shown in Fig. 1 below. Each of these networks
have 8 dimensional adjacency matrices with bi-directional weights (though our
analysis does not depend on that and works as well with directed graphs). We
want to determine the characteristics of 〈Φ〉 as a function of network weights,
which we keep as free parameters. However, in order to constrain the space of
parameters, we shall set all weights to a single parameter, the global coupling
strength g. This gives us 〈Φ〉 as a function of g. The analytic results for each
network labeled from A to F are shown in Eqs. (12), (13), (14), (15), (16) and
(17) respectively. These are computed for a single time-step, when the dynamics
of the system lies in the stable stationary regime.

〈Φ〉A =
1
2

log

(
1 − 43g2

)8
(1 − 50g2 + 49g4)8

(12)

〈Φ〉B =
1
2

log
B1 · B2 · B3 · B4 · B5

(−1 + g2)4 (1 − 8g2 + 4g4)6 (1 − 17g2 + 72g4 − 64g6 + 16g8)8
(13)

where

B1 =
(
1 − 15g2 + 56g4 − 56g6 + 16g8

)

B2 =
(
1 − 15g2 + 54g4 − 54g6 + 16g8

)

B3 =
(
1 − 22g2 + 159g4 − 426g6 + 336g8 − 80g10

)2

B4 =
(
1 − 21g2 + 147g4 − 401g6 + 374g8 − 136g10 + 16g12

)2

B5 =
(
1 − 23g2 + 183g4 − 612g6 + 835g8 − 526g10 + 152g12 − 16g14

)2
1 For the case of asymmetric weights, the entries of the covariance matrix cannot
be explicitly expressed as a matrix equation. However, they may still be solved by
Jordan decomposition of both sides of the Lyapunov equation.
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A B C

D E F

Fig. 1. Graphs of 6 networks, from the most densely connected (A) to the least (F).

〈Φ〉C =
1

2
log

(
1 − 13g2 + 41g4 − 17g6

)8

(1 − 16g2 + 70g4 − 64g6 + 9g8)8
(14)

〈Φ〉D =
1

2
log

D1 · D2 · D3

(1 − 4g2)6 (−1 + g2)6 (1 − 6g2 + g4)6 (1 − 10g2 + 17g4 − 4g6)8
(15)

where

D1 =
(
1 − 13g2 + 49g4 − 55g6 + 10g8

)2

D2 =
(
1 − 13g2 + 49g4 − 61g6 + 20g8

)2

D3 =
(
1 − 18g2 + 115g4 − 317g6 + 368g8 − 153g10 + 20g12

)4

〈Φ〉E =
1
2

log

(
1 − 2g2

)8 (
1 − 9g2 + 18g4

)4 (
1 − 10g2 + 25g4 − 8g6

)4
(1 − 14g2 + 65g4 − 116g6 + 64g8)8

(16)

〈Φ〉F =
1
2

log

(
1 − 4g2 + 2g4

)8
(1 − 6g2 + 8g4)8

(17)

In Fig. 2 we plot characteristic 〈Φ〉 profiles for each network, based on the above
solutions. This figure highlights a couple of interesting features about integrated
information. First of all, irrespective of topology, all networks approach a pole
at some value of g, near which, the integrated information of that network is
extremely high. Further, we have checked that the location of the pole is precisely
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the critical point after which the largest eigenvalue of the network slips outside of
the radius of stability. However, differences in network topologies do play a role in
placing each network’s 〈Φ〉 profile in distinct regions of the coupling phase space.
Figure 2 shows an ordering of these profiles: the most densely packed networks
lie towards the left end, while the least densely connected ones are more on the
right.

0.0 0.1 0.2 0.3 0.4 0.5 g

5

10

15 Profiles
Network A
Network B
Network C
Network D
Network E
Network F

Fig. 2. 〈Φ〉 profiles showing an ordering, for the most densely connected network on
the left to the least on the right.

4 Discussion

In this paper, we have developed a rigorous formulation of earlier ideas on
information-theoretic complexity measures and applied it to explicitly com-
pute the integrated information of networks with linear stochastic dynamics.
We obtain exact analytic results for 〈Φ〉 as a function of the network’s coupling
parameter. We find poles in solutions of 〈Φ〉 at criticality, leading to high infor-
mation integration near the edge of criticality. This implies that it is not only
the network’s topology that determines how much information it can integrate,
but also its dynamical operating point. As a matter of fact, operating near the
edge of criticality leads to a sharp increase in 〈Φ〉, irrespective of network topol-
ogy. If 〈Φ〉 is taken as a proxy for a system’s information processing capacity,
it implies that operating near the edge of criticality is favorable for optimal
information processing. This can be particularly beneficial in designing commu-
nication networks and also in understanding information processes in biological
networks. In fact, recently it has been found that the resting-state dynamics of
large-scale brain networks operates just at the edge of a bifurcation [11]. Indeed,
from an information-theoretic perspective, it is interesting to check whether the
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reason why complex non-linear systems such as the brain might operate at the
edge of criticality is because that is where optimal information processing may
occur. Another interesting application of our formalism would be to investigate
the integrated information associated to spontaneous activity of networks of
cultured neurons. The work of [14] has shown that the emergence of coherent
activity in neuronal cultures is driven by specifications of both, the network
topology and dynamics. Our results in this paper have indeed emphasized the
interplay of topology with dynamics. Therefore, as a next step, it might be rea-
sonable to consider measures such as 〈Φ〉 for quantifying collective phenomenon
in controlled experimental settings.

More generally, information-based measures, like the one we have discussed
above, may be useful as comparative measures of network information process-
ing, which can then be related to the system’s overall functions. For instance, it
would be interesting to apply these measures to neurophysiologically-grounded
network reconstructions of the brain such as those described in [1,2,5,9,10,13]
in order to calibrate the informational complexity of brain networks in either
the resting-state or during a task. As a measure of dynamical complexity, we
see extensions of 〈Φ〉 as clinically useful measures for quantifying network-level
brain disorders, including those related to consciousness. More specifically, it
can be used for assessing clinical levels of consciousness in patients with coma
or in vegetative states compared to healthy controls. Just as metabolic activity
serves as a measure of arousal in living tissue, in the same sense, with respect
to information processes in systems biology, 〈Φ〉 might be useful as a potential
measure of awareness in cognitive agents. Furthermore, these measures may also
be thought of as comparative tools for understanding differences in information
processing between biological and non-biological systems. A classic question in
this regard is how much does the human brain differ from the internet at the
level of global information processing?
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Abstract. This work presents recent developments in graph node dis-
tances and tests them empirically on social network databases of various
sizes and types. We compare two versions of a distance-based kernel
k-means algorithm with the well-established Louvain method. The first
version is a classic kernel k-means approach, the second version addition-
ally makes use of node weights with the Sum-over-Forests density index.
Both kernel k-means algorithms employ a variety of classic and modern
distances. We compare the results of all three algorithms using statistical
measures and an overall rank-comparison to ascertain their capabilities
in community detection. Results show that two recently introduced dis-
tances outperform the others, on our tested datasets.

Keywords: Clustering · Graph theory · Kernel k-means · Communtiy
detection

1 Introduction

Clustering is a very common task in data analysis applications. It is widely used
for many problems, for example, in social networks, biology, customer relation-
ship management, advertising, etc. Grouping similar items together can lead to
interesting and useful insights into data. Given today’s computing power and
availability of large amounts of data, these analyses become more and more
important in a wide array of applications.

In clustering the k-means approach is very popular due to its relative simplic-
ity, ease of implementation as well as low computational complexity. Distance-
based clustering runs into limits, unfortunately, and therefore more elaborate
methods, such as kernel k-means, were developed. Kernel k-kmeans in particu-
lar is used for clustering on graphs, which is commonly employed as a method for
community detection, that is, finding similar nodes in a given graph and group-
ing them together. In this work we try to establish a first empirical comparison
of two different kernel k-means approaches, and more importantly of the under-
lying kernels, distances, or dissimilarities. It is fundamental and important that
a distance between nodes takes a graph’s connectivity into account and thus far
no analysis or comparison has been carried out to that effect.
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 192–201, 2016.
DOI: 10.1007/978-3-319-44778-0 23



Comparison of Graph Node Distances on Clustering Tasks 193

Brief Related Work and Contributions. The distance between a graph’s
nodes is of particular importance in regard to clustering effectiveness. Existing
popular distances have certain drawbacks. For example, the shortest-path dis-
tance does not convey information about the degree of connectivity between the
nodes, which can lead to the problem that the presence of many indirect paths
between nodes can suggest some kind of (non-existant) proximity between them.
Similarly, with larger graphs the commute-time distance converges to a mean-
ingless limit function (see [17,33,34]), which can lead to the so-called [33] “lost in
space” effect and is related to the fact that a simple random walk mixes before
hitting its target [17]. Recent developments lead to the following distances or
dissimilarities in order to allow removing or alleviating these limitations.

Chebotarev introduced in [6] a new class of distances for graph nodes whose
construction is based on the matrix forest theorem [7]. The distance reduces to
the unweighted shortest-path and the commute-time distances (up to a scaling
factor) at the limiting values of its parameter.

Von Luxburg et al. [33] proposed a corrected version of the commute-time dis-
tance, removing the undesirable terms. The main idea is to express the commute-
time distance as a series of terms of decreasing significance and remove the two
first terms that produce the “lost in space” effect (see also [13]).

The randomized shortest-path (RSP) [20,36] dissimilarity interpolates
between the shortest-path distance and half the commute-time distance based
on a pure random walk – the random walker therefore adopts a “randomized”
strategy biased towards the paths with lowest cost (see [28] for details).

[14,20] equally proposed to base a distance on the computation of the
Helmholtz free energy (FE), very similar to the RSP dissimilarity, that does not
suffer from its drawbacks: it is a distance measure. Instead of cost, the random
walker chooses a path that minimizes free energy.

The p-resistance distance [1,16] considers a graph as an electrical network,
with edges having resistances. The distance between two nodes is then repre-
sented by the global resistance of the entire circuit between them. Despite its
theoretically sound foundation, we do not test the p-resistance distance, as it
lacks closed form expression and hence requires solving a minimization problem
for each pair of nodes separately to obtain the distance, which is not feasible for
networks of medium size.

However, up until now in-spite of their interesting theoretic bases, these dis-
tances have not been tested empirically, which is nevertheless an important step
in their more widespread adoption and utilization. Therefore, in our work we:
(i) analyze if and how an approach with weighted nodes, based on density, can
improve clustering quality; (ii) compare these different distances for clustering
tasks based on social network data, in order to identify a possible “best” dis-
tance; (iii) evaluate in what measure these distances compare to the sigmoid
commute-time kernel k-means – a baseline which gives very good results already
[35] – by solely changing the employed distance; (iv) finally, compare the ker-
nel k-means clustering to the Louvain method [2], as the defacto standard and
baseline in community detection.
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2 Methodology

We test the following methods: (i) Kernel k-means, (ii) Weighted kernel k-means,
(iii) Louvain method [2].

Kernel k-means is used as one of the testing algorithms. It is largely inspired by
[4,19] and corresponds to a two-step iterative algorithm based on a distance, or
dissimilarity, matrix instead of features. Given a meaningful, symmetric distance
matrix Δ, containing the distances Δij , the goal is to partition the nodes by
minimizing the total within-cluster sum of distances. For details, see [13,35].
We denote this method with the label km followed by the employed kernel (see
later).

Weighted Kernel k-means. The weighted kernel k-means algorithm is a mod-
ification of the kernel k-means algorithm mentioned in the previous paragraph.
As such, it is again a two-step algorithm. In the first step each node is allocated
to the closest node centroid–which we call prototype–according to the employed
distance. For this variant, each node (each sample) is weighted by a local density
measuring the Sum-over-Forests density index (see [30]). In the second step the
prototypes are recomputed, again using the weighted distance and thus yielding
new centroids for each cluster. These two steps represent the classical k-means
approach of assigning nodes to centroids and then updating by calculating new
centroids; they are repeated until convergence. For details on this version of the
algorithm see [32]. We denote this method with the label wkm followed by the
employed kernel (see later).

Louvain Method. The idea behind the Louvain method [2] is to first perform
an iterative local optimization (see, e.g., [12]) for seeking local minimum of a
specific criterion (step 1) – in our case, the modularity criterion [24–27]. Then,
the second phase, called the nodes aggregation or coarsening, step whose purpose
is to build a new agglomerated graph (step 2), is performed. These two steps are
repeated until no further improvement of the employed criterion can be achieved.
The details are described in the original work [2]. We denote this method with
the label LV.

Experimental Methodology. For both kernel k-means approaches, we test
six different kernels, which are covered in the following section. Each kernel is run
with both k-means approaches. As such, we test a total of 13 different clustering
methods.

Since the k-means approaches depend on a random initialization of the pro-
totypes, we run 50 trials with different initializations and keep the partition
showing the lowest within-cluster sum-of-distances among them. This procedure
is repeated for 50 times and the results in the experiments section represent the
mean of these 50 best trial results.

Prior to the experiments we optimize the parameters for each kernel on a
special parameter tuning set. We test a very wide range of approximately 200
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parameter values per kernel, including extremely small as well as extremely large
values–within the limits of feasible values. Refer to Table 2 for the final parameter
choices.

Additionally, as the weighted kernel k-means algorithm uses the Sum-over-
Forests density index [30], its parameter θ has to be considered. Pretests [32]
have shown that in certain scenarios results worsened given a large value of θ.
Therefore, we fixed θ to a value of 1 for the comparison purposes of this work.

The Louvain method was used as a baseline comparison and determines the
natural number of classes for each dataset by itself, it is thus not exactly com-
parable to the k-means algorithms which require the number of clusters.

All algorithms were implemented in Matlab.

3 Distances and Kernels

Let us consider a graph G = (V,E) consisting of a set of n nodes or vertices
V and a set of edges E. Each edge linking two nodes i and j is associated
with a positive scalar cij ≥ 0 representing the immediate cost of following this
edge. The cost matrix C is the matrix containing the immediate costs cij as
elements. Given an adjacency matrix A, with its elements denoted aij , indicating
the affinity between nodes i and j, instead of a cost matrix, we can compute
the corresponding costs from the relation cij = 1/aij . From this matrix we
can compute its Laplacian matrix L = D − A, with the diagonal matrix D =
Diag(ATe), that contains the column sums of A. Here, e is a column vector full
of ones and T signifies the transpose.

The remainder of this section briefly presents the distances and kernels used
in our experiments. Please note that the distances and dissimilarities are trans-
formed into a kernel K using the relationship K = − 1

2 HΔ(2) H, where Δ(2) is
a square distance or dissimilarity matrix, and the centering matrix H = I − E

n
(see [3]), where E is a matrix full of ones and n is the number of nodes. We omit
details on the shortest-path (SP) distance, as these are readily available in the
literature (see, e.g., [9]).

Randomized Shortest-Path (RSP) Dissimilarity. This aforementioned
dissimilarity interpolates between the shortest-path distance (see, e.g., [20,28,
37]) and half the commute-time distance based on a pure random walk. The
random walker adopts a randomized strategy biased towards the paths with
lowest cost ([20,28], see also [13]). The randomized shortest-path cost corre-
sponds to the expected cost over all paths connecting these two nodes. With the
cost matrix C, the transition probability matrix of the natural random walk
P = D−1A, and the inverse temperature β = 1/T parameter we can define the
matrix W = exp(−βC) ◦ P, where ◦ marks element-wise multiplication. Using
this matrix we define the fundamental matrix of the killed, but non-absorbing
Markov Chain Z = (I−W)−1, and furthermore the matrix S = (Z(C◦W))÷Z,
where ÷ marks element-wise division. This step enables us to compute the
expected cost of hitting walks as C̄ = S − edT

S. Recall, that e is a column
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vector of ones and here, dS is a vector of the diagonal elements of S. We can
then symmetrize to obtain the dissimilarity matrix:

ΔRSP = (C̄ + C̄T)/2. (1)

Free Energy (FE) Distance. This distance is based on the minimum Helm-
holtz free energy, which was called the potential distance in [14]. This minimiza-
tion of free energy can be considered a variant of the randomized shortest-path
dissimilarity (see previous section) [14,20]. We define the matrices C, W, Z and
parameter β as we did for the randomized shortest-path above and compute the
free energy between all pairs of nodes Φ = log(Z)/β. Symmetrization then yields
the free energy distance matrix [14,20]:

ΔFE = (Φ + ΦT)/2. (2)

Sigmoid Commute-Time (SCT) Similarity. This similarity has already
proven useful in clustering applications [35,36]. It is obtained by applying a sig-
moid transformation [29] on the commute-time kernel. The commute-time kernel
without the sigmoid transformation does not work well as a distance measure
between nodes in clustering [35], and is thus not included in our comparison. The
kernel is based on the average commute time as the average number of steps a
random walker takes, when starting in one node, going to another node and then
back to the starting node. The aim of the sigmoid function is to normalize the
range of similarities in a [0, 1] interval, in order to increase the contrast between
the different clusters. We compute the kernel matrix using the Moore-Penrose
pseudo-inverse L+ of the Laplacian matrix L, with a normalizing factor σ, set
to the standard deviation of the elements of L+, and α as a parameter (see also
[13,35]):

KSCT =
1

1 + exp(−αL+/σ)
(3)

Corrected Commute-Time (CCT) Distance. For large graphs, the
commute-time similarity tends to depend only on the degrees of the starting
and ending nodes [33]. In order to alleviate this drawback, a correction term
was proposed in [33] leading to the corrected commute-time distance. Using a
matrix similar to the modularity matrix, we define M = D− 1

2 (A − ddT

vol(G) )D
− 1

2 ,
where d is a vector of the diagonal elements of D and vol(G) is the volume of the
graph, i.e., the sum of all elements of the adjacency matrix A. We then derive
the corrected commute-time kernel as follows ([33], see also [13]):

KCCT = HD− 1
2 M(I − M)−1MD− 1

2 H (4)

Logarithmic Forest (LF) Distance. Chebotarev introduced in [6] a new
class of distances for graph nodes whose construction is based on the matrix
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forest theorem [5,7], and which reduces to the unweighted shortest-path and
the commute-time distances (up to a scaling factor) at the limiting values of
its parameter. Defining a new matrix S from the so-called regularized Laplacian
kernel KRL = (I + αL)−1 with α > 0, such that S = (α − 1) logα KRL for α �= 1
and S = lnKRL for α = 1, the logarithmic forest distance matrix is defined as
([6], see also [13], recall, that e is a column vector of ones, and here dS is a vector
of the diagonal elements of S):

ΔLF = dSeT + edT
S − 2S. (5)

4 Experiments

Datasets. We investigate a total of 15 graphs, the smallest of which (Zachary’s
Karate club [38]) contains 34 nodes. The largest graph (a Newsgroup graph
[23,35] with five classes) contains 999 nodes. We analyse a total of nine News-
group datasets. The remaining datasets are Football [15], political blogs [21],
and three artificial Lancichinetti-Fortunato-Radicchi (LFR) graphs [22]. Table 1
shows some details on the datasets.

Evaluation Methods. To ascertain the algorithms’ performance, we compute
the adjusted rand index (ARI) [18], the normalized mutual information criterion
(NMI) [8] as well as the classification rate. We compare the developed kernel
k-means clustering methods to the Louvain method and amongst each other.
This comparison is done using the raw numbers of the NMI given in Table 3.
Furthermore, we perform two-by-two Wilcoxon signed-rank tests (see, e.g., [31])
and a multiple comparison test [11] based on a Friedman test [10], as shown in
Fig. 1. The chart in this figure gives a graphical representation of the cluster-
ing methods ordered by their overall rank. Also, the statistical significance is
indicated by the length and distance of the bars.

Table 1. Datasets
Name Classes Nodes Edges

Football 12 115 613

LFR1 3 600 6142

LFR2 6 600 4807

LFR3 6 600 5233

News2cl1 2 400 33854

News2cl2 2 398 21480

News2cl3 2 399 36527

News3cl1 3 600 70591

News3cl2 3 598 68201

News3cl3 3 595 64169

News5cl1 5 998 176962

News5cl2 5 999 164452

News5cl3 5 997 155618

Polblogs 3 105 441

Zachary 2 34 78

Results and Discussion. Based on our
research questions we present and discuss
the results. We omit the results from the
classification rate and the ARI, as they show
very similar behavior when compared to
the NMI. (i) As can be seen from Table 3
as well as the multiple comparison test in
Fig. 1, the weighted kernel k-means (wkm)
does not manage to consistently improve on
the results of the regular kernel k-means
approach. It does perform better for some
datasets, though. (ii) Comparing only ker-
nels, irrespective of kernel weights, the RSP
and FE-distance based kernels consistently



198 F. Sommer et al.

Table 2. Algorithm overview

Name Acronym Equation Parameter value

Corrected commute time kmCCT wkmCCT Eq. (4) α = 26

Free energy kmFE wkmFE Eq. (2) θ = 0.1

Logarithmic forest kmLF wkmLF Eq. (5) α = 1

Randomized shortest-path kmRSP wkmRSP Eq. (1) θ = 0.03

Sigmoid commute time kmSCT wkmSCT Eq. (3) α = 22

Shortest-path kmSP wkmSP See, e.g., [13] –

Louvain LV See [2] –

outperform the competition for the most part, but it is difficult to say that
there is one “best” distance. The two-by-two Wilcoxon signed-rank tests com-
paring the NMI for the FE-distance to the four next competitors show that
the FE-distance manages to outperform all but the RSP-distance to a statisti-
cally significant degree (kmSCT: p < 2 × 10−2; kmCCT: p < 4 × 10−3; kmLF:
p < 2 × 10−3). However, it would seem that the performance strongly depends
on the given dataset and varies depending on the dataset/kernel combination
employed. Practically, all distances give better results than the SP-distance,
which confirms that taking a graph’s connectivity and further properties into
account does indeed improve results for clustering tasks. (iii) In comparison to
the SCT-distance based kernel, CCT most of the time improves on it slightly,
whereas RSP and FE give clearly better results than both SCT and CCT. LF
kernel-based clustering, however, shows equivalent performance as the SCT we
deemed as a baseline for kernel k-means comparison. (iv) Both weighted and
pure kernel k-means outperform the Louvain method on nearly all datasets and
kernels. It is important to keep in mind, though, that unlike kernel k-means, the
Louvain method derives the number of classes on its own.

Table 3. Normalized mutual information (NMI)

Dataset kmCCTkmFE kmLF kmRSPkmSCTkmSP wkmCCTwkmFEwkmLFwkmRSPwkmSCTwkmSPLV

Football 0.7928 0.9061 0.9028 0.9092 0.8115 0.8575 0.7712 0.9057 0.9001 0.9083 0.8084 0.8515 0.6976

LFR1 0.9904 0.9811 0.8578 0.9830 0.9830 0.8899 0.9639 0.9671 0.7370 0.9904 0.9809 0.9263 0.9618

LFR2 1.0000 1.00000.9965 1.0000 1.0000 0.9856 1.0000 1.0000 0.9983 1.0000 1.0000 0.9656 0.8232

LFR3 0.9664 0.9932 0.9279 1.0000 0.9898 0.9886 0.9664 0.9832 0.9212 1.0000 0.9753 0.7800 0.8271

News2cl1 0.7944 0.8050 0.8381 0.7966 0.8174 0.6540 0.8731 0.7867 0.8157 0.7831 0.7965 0.6155 0.5734

News2cl2 0.5819 0.5909 0.5844 0.5797 0.5523 0.5159 0.5726 0.6072 0.5464 0.6037 0.5452 0.5461 0.4316

News2cl3 0.7577 0.8107 0.7482 0.7962 0.7857 0.85920.7460 0.8076 0.7427 0.8221 0.7544 0.8317 0.5859

News3cl1 0.7785 0.78100.7530 0.7810 0.7730 0.7426 0.7529 0.7306 0.7402 0.7365 0.7512 0.7087 0.6992

News3cl2 0.7616 0.79680.7585 0.7761 0.7282 0.6246 0.6933 0.7532 0.7362 0.7207 0.7096 0.5629 0.6612

News3cl3 0.7455 0.77070.7487 0.7300 0.7627 0.7203 0.6878 0.6719 0.6069 0.6766 0.7126 0.6457 0.6730

News5cl1 0.6701 0.6922 0.6143 0.7078 0.6658 0.6815 0.6456 0.6891 0.5722 0.6844 0.6519 0.6762 0.6840

News5cl2 0.6177 0.64010.5977 0.6243 0.6154 0.5970 0.5846 0.6227 0.5382 0.6144 0.5823 0.5831 0.6342

News5cl30.6269 0.6065 0.5729 0.5750 0.5712 0.4801 0.5766 0.5342 0.5122 0.5059 0.5078 0.4388 0.5717

Polblogs 0.5525 0.5813 0.5811 0.5815 0.5757 0.5605 0.5277 0.5809 0.5798 0.5815 0.5745 0.5531 0.5975

Zachary 1.0000 1.00001.00001.0000 1.0000 1.00001.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9822



Comparison of Graph Node Distances on Clustering Tasks 199

5 Conclusion and Further Work
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Column ranks: Six methods (in red) have mean column 
ranks significantly different from kkmFE (blue)

Fig. 1. Multiple comparison test on NMI

This work presents a
first empirical compari-
son of recent advances in
graph distances. We com-
pare six different graph
kernels using two dif-
ferent clustering meth-
ods. The clustering per-
formance depends on the
dataset it is run on, but
outperforms the Louvain
method.

The results are stron-
gly influenced by the
choice of kernel, with
the FE and RSP kernels
showing an edge over the
competition. The CCT
seems to provide a clear improvement over the SCT kernel. The SP kernel is
clearly outperformed by the competition.

The weighted kernel k-means approach is almost always outperformed by
the classic kernel k-means approach. Both methods underline the performance
of the FE and RSP kernels.

Further work will be targeted towards (1) optimizing the individual distance
parameters automatically based on the modularity criterion for each dataset, and
(2) finding methods to estimate the number of clusters based on the modularity
criterion for the kernel k-means algorithms.
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Abstract. Among the symptoms of schizophrenia, deficits in the recog-
nition of intention is one of the most studied. However, there is no
cognitive model of intention recognition that takes into account both
innate and environmental/developmental factors. This work proposes a
developmental model of intention recognition based on a neural network.
This model enables us to emulate different types of impairment. Partic-
ularly, the dopamine hypothesis of schizophrenia is simulated through
an impairment of the visual saliency, and environmental influence of the
behavior of the caregiver is evaluated.

Keywords: Intention recognition · Schizophrenia · Development ·
Neural networks

1 Introduction

Among the symptoms of schizophrenia, deficits in the recognition of others’
intention is one of the most studied [1]. Literature related to this type of impair-
ment is mainly focused on high-level cognitive processing, such as verbal theory
of mind tasks. To achieve these high-level tasks, lower-level intention recognition
(i.e. action level) is a prerequisite [2]. In the context of schizophrenia, there is
no cognitive model of intention recognition that takes into account both innate
and environmental/developmental factors, which constitutes an explanatory gap
in our understanding of these effects and their interaction [3]. This work pro-
poses a developmental model of intention recognition that is then exploited to
emulate different types of impairment related to schizophrenia. In this paper, we
focus on object-oriented actions. In this category of actions, the intention corre-
sponds to the desired target object. Current models of intention recognition are
mostly based on a comparator model [4–6]. This model exploits the fact that
during the observation of an action, humans predict a sensory outcome based
on an intention hypothesis. If the observed state at the next step fits to the
prediction, the intention hypothesis is validated. This model can be criticized
mainly on 2 aspects. First, this hypothesis is based on the motor component of
the action. However, action monitoring and perception is mainly represented in
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 205–213, 2016.
DOI: 10.1007/978-3-319-44778-0 24
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terms of their underlying goal [6]. Secondly, this model doesn’t explain how the
intention attribution capacity is learned through the development of the child.
To overcome these limits, we propose a computational model of the develop-
ment of this capacity through social interaction. To fit to the development of
a human, the main issue is to avoid the need to give prior information in the
model or in other words, to ground intentions into sensori-motor maps. This
issue is known as the symbol grounding problem [7]. A solution to achieve this is
to exploit sensori-motor contingencies that occur during interactions with social
partners. In that context, we propose here to model the development of inten-
tion recognition through a sensori-motor architecture (PerAc) based on simple
neural networks [8,9]. The simplicity of the networks guaranties a minimalistic
solution for the development of complex abilities. We report on two experiments,
(1) to validate our model comparatively to an infants study results and (2) to
evaluate the effect of different types of impairment related to schizophrenia on
the learning of intention recognition.

2 Experimental Protocol

In this paper, we argue that the intention recognition capacity can be developed
by infants through simple interaction scenarios with a caregiver. To reproduce
this interaction, a human participant plays the role of the caregiver and an avatar
simulates the infant. The interaction starts with a learning phase during which
the avatar generates random deictic gestures towards one of two objects. The
caretaker takes the corresponding object to hand it to the avatar. During this
phase, the model learns associations between its internal state and its visual
perception. This learning is computed online. After learning, the model is able
to reverse the process by predicting the intention based on the visual perception
of the caretaker.

2.1 Model Validation

To validate our intention recognition model, we propose in a first experiment to
reproduce the findings of a classical infant study. Infants’ attribution of intentions
to others’ actions emerges in the first year of life. In an experiment proposed by
Woodward et al., infants observe an actor performing objects-reaching actions
[10,11]. Two objects are present in the scene. The first step is an habituation
phase in which the actor reaches many times for the same object at the same
position. Then, the objects’ positions are reversed. If the actor reaches for the
same goal in the new position (i.e. “new path” condition), the infants show less
surprise than if the actor changed his goal but reaches to the same position (i.e.
“new goal” condition). These conditions are illustrated on Fig. 1. The results
show that infants from 3 to 9 months represent increasingly others’ actions in
terms of their goals (i.e. the target object) instead of their physical properties
(i.e. the movements of the arm to grasp the goal-object). In this context, we
reproduce the protocol of Woodward et al. with our architecture to show that
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Fig. 1. Three different conditions exploited to test whether infants encode observed
action in terms of the intention (i.e. the goal-object) or in terms of physical properties
(i.e. the physical arm movement)

the encoding of the action in terms of goal and not in terms of path emerges
from the proposed model. To simulate the habituation phase, the model learns
only on one condition, i.e. the caretaker repeats the grabbing of the same object
with the same hand, as shown on Fig. 1. The model is then tested on the other
two conditions. The model is trained on 100 images of the caregiver, and tested
on a database of 100 images for each test conditions. The process is repeated 10
times for each condition.

2.2 Model Impairment

In a second experiment, we propose to expose the model to different types of
impairment. Recent studies emphasize the important role of developmental and
social factors during childhood on the onset of schizophrenia [12]. Compared to
previous models of intention recognition, our model has the capacity to simu-
late both developmental and innate impairments. In this experiment, these two
aspects are explored.

(1) Schizophrenia has been related to a dysregulation of dopamine neurotrans-
mission, as the effect of antipsychotic drugs is due to dopapamine D2 recep-
tor blockade. Abnormal sub-cortical release of dopamine could lead to aber-
rant salience assignment to non-salient events [13]. The impairment of
saliency is simulated by replacing some of the detected focus points on the
input image by randomly extracted points. This method provides a metric
to quantify the impairment of saliency in our system. This variable is noted
Nip (i.e. the number of impaired points).

(2) Convergent evidence supports an effect of environmental risk factor such
as urban birth, prenatal stress, childhood trauma, migration and social iso-
lation. Intention recognition learning requires a caretaker that mirrors the
intention of the infant. It is a necessary condition to provide sensory-motor
contingencies to the model. Based on these observations, we simulate the
social environmental factors by variations of the number of images where
the caretaker is acting accordingly to the intention of the avatar. We call
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these coupled intentions a contingency. This variable is noted Nc (i.e. the
number of contingencies). To extend the learning to more realistic contexts,
we modify the protocol to learn to recognize two intentions (i.e. two goal-
objects). The model is trained on 400 images of the caregiver, and tested on
a database of 100 images per intention. The next section details the cognitive
intention recognition architecture.

3 A Cognitive Model for Intention Recognition

To enable an online learning and to avoid the need to use prior information, the
model of intention prediction is based on a PerAc (perception/action) architec-
ture. The proposed architecture is shown on Fig. 2. The different modules of this
architecture are detailed in the following sections.

3.1 Visual Perception

The visual system is based on the sequential exploration of P focus points
extracted from the image perceived by the sensor. A gradient is extracted
from the input image, that is convoluted with a difference of gaussian (DOG).
The maxima of the resulting image correspond to the focus points (Fig. 3.1).
To encode the orientation information, gradient patches are extracted around
each focus points (Fig. 3.2). These patches are convoluted with g Gabor filters

Robot
intention

STM

Predicted 
intention

Associative
mecanism

Prefrontal cortex Premotor cortex

Visual cortex/
STS

Action

IPL
IFG/
PMC Visual cortex

STS

Motor cortex

Prefrontal
cortex

PMC 

Fig. 2. Cognitive computational model for intention recognition.

Fig. 3. Three steps for the extraction of visual features from an input image.
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(Fig. 3.3). The final visual features vector vp for a given focus point p corre-
sponds to the concatenation of the means and standard deviations of a patch
convoluted with each of the Gabor filters (i.e. N = 2g features per focus point).
The final features matrix Vi is the concatenation of all the vp with i = (1, ..., P ).
No prior constraint is given to this system, such as segmentation or object/body
parts recognition. Thus, some focus points can be detected on the background
or on irrelevant objects.

3.2 Visual Patterns Learning

The next step consists in learning meaningful visual patterns by recruiting new
neurons when the visual information differs from previous visual features. Con-
versely, when the information is similar, it is average with the closest previously
learned pattern. This approach is close to a Kohonen rule. This type of neural
network is called Self Adaptive Winner (SAW). The synaptic weights’ update
rule is defined by the following equations:

Fj = sj .Hmax(λ,s+σs), where sj = 1 − 1
N

N∑
i=1

|Wij − Vi| (1)

ΔWi,j = δk(aj(t)Ii + ε(Vi − Wij)(1 − Fj)) (2)

where Fj is the activity of the neuron j = (1, ...,m) in the group of visual
features neurons F , Hθ(x) is the Heaviside function, λ is a vigilance value (i.e.
a threshold of recognition), sj is a measure of similarity between the previously
learned patterns and the new visual information, s is the average of the similarity
over j and σs its standard deviation, W the synaptic weight of the connection
between the visual input Vi and the visual features Fj . The next step consists
in the association of these visual patterns with intentions.

3.3 Intention Recognition Learning

All the detected focus points are learned by the previous group of neurons.
Thus, non relevant patterns extracted on the background, or non relevant to the
intention are also learned. To enable the model to reinforce specifically the visual
pattern that are relevant to the caretaker’s intention, an associative group of
neuron is used. The synaptic weights ωi,j are modified according to the following
equation:

Δωi,j = εFi(Ij − Îj) (3)

with ε a learning strength parameter, Ij the avatar’s intention (object 1 or object
2), Îj the predicted intention, j the index of the neuron corresponding to the
intention j = (1, 2). During the test phase, a short term memory (STM) layer
is used to sum and filter the result over a short period of time, followed by a
winner takes all to predict the intention.
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4 Results

This section first presents the results of the model validation that reproduces the
protocol of the infant studies experiment. In a second part, it shows the results
obtained when the model is exposed to the impairments related to schizophrenia
introduced in Sect. 2.2.

4.1 Results of the Model Validation

This first experiment reproduces the settings from the infant study presented
in Sect. 2.1. The results in terms of percentage of recognition in all the different
conditions are shown on Fig. 4a. It shows that the recognition rate in the new
path condition is 1.77 times superior to the recognition rate in the new goal
condition. This observation shows that after habituation, our model recognize
preferentially the goal-object compared to the physical properties of the care-
taker’s movement. It is important to note that we did not use object recognition
or positions of the hand and of the object. The focus points are all extracted
in the same way and encode for both these properties. The preferential recog-
nition of the goal-object compared to the path is thus emergent to our model.
These results can be explained on a low level by the fact that the object is more
salient than the arm of the caretaker. Thus, during the test phase, the model
recognizes more easily the focus points that encode for the object which results
in a higher activation of the visual neurons in the new path condition. To test
this hypothesis, we plot the bar graph of the average number of activated visual
neurons in each condition (Fig. 4b.). The results show a higher activation of the
visual neurons in the new path condition which confirms this hypothesis.

4.2 Results of the Model Impairment

Impaired Saliency. We reproduced the described protocol with a variation
of the Nip = {1, ..., 10}. For each number of impaired points, the learning and
testing phase is repeated 10 times. The average error rate for each number of
impaired points is reported on Fig. 5a. When all the focus points are impaired
(i.e. Nip = 10), the error rate is close to random. Figure 5b shows the number
of neurons recruited by the visual patterns learning module to encode the visual

Fig. 4. Results obtained in the 3 conditions presented in Sect. 2.1.
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information as presented in Sect. 3.2 [14]. The number of neurons increases as a
function of Nip. A randomly extracted saliency is thus more difficult to encode
than a structured visual saliency.

Influence of the Caregiver. We reproduced the described protocol with a
variation of the number of intention contingencies between the avatar and the
caregiver. For each number of contingencies Nc = {20, 50, 80, 110}, the learn-
ing and testing phase is repeated 10 times. The average error rate for each
number of contingencies is reported on Fig. 5c. Figure 5d shows the number of
neurons recruited by the visual patterns learning module. The number of neu-
rons increases as a function of Nc. A higher number of contingencies requires
more neurons to encode all of the visual variations.

Interaction Effect. We evaluated whether there is an interaction effect
between these two factors. In that purpose, we tested all the couples (Nc, Nip).
The results in terms of error rate is presented on Fig. 5e. It shows a negative
interaction effect between these two factors. In presence of a strong impairment
of saliency, there is no amelioration of the results when the number of contingen-
cies is increased (i.e. a minimum error rate of 0.43). The number of contingencies
can also be seen as different points on the developmental trajectory, as an infant
will be exposed to more and more contingencies in the course of his development.
In that sense, we show that an impaired saliency impacts all the developmental
trajectory, with an increasing effect.

Predictive Influence of Saliency Impairment on Woodward’s Experi-
ment. Finally, we tested the effect of the saliency impairment on the Woodward
et al. experiment protocol. We followed the same steps as in the model valida-
tion with increased impairment of saliency. We report on the ratio between the
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Fig. 5. Influence of an impaired saliency on the success of intention recognition and
on the number of neurons recruited to learn the visual patterns
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recognition rate in the new path condition and the recognition rate in the new
goal condition as shown on Fig. 4c. This metric shows how much infants encode
an observed action in terms of their goal-object as opposed to its physical prop-
erties. In that context, our model predicts a decreasing encoding of the observed
action in terms of goal when the saliency is increasingly impaired.

5 Conclusion and Perspectives

Intention recognition is known to be impaired in schizophrenia. It is however
not clear how to take into account in this deficit both innate/genetic factors and
developmental trauma. In these paper, we have presented a developmental cog-
nitive model of intention recognition. This model was validated by reproducing
main findings of a seminal infant studies task [6,7], namely that infants encode
observed actions in terms of its goal-object and not in terms of its physical
properties. Our model was then exposed to different types of impairment related
to schizophrenia (i.e. innate saliency impairment and environmental influence
of the caretaker). The results show a negative interaction effect between these
two factors. Moreover, the model predicts a weaker encoding of the goal-object
compared to the physical hand movement in presence of a saliency impairment.
The current model includes a bottom-up method for saliency detection. How-
ever, top-down signals are also important in directing attention [15]. A more
realistic attention model is an interesting perspective to mimic more precisely
the impairment of saliency in schizophrenia.
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Abstract. Neuromodulation is an interesting way to display different
modes of functioning in a complex network. The effect of Noradrenaline
has often been related to the exploration/exploitation trade-off and
implemented in models by modulation of the gain of activation func-
tion. In this paper, we show that this mechanism is not sufficient for
system-level networks and propose another way to implement it, exploit-
ing reported inhibition of a striatal region by Noradrenaline. We describe
here the corresponding model and report its performances in a reversal
task.

Keywords: Neuromodulation · Bio-inspiration · Decision making

1 Introduction

In neuromodulation, a principle of neural activation already observed in crus-
tacea [5], a small set of neurons projects to most regions of the brain and can
modify their functioning and learning modes by acting on the intrinsic properties
of neurons and on the synaptic weights. Neuromodulators have been popularized
in the modeling domain by a paper by Doya [7], proposing how different phases
of reinforcement learning might be implemented by global signals representing
such neuromodulators, where “dopamine signals the error in reward prediction,
serotonin controls the time scale of reward prediction, noradrenaline controls the
randomness in action selection, and acetylcholine controls the speed of memory
update” (quoted from [7]).

Concerning dopamine [12] and acetylcholine [13], the role of these neuro-
modulators has been defined more precisely, relying on experimental data and
on more precise or more biologically informed models. In this paper, we propose
to revisit the role of noradrenaline (or norepinephrine, NE) and particularly of its
effects on other brain regions. Whereas an excitatory attentional effect is gener-
ally reported for NE, we mention here a new inhibitory effect on a specific striatal
region and explain why, in the brain and also in models, this additional effect
is important for the global dynamics of the network. In the next sections, we
introduce more precisely some information about noradrenaline and the way it is
presently integrated in models, including data and results that will be important
for our model that is subsequently presented together with simulation results.
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 214–221, 2016.
DOI: 10.1007/978-3-319-44778-0 25
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2 The Noradrenergic System

NE originates mainly from the Locus Coeruleus (LC), a brainstem nucleus [4].
One acknowledged role of NE is to modify sensory processing in the thalamus
and the cortex [15,16], depending on the level of arousal and attention required
by the external situation, proposed to be encoded by the tonic levels of NE
[4]. At low level, the animal is at rest (sleeping or grooming). A highly salient
stimulus (for example reliably announcing a reward) is going to increase tonic
NE level and trigger phasic NE burst to precisely focus attentional processing
on that stimulus and resist to distractors. The highest tonic levels of NE are
observed when the conditions are no longer predictable (for example in unknown
or changing environments) and require to explore among possible relevant stimuli
to extract new contingencies [2].

This general view relating the level of NE to the level of arousal is consis-
tent with its often mentioned implication in choosing between exploitation and
exploration (with higher levels) of sensory criteria to select actions [2]. This is
also consistent with the reported implication of NE during reversal [1] when a
sensory criterion to predict a reward becomes suddenly invalid and requires to
look for another predictive sensory criterion. This has been termed unexpected
uncertainty in [17], in contrast to expected uncertainty, corresponding to the
stochasticity of the criterion and encoded by another neuromodulator, acetyl-
choline, and requiring only patience and not reconsideration of the criterion.

Going deeper in the description of LC afferents and efferents can allow for a
more precise interpretation of the role of NE, based on information available in
LC to decide on the release of NE and the nature of NE actions in LC targets.
Inputs to LC are of three kinds. Low level signals from peripheral centres give
basic information about level of arousal from the sympathetic system and about
salient sensory inputs from the oculomotor system [4]. More elaborated elements
of information are sent by the central nucleus of the amygdala and the medial
prefrontal cortex towards LC [16]. They are generally believed to contribute to
evaluate the nature of the present situation, and correspond to information like
reward history or response conflicts and errors [2]. Other noteworthy inputs to
LC are from other neuromodulatory centres which reciprocally influence LC [16].

LC projects to most brain regions and more heavily to attentional struc-
tures like the parietal sensory cortex, where NE can enhance evoked activity
[3]. Importantly, the basal ganglia is the only cerebral structure not receiving
projections from LC, except for the shell region of the nucleus accumbens, where
NE is reported to have an inhibitory effect [11].

3 Modeling the Role of Noradrenaline

In addition to [7,17] other modeling papers have proposed to implement NE
mechanisms. McClure and colleagues [10] propose that the level of NE is esti-
mated by an evaluation function depending on the reward rate (corresponding to
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input of the orbitofrontal cortex to LC) and measures of response conflict (cor-
responding to input of the anterior cingulate cortex, ACC, to LC), computed
from two windows of long term and short term history of activity.

The model by Aston Jones et al. [2] proposes a mechanism implementing the
trade-off between exploration and exploitation, with the Drift Diffusion Model
(DDM). This model can be applied for tasks with two choices with two units
acting as accumulators, integrating over time possibly noisy signals favoring
each choice and responding when the difference of levels exceeds a threshold.
Interestingly, DDM has been originally proposed to reproduce reaction times
and error rates in decision making processes but appears to explain well neuronal
responses recorded during such processes. In the model, the value of the threshold
is of course an important parameter, but also the gain of accumulator integration
that can be modified to reach the threshold at different speeds. This simple
model, which can be equivalently implemented with units in mutual inhibition,
has been shown to be a good approximation of the optimal decision [6] but
remains limited to two-alternative choices. It has also been shown to maximize
the signal-to-noise ratio in the difference between the input signals and, when this
ratio changes, [6] shows that the gain of the units (or their mutually inhibiting
strength) must be modified accordingly.

It is proposed in [2] that, when tonic NE is released (in a situation identified
as unexpected uncertainty), the gain of the sensory units will increase and this
will facilitate random activation of sensory neurons and accordingly exploration.
Nevertheless, we have observed some limitations, trying to apply DDM to act
not only on a sensory layer of units representing candidate stimuli (as it is the
case in [2,6]) but on the sensory part of a neural network learning to associate
a representation of the value of stimuli to the best response, presented in [8] as
an implementation of decision making in the brain.

In the [8] network, associations have been learned between sensory neurons
and neurons triggering the actions. Even if by NE gain increase a new stimulus is
more activated, associative weights might compensate and trigger the habitual
action. To tell it differently, an excitatory noise in the sensory layer does not
necessarily trigger motor exploration.

4 Our Model

We have mentioned above a biological fact that has not yet been exploited in
models, the inhibitory effect of NE in the shell [11]. In fact, the shell is a striatal
region known to participate in the evaluation of the value of stimuli in the orbito-
fontal cortex which can in turn activate motor responses toward stimuli. We can
consequently explore another alternative of NE neuromodulation effect, where
its action in the shell can inhibit previously learned sensorimotor associations.

Our model uses the DANA library for neuronal representation and compu-
tation [14]. It extends the model presented in [8] by studying the effect of explo-
ration and tonic NE on it. All the code for the model and parameters are open-
source and available online at https://github.com/carreremax/basal-ganglia-ne.
We will only describe and discuss here changes made from the Guthrie model.

https://github.com/carreremax/basal-ganglia-ne
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Fig. 1. Main features of our model compared to [8]. ST-PRED and LT-PRED are
respectively short-term predictor and long-term predictor which predict reward arrival
as the average reward from a long and short amount of trials. Each prediction inhibits
the excitatory input of the other in ACC, resulting in ACC activation and NE release
in LC only in case of discrepancy between the predictions, i.e. in case of unexpected
uncertainty. NE release is then used to trigger exploration in [8], by facilitation of
cortical excitation and inhibition of striatal inputs.

The level of NE is computed as the difference (or conflict) between a slow
and a fast predictor as follows:

The noradrenaline system receives inputs from short and long-term reward
predictors, as shown in Fig. 1. Short and long-term predictors are computed as
the average reward on the respectively n st trials and n lt trials last trials.

lt prediction = (
∑

k∈n lt trials
rewardk)/n lt trials

st prediction = (
∑

k∈n st trials
rewardk)/n st trials

with rewardk the reward received at trial k.
These rewards are respectively sent as inputs to two ACC units computing

the conflict between the two predictions, ne s and ne l:

dUne s

dt
= τ ∗ (−Une s + st prediction − lt prediction)

Similarly:

dUne l

dt
= τ ∗ (−Une l + lt prediction − st prediction)

So the long-term prediction is inhibiting the ne s, and the short-term one is
inhibiting ne l. The level of NE release, ne, is then taken as the sum of nes and
nel activities. As a result, if both old and recent predictions are not predicting
any reward, neither nes nor nel activities are strong, and then NE concentration
is low. Symmetrically, if both systems are predicting rewards, the two predic-
tions will inhibit the projections of each other, thus resulting in a low NE release.
However, if only one system is predicting a reward, i.e. if the prediction follow-
ing recent history is different from the prediction based on long history, the
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corresponding NE population will have a strong, non-inhibited activation, thus
triggering a high level of NE release, corresponding to the fact that the reward
contingency has recently changed.

Consistent with previous models, NE effect at the cortical level is an excita-
tory gain:

dVctx

dt
= f(Uctx ∗ (1 + ne) ∗ (1 + noise))

where Vctx and Uctx are respectively the firing rate and membrane potential of
cortical neurons, f and noise respectively the sigmoid function and activation
noise used in [8]. NE inhibitory effect is an original mechanism added in our
model, and impacts the output gain of projection from cortex to shell:

gain = g ctx cog str cog ∗ ne modulation

with g ctx cog str cog the constant gain between cortex and striatum in the
sensory loop, and ne modulation the modulatory effect of NE.

ne modulation = max(0.5, 1 − ne efficiency ∗ ne)

NE modulatory effect is limited to halving excitatory projections from cortex
to shell, consistent with the effect of NE observed in [11]. ne efficiency is a
constant set to 0.8, so that only maximum values of ne will provoke a minimum
value of ne modulation.

Architectural parameters

Parameter Meaning Value

init critic Initial values of critic’s predictions 0.25

α critic Learning rate of the critic 0.2

α LTP learning rate for long term potentiation 0.0001

α LTD learning rate for long term depression 0.00005

g ctx cog str cog gain from cognitive cortex to cognitive striatum 1.2

g ctx cog str ass gain from cognitive cortex to associative striatum 0.3

g ne exc gain of excitatory projections in NE populations 1.0

g ne inh gain of inhibitory projections in NE populations -1.0

n st trials Number of trials taken into account for the short-term predictor 3

n lt trials Number of trials taken into account for the long-term predictor 30

Fig. 2. Description and values of the parameters added or modified compared to [8].

One of the main problems with unexpected uncertainty-based exploration is
the learning rate of the model. If the learning speed of the network is too slow,
the network will perform exploration, but will not be able to learn based on this
exploration. At the opposite, if the learning is fast enough to learn from a few
trials of exploration, it may converge too quickly, which can lead to sub-optimal
choice or stability issues. To address this problem, we modified the learning rate
of the critic module in the Guthrie’s model, from previously 0.025 to 0.2, so
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that the critic could learn based on exploration, and we added critics’ prediction
as a sensory input of the network. Consequently, exploration helps the critic to
learn insights of the values of alternative strategies, and such values are taken
into account in the sensory loop, which in turn helps the network to choose the
relevant alternative strategies, and learn from it.

5 Experiments

In order to analyze NE effects in the cortex and the shell, together with the switch
between exploration and exploitation, we tested our model on reversal learning.
At each trial, two sensory CS are simultaneously presented to the network, on
two random positions during 2500 ms and the network has to perform an action
toward one of the CS. As soon as the model performs an action, reward is
distributed accordingly to the reward probability of the chosen CS. If no CS
is selected after the 2500 ms of presentation, the network will not receive any
reward. Then neural activities go down to their initial values, and we proceed
to the next trial. The acquisition phase consists in 40 trials, in order to perform
over-training and to allow habit formation. In each trial, one CS is systematically

Fig. 3. Reversal experiments for our decision making model with NE effects (blue) or
without NE effects (red). Each curve is the average of 100 experiments performed each
time with a “naive” model. Surrounding shaded areas indicate the standard deviation
for each curve. (A) Average performance by trials. Both NE and non-NE models are
able to acquire CS values and to learn reversal. Exploration allows NE model to detect
quicker the change in reward contingency, and to correctly perform faster than the non-
NE one. (B) Average convergence time. During the first trials of reversal, exploration by
inhibition of the striatum induces a larger response time for NE model. (C) Average
release of NE. NE release is important at the beginning of exploration, and larger
during the first trials of reversal. It correlates with unexpected uncertainty. (Color
figure online)
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rewarded while the other is not. During the reversal, which lasts for 40 trials,
reward rates for each CS are switched, so the network has to detect the change
in reward contingencies and to switch to the other CS.

In Fig. 3, we report the average performance and decision time on 100 reversal
experiments with and without NE release. Each experiment is performed with a
“naive” model. The model correctly learns to choose the best rewarded CS dur-
ing the exploration and reversal phases. However, NE release allows to perform
random exploration, and to gradually learn from this exploration, resulting in
a faster convergence than networks without exploration (Fig. 3A). In addition
NE release also increases the decision time of the model during the first trials of
reversal (Fig. 3B). This is in accordance with [9] results, showing that animals
with NE depletion respond with greater rapidity when perseverating. Figure 3C
shows the release of noradrenaline during trials, which is indeed proportional to
unexpected uncertainty, with a peak at the reversal onset.

6 Conclusion

In this paper, we have reported a model and associated experiments that illus-
trate the interest of neuromodulation, as a way to modulate existing networks,
instead of complexifying their architecture. This is particularly the case for
noradrenaline, and its confirmed role in the trade-off between exploration and
exploitation. As illustrated in our experiments, NE-based exploration increases
the convergence speed of a decision network in an unexpected situation, which
is a decisive adaptive property for animals and other autonomous systems.

We have pointed out that another solution for NE-based exploration can be
the inhibition of learnt rules rather than the excitation of the sensory gain, and
have shown a biologically-inspired, neuronal implementation of it, using reported
NE effect in the shell [11]. Its excitatory effect in the cortex, widely used in other
models, is still present here. Yet, simulation of the model with only striatal NE
(not reported here) still exhibits exploration, but with longer decision time. We
hypothetize here that because the task does not require exploration of additional
representation in the cortex, cortical NE is not necessary for exploration. If the
task needs discovery and creation of adequate cortical representation, like for
extra-dimensional shift, it would need cortical NE. Another prediction to be
tested in both computational and experimental neuroscience is that inhibiting
NE release in the shell should both impede exploration and decrease the decision
time. These predictions are explored in ongoing work.
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Abstract. Shape-selective neurons in inferotemporal cortex show adap-
tation if the same shape stimulus is shown repeatedly. Recent electro-
physiological experiments have provided critical data that constrain pos-
sible underlying neural mechanisms. We propose a neural model that
accounts in a unifying manner for a number of these critical observations.
The reproduction of the experimental phenomenology seems to require
a combination of input fatigue and firing rate fatigue mechanisms, and
the adaptive processes need to be largely independent of the duration of
the adapting stimulus. The proposed model realizes these constraints by
combining a set of physiologically-inspired mechanisms.

Keywords: Object recognition · Adaptation · Inferotemporal cortex ·
Fatigue · Neural field

1 Introduction

Shape-selective neurons in inferotemporal cortex (area IT) show adaptation for
repeated stimulus presentation [1]. This phenomenon has been of strong inter-
est in neuroscience and functional imaging [2], since it might be contributing
to high-level after-effects [3], might be related to the observation of repetition
suppression effects in functional imaging [4], and efficient coding [5]. Various the-
ories about the origin of adaptation effects have been proposed [6] and different
models for such adaptation effects have been put developed [4,7–9]. However,
the precise underlying neural processes remain largely unknown. Recent electro-
physiological experiments provide strong constraints for the possible underlying
neural mechanisms and their computational properties. Based on a collection
of such experiments, we propose a neural model that accounts simultaneously
for all of them, exploring a variety of possible neural adaptation mechanisms.
We found that accounting for this data requires a combination of adaptation
processes that act on different resolution levels in feature space (cf. specifically
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Fig. 1D). Our solution combines input fatigue and firing-rate fatigue [10]. In addi-
tion, we assume that the relevant adaptation processes act largely independently
of the duration of the adapting stimulus, while they are sensitive to the number
of its repetitions. The proposed neural model combines a synaptic gain-control
mechanism and a saturating firing-rate-dependent adaptation mechanism that
shifts the threshold of the neurons in order to account for the data. We assume
that the shape-selective neurons are recurrently connected and embedded in a
neural field, resulting in a competition between different views and recognized
shapes. Evidence from electrophysiology suggests an effective inhibitory interac-
tion between shape-selective neurons in inferotemporal cortex [16].

In this paper, we describe the model and the assumed adaptation mecha-
nisms. Then simulations of a set of critical experiments are presented, followed
by a discussion.

2 Neural Model

Consistent with earlier work [11], we model IT neurons by radial basis function
units that are selective for a learned shapes. We assume that these neurons are
embedded within in a recurrent neural network, which can be approximated
in the mean-field limit by a dynamic neural field that results in competition
between neurons different recognized shapes and views. In other work similar
models have been successfully exploited in order to account for electrophysio-
logical results about object and action recognition (e.g. [11–13]). The recurrent
network of shape-selective neurons is augmented by adaptation mechanisms. We
have tested a variety of possible mechanisms and report here only a combi-
nation that accounts simultaneously for the critical data sets discussed below.
In addition, the model contains a mechanism for spike-rate adaptation that is
important to reproduce the signal shape of the post-stimulus time histograms
(PSTHs) of IT neurons. The following sections give a more detailed description
of the different model components.

2.1 Recurent Network (Field) of Shape-Selective Neurons

We assume that the individual shape-selective IT neurons obtain their input
form a previous layer that encodes input features. We model this layer in an
idealized way as two-dimensional neural field that represents input features with
a well-defined metric for feature similarity. The dimensionality of this space could
be chosen differently, as long as there is a defined similarity metric between the
feature vectors. Let v(y, t) define the activity of the neurons in this input layer.
We assume that this activity is always non-negative.

Consistent with electrophysiological data, we assume that the shape-selective
IT neurons encode shapes in a view-specific manner, and we specify by the vector
x = [φ, θ] the encoded shape and view. In our highly simplifying implementa-
tion we assumed a two-dimensional space for this representation, one dimension
encoding view angle φ, and the other the location θ along a one-dimensional
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shape continuum. (The true dimensionality of shape spaces encoded in area IT
is likely much higher.) The embedding of neurons in metric shape spaces sim-
plifies the treatment of pattern similarity, which is a critical variable that was
manipulated in the experiments. We assume that u(x, t) is the average activ-
ity of the neuron (ensembles) whose shape and view selectivity is given by the
vector x.

The shape-selective neurons are modeled by radial basis function (RBF) units
that receive their inputs through a linear weight kernel m(x,y) from the input
layer. This kernel specifies the strength of the synaptic connections from the
input layer to the shape-selective IT neurons. We assume that, without adap-
tation, this kernel has a Gaussian characteristics, thus defining Gaussian RBFs.
One of the assumed adaptation processes acts on the values of this weight kernel.
This makes this kernel time-dependent.

The recurrent network of shape-selective neurons is modeled by a dynamic
neural field of [14] that receives input from the input layer through the synaptic
weight kernel m. The recurrent interactions in the field are specified by the
interaction kernel w, resulting in the dynamical equation:

τ
d
dt

u(x, t) = −u(x, t) +
∫

w(x− x′)H(u(x′, t)) dx′ − h

+
∫

m(x,y, t)v(y, t)) dy
︸ ︷︷ ︸

s(x,t)

−F (a(x, t)) + kcc(x, t) (1)

In this equation H(x) is the Heaviside function, thus H(x) = 1 for x > 0 and
H(x) = 0 otherwise. The positive constants τ (= 60 ms) and h define the time
scale and the resting potential of the field.

2.2 Firing-Rate Fatigue Adaptation

The first adaptation mechanism is based on firing rate fatigue, i.e. an increase of
the neuron thresholds after they have been continuously firing. This adaptation
process is modeled by an adaptation variable a(x, t) that increases the effective
threshold of the neurons. The dynamics of this variable is determined by a dif-
ferential equation that is applied separately to each neuron (point in the neural
field):

τa
d
dt

a(x, t) = −a(x, t) + H(u(x, t)) (2)

The time constant τa of the adaptation process was chosen to be 1200 ms.
The adaptation variable couples into the field dynamics through a saturating
nonlinear function F (a) = ka min(a, amax), with ka > 0 and amax > 0. This
nonlinearity bounds the effect of this adaptation process for long adaptor dura-
tions, making adaptation largely independent from the duration of the adapting
stimulus. (Such independence from adaptor duration has been observed in elec-
trophysiological experiments; see Fig. 1C).
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2.3 Input Fatigue Adaptation

A second adaptation process is acting on the synaptic strength of the input
signals of the field, which is specified by the function m. An alternative interpre-
tation is that this process captures adaptive changes in previous hierarchy layers
of the shape recognition pathway. We assume that the strength of the synaptic
connection between neurons at position y in the input layer and position x in the
IT layer is decaying, when the input layer neuron has been activated. In addition,
extensive simulation work shows that it has to be assumed that the main effect
of the input fatigue adaptation emerges when the input signals decays after a
sufficiently long activation period. A highly simplified mathematical model for
this is a process that depends on the thresholded negative derivative of the
input neuron activation. In our model we captured this by assuming a second
adaptation variable b that follows the dynamical equation:

τb
d
dt

b(y, t) = −b(y, t) +
[
− ∂

∂t
v(y, t))

]

+

(3)

Here v(y, t)) signifies the activity of the input neuron at position y (with the
linear threshold function [a]+ = max(a, 0)). As the time constant τb of this adap-
tation process we chose 1440 ms. Such transient signals that occur after longer
periods of neuron activation might be generated, e.g., through post-inhibitory
rebound activity of cortical interneurons that are suppressed by the activity of
the shape-selective neurons.

We assume that the adaptation variable b modulates the strength of the
synaptic input weights of the neurons by reducing their gain according to the
relationship:

m(x,y, t) = m(x,y) ·
(

1
b(y, t)/cb + 1

)
(4)

The function m(x,y) was chosen as two-dimensional gaussian filter kernel. The
positive constant cb determines a threshold level for the input fatigue adaptation
process.

2.4 Spike Rate Adaptation

In order to reproduce the signal shape of the Peristimulus Time Histogram
(PSTH) of typical IT neurons, we added another very fast transient process
that models spike rate adaptation. This process acts on a much faster timescale
than the other discussed adaptive processes. The effect of spike rate adaptation
is that the neurons show a short overshoot of activity after stimulus onset that
quickly decays. This phenomenon was modeled by adding a transient component
to the effective input signal of the IT neurons that decays with a very fast time
constant τc, which was about 9.6 ms. The spike rate adaptation is modeled by
third adaptation state variable c(x, t) that obeys the dynamic equation

τc
d
dt

c(x, t) = −c(c, t) +
[

∂

∂t
s(x, t))

]

+

, (5)
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where s(x, t) is the effective input signal of the IT neuron at position x in the
neural field. (See also Eq. (1).) The spike rate adaptation process has only a
small effect on the simulation results related to adaptation but is important to
reproduce the shapes of the neural responses.

3 Simulation Results

The model provides a unifying account for several critical experiments that are
discussed in the following in comparison with the simulation results.

Figure 1A shows a comparison between the PSTHs from a single stimulus
repetition from a typical IT neuron [15] (right panel) in comparison with the
simulation result (left panel). Due to the spike rate adaptation process, the
model reproduces the signal overshoots after stimulus onset that is present for
many IT neurons.

Figure 1B shows a simulation of the responses for many repetitions of the
same shape stimulus, which is optimally stimulating the tested model neuron.
The timing parameters match the ones by [1]. Consistent with the experiment
the adaptation effect saturates largely after 5 stimulus repetitions. In the real
experimental data there occurs a further slight decay that continues after more
than 10 stimulus repetitions. Accounting for this effect would require an addi-
tional much slower process, which is not included in our model.

Figure 1C shows the simulation of an experiment (data not published) that
varied the duration of an adaptor stimulus that stimulated the neuron maxi-
mally). For testing, stimuli with a fixed duration of 300 ms were shown after
a fixed inter-stimulus interval. Quite unexpectedly, the duration of the adaptor
stimulus had almost no influence on the observed adaptation effects for real IT
neurons in the monkey (unpublished data). This experimental result is highly
constraining for models, and it could not be reproduced by many model variants
(including adaptation mechanisms depending on the tonic activity levels during
adaptation, or dependent on the activity changes during stimulus onset - for
both, firing-rate and input fatigue mechanisms).

Finally, Fig. 1D shows a simulation of another highly constraining experi-
mental result by [10]. The neurons were stimulated with an effective stimulus
(shape 1), that is a shape that elicited a maximum response in the neuron, and
with an ineffective stimulus (shape 2), which elicited still a selective response,
but a relatively weak one. Presented as an adaptor, obviously, the effective stim-
ulus elicits a higher response than the ineffective stimulus, in the real data as
well as for the model. If testing is done with an effective stimulus, evidently,
the adaptation effect is larger for an effective adaptor stimulus than for an inef-
fective adaptor. An interesting situation emerges, however, when the model is
tested with ineffective stimuli, and adapted with the effective or the ineffective
stimulus. In this case, a statistical interaction occurs where the adaptation effect
for an ineffective adaptor stimulus is larger than the one induced by an effective
adaptor.

Consistent with the analysis in [10], simulations with different versions of
the model confirm that this type of interaction cannot be obtained with models
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Fig. 1. Simulation results: A Simulated PSTH (left) (average activity over model neu-
rons) in comparison with PSTH from typical IT neuron for single stimulus repetition
[15]. B Simulated decay of stimulus responses for many repetitions of the same stimulus
in comparison with real data (inset) from [1]. C Total responses strength (number of
spikes integrated over time) for adaptor stimuli with different durations (300, 1500, and
1500 ms) (left). During the subsequent test stimuli with fixed duration (300 ms), the
total response is almost identical (consistent with unpublished real data from monkey
area IT). D Responses for adaptor stimulus (line) for effective and ineffective stimulus,
and responses for test stimuli after adaptation either with an effective or an ineffective
adaptor stimulus. Model responses (left) compared to corresponding physiological data
from [10].
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without an input fatigue mechanism that operates at a resolution level in feature
space that is significantly higher than the width of the tuning curves in the neural
field. For obtaining the strong adaptation effect for ineffective test stimuli the
adaptation effects induced by the ineffective adaptor must remain highly local
in the feature space.

For firing rate fatigue the localization of the induced adaptation effects is
bounded by the spatial low-pass characteristics of the feed-forward kernel m
and the lateral interaction kernel w. The width of the activation peak in the
field determines the shape tuning, and thus the difference between the responses
to the effective and the ineffective adaptor. Adapting a neuron with an ineffec-
tive stimulus will thus induce smaller activity than adaptation with an effective
stimulus, resulting in a lower adaptation, which also remains visible when the
neuron is tested with an inefficient stimulus. In contrast, if adaptation happens
at the input or synaptic level, if one assumes that the tuning in the input level
is highly localized in the y parameter-space, adaptation and testing with a inef-
ficient stimulus leads to a strong adaptation effect since both, adaptation and
test stimulus activate the same neurons in the input layer. At the same time,
small adaptation emerges at the input level if adaptation and test stimulus are
different, which explains the interaction effect. Detailed simulations show that
both, input fatigue and firing rate fatigue are necessary to reproduce all results
from [10] in Fig. 1D.

4 Conclusions

We have presented a phenomenological model that reproduces simultaneously a
number of critical experimental results on adaptation effects in neurons in area
IT. Testing different variations of the model, we found that an account for these
results necessitates and input fatigue as well as a firing rate fatigue process. A
second constraint from the data is the absence of an influence of the adaptor
duration on the strength of the adaptation effect. In order to reproduce this
result, we assumed a fast nonlinear saturation of the firing rate fatigue, and
a dependence of the input fatigue on the decays of the synaptic input signals.
With many other tested mechanisms, including models with transient-dependent
firing-rate fatigue or saturating input fatigue mechanisms, we were not able to
reproduce the data.

Since the model is qualitative and makes a number of ad hoc assumptions
future work will have to verify the proposed mechanisms, ideally by deriving
predictions from the model that can be tested physiologically by causal manipu-
lations of proposed levels (e.g. input synapses or output firing rates). In addition,
predictive simulations of new experiments will help to test the predictive power
of the model. Also, different model component have to be linked closer to specific
biophysical mechanisms and details, such as the postulated transient-dependent
adaptation processes.
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Abstract. The article studies deliberation aspects by modelling a
responder in multi-proposers ultimatum game (UG). Compared to the
classical UG, deliberative multi-proposers UG suggests that at each
round the responder selects the proposer to play with. Any change of the
proposer (compared to the previous round) is penalised. The simulation
results show that though switching of proposers incurred non-negligible
deliberation costs, the economic profit of the deliberation-aware respon-
der was significantly higher in multi-proposer UG compared to the clas-
sical UG.

Keywords: Deliberation effort · Markov decision process · Ultimatum
game

1 Introduction

The role of deliberation in decision making (DM) has been addressed in many
ways. Examples can be found elsewhere, see, for instance, political sciences [4],
economy [6], behavioral science [3]. The reason is simple: any decision made
either by human or machine costs time, energy and possibly other resources,
which are always limited. Importance of the proper balance between deliberation
and quality of the resulting decision is repeatedly confirmed by a considerable
effort devoted within different communities: computation costs in computer sci-
ences [8,9]; transaction costs in financial sciences [7]; cooperation effort in social
sciences [11], negotiation in multi-agent systems [10] and many others. Despite
many promising results, see for instance recent work [5], the well-justified theo-
retical framework of deliberation is still missing.

The present article contributes to this problem by modelling a responder’s DM
in multi-proposers ultimatum game (UG) [2], introduces deliberation effort into
reward function and optimises it. The simplicity of UG makes it a powerful test
case providing a general insight into human DM, which can further serve to other
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fields. The basic model of UG consists of two players (proposer and responder) hav-
ing different roles. The proposer’s task is to share some known amount of money
between him and the responder. The responder’s role is to accept or reject the pro-
posal. Acceptance leads to splitting the money according to the proposal, whereas
rejection means none player gets anything.

Compare to [2], deliberative multi-proposers UG scenario suggests that at
each round the responder selects the proposer to play with. However any change
of the proposer (compare to the previous round) is penalised. The responder
has no or little information about the proposers, thus the responder’s optimal
strategy should maximise economic profit while minimising deliberation cost
under incomplete knowledge. It should be stressed that such modification of
UG scenario makes a sense only for the studying either deliberation aspects or
cooperative aspects of human DM. In the last case, repetitive selecting/non-
selecting serves as a kind of the responder’s feedback to a particular proposer
and may influence future decision policy of the proposer.

Markov decision process (MDP) framework [1] has proven to be very useful
for DM in stochastic environments. The paper considers modelling the respon-
der’s DM in the deliberation-aware multi-proposer multi-round UG experiment
by MPD formalism and describes how the responder’s deliberation effort can be
respected and optimised.

The paper layout is as follows. Section 2 introduces necessary notations and
formulates the problem. Section 3 introduces an optimal solution. Section 4 spe-
cialises the reward function of economic responder playing in multi-proposer UG.
The experimental setup is described in Sect. 5. Section 6 summarises the main
results and discusses open problems and possible solution ways.

2 Problem Formulation

The section introduces notations and a basic concept of Markov Decision Process
(MDP) necessary to solve our problem. For more background on MDP, see [1].

2.1 Preliminaries

Throughout the paper, we use xt to denote value of x at discrete time labelled
by t = 1, . . ., t ∈ N. Bold capitals X denote a set of x-values; an abbreviation
pd means probability density function, pt(x|y) is a conditional pd. χ(x, y) is a

function defined on R × R as χ(x, y) =
{

1 x �= y,
0 x = y.

MDP provides us a mathematical framework for describing an agent (decision
maker), which interacts with a stochastic system by taking appropriate actions
to achieve her goal. The decisions about actions are made in the points of time
referred as decision epochs. In each decision epoch, the agent’s decisions are
influenced only by a state of the stochastic system in a particular decision epoch,
not by history of the system.
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2.2 Markov Decision Process

Definition 1 (Markov Decision Process). Markov Decision Process over
the discrete finite set of decision epochs T = {1, 2, ..., N}, N ∈ N is defined by
a tuple {T,S,A, p, r}, where:

S is a discrete, finite state space s ∈ S; S = ∪
t∈T

St, where St is a set of possible

states of the system at the decision epoch t ∈ T and st ∈ St is a state of the
system at the decision epoch t ∈ T,

A stands for a discrete, finite action set; A = ∪
t∈T

At, where At is a set of

admissible actions in the decision epoch t ∈ T and at ∈ At denotes chosen
action in the decision epoch t ∈ T,

p represents a transition probability function p = pt(st|st−1, at), which is a
non-negative function describing the probability that system reaches the state
st after the action at is taken at the state st−1;

∑
st∈S

pt(st|st−1, at) = 1, ∀t ∈
T,∀at ∈ A,∀st−1 ∈ St−1,

r stands for a reward function r = rt(st, st−1, at), which is used to quantify
reaching of the agent’s aim. The reward function rt(st, st−1, at) depends on
the state st that the system occupies after action at is made.

At the decision epoch t, an agent chooses an action at to be executed. As
a result the system transits to a new state st ∈ S stochastically determined
by pt(st|st−1, at). The agent gets a reward, which equals the value of reward
function rt(st, st−1, at). The agent’s goal is to find the optimal DM policy, which
maximises the average reward received over time.

To avoid explicit dependence of the reward on the future state st ∈ St the
expected reward is introduced as follows:

Et[rt(st, st−1, at)] =
∑

at∈A

∑
st∈S

st−1∈S

rt(st, st−1, at)pt(st|st−1, at)pt(at|st−1)pt(st−1)

(1)
In (1), pt(at|st−1) is a randomised decision rule satisfying the condition∑

at∈A

pt(at|st−1) = 1,∀st−1 ∈ St−1,∀t ∈ T.

Definition 2 (Stochastic policy). A sequence of randomised decision rules{
pt(at|st−1)

∣∣∣ ∑
at∈A

pt(at|st−1) = 1,∀st−1 ∈ St−1,∀t ∈ T

}
forms the stochastic

policy πt ∈ πππ, where pt(at|st−1) is the probability of action at at the state st−1.

To solve MDP (Definition 1) we need to find an optimal policy maximising
the sum of expected rewards (1).
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Definition 3. The optimal solution to MDP is a policy πopt
t that maximises the

expected accumulated reward (1), πopt
t = {popt

τ (aτ |sτ−1)}t
τ=1 ⊂ πππ.

max
{pt(at|st−1)}N

t=1

∑
t∈T

Et[rt(st, st−1, at)|st−1] =

∑
t∈T

∑
at∈A

∑
st,st−1∈S

rt(st, st−1, at)pt(st|st−1, at)p
opt
t (at|st−1)pt(st−1) (2)

2.3 Deliberation-Aware Multi-proposer Ultimatum Game

Compare to general formulation of UG [2], the considered multi-proposer
N -round UG scenario assumes nP ∈ N proposers and one responder. The goal is
the same as in traditional UG, i.e. to maximise a total profit while sharing a fixed
amount of money q. The main difference is that at the beginning of each round
the responder chooses a proposer to play with. For choosing different proposer
than that in the previous round, the responder is penalised by a so-called delib-
eration penalty d ∈ N. Then, similarly to [2] the selected proposer offers a split
ot ∈ {1, 2, . . . , q − 1} for the responder and (q − ot) for herself. If the responder
accepts the offer, money split according to the proposal, otherwise none of the
players get anything. Proposers not selected in this round play passive role.

Let us define a multi-proposer N -round UG via MDP (see Sect. 2.2) with
proposers representing stochastic environment and the responder acting as agent.
All proposers are part of the environment and have their policies fixed.

Definition 4. Multi-proposer UG in MDP framework over a set of decision
epochs ( game rounds) T is defined as in Definition 1 and

• st = (ot, Pt,Dt, ZR,t, Z
1
P,t, Z

2
P,t, . . . , Z

nP

P,t ) is environment state at t ∈ T, where
ot ∈ O is an offer
Pt ∈ {P 1, . . . , PnP } is the proposer chosen in the round (t − 1)

Dt ∈ D is the deliberation accumulated up to round t, Dt =
t∑

τ=1
dχ(a1,τ , Pτ )

ZR,t and Zi
P,t is an accumulated economic profit of the responder and

proposer P i, respectively
• at = (a1,t, a2,t) is a two-dimensional action, where a1,t ∈ A1 = {1, 2, ..., nP }

denotes the selection of a proposer to play with; a2,t ∈ A2 = {1, 2} stands
for the acceptance (a2,t = 2) or the rejection (a2,t = 1) of the offer ot, A =
A1 × A2.

• The transition probabilities p = pt(st|st−1, a1) and the reward function r =
rt(st, st−1, at) are assumed to be known.

The responder’s accumulated economic profit, ZR,t ∈ ZR, at the round t is:

ZR,t =
t∑

τ=1

oτ (a2,τ − 1), (3)
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and accumulated economic profit of the ith proposer, Zi
P,t ∈ Zi

P , equals

Zi
P,t =

t∑
τ=1

(q − oτ )(a2,τ − 1)χ(a1,τ , i), ∀i = 1, 2, ..., nP . (4)

The action a2,t, see Definition 4, considers dependence on offer ot ∈ O. How-
ever action a1,t is made without this knowledge, thus

pt(at|ot, st−1) = pt(a1,t, a2,t|ot, st−1) = pt(a1,t|st−1)pt(a2,t|ot, a1,t, st−1). (5)

Thus, the optimal policy for MDP, given by Definition 4, is searched among
sequences of functions

(
pt(a1,t|st−1), pt(a2,t|ot, a1,t, st−1)

)N

t=1
.

3 Optimal Solution

Let the state be decomposed as follows

st = (ot, s̄t) where s̄t = (Pt,Dt, ZR,t, Z
1
P,t, Z

2
P,t, ..., , Z

nP

P,t ) s̄t ∈ S̄. (6)

Using (5) and (6), the conditional expected reward can be expressed as:

Et[rt(s̄t, ot, st−1, a1,t, a2,t)|st−1] =
∑

a1,t∈A1

∑
a2,t∈A2

∑
ot∈O

[(∑
s̄t∈S̄

rt(s̄t, ot, st−1, a1,t, a2,t)pt(s̄t|ot, a1,t, a2,t, st−1)
)

pt(a2,t|ot, a1,t, st−1)pt(ot|a1,t, st−1)pt(a1,t|st−1)
]
. (7)

Denoting the expression in round brackets in (7) by rt(a2,t, a1,t, ot, st−1), the
optimal decision rule popt

t (a2,t|ot, a1,t, st−1) maximising (7) is given by

popt
t (a2,t|ot, a1,t, st−1) = χ(a2,t, a

∗
2,t(ot, a1,t, st−1)), where (8)

a∗
2,t(ot, a1,t, st−1) ∈ argmax

a2,t∈A2

rt(a2,t, a1,t, ot, st−1) ∀(ot, a1,t) ∈ O × A1.

Now we have to maximize the remaining part of the expected reward (7):

max
pt(a1,t|st−1)

∑
a1,t∈A1

[( ∑
a2,t∈A2

∑
ot∈O

rt(a2,t, a1,t, ot, st−1)p
opt
t (a2,t|ot, a1,t, st−1)

pt(ot|a1,t, st−1)
)
pt(a1,t|st−1)

]
(9)

Similarly to the above let us denote:

rt(a1,t, st−1) =
∑

a2,t∈A2

∑
ot∈O

rt(a2,t, a1,t, ot, st−1)p
opt
t (a2,t|ot, a1,t, st−1)pt(ot|a1,t, st−1). (10)

Then the optimal decision rule popt
t (a1,t|st−1) is

popt
t (a1,t|st−1) = χ(a1,t, a

∗
1,t(st−1)), where (11)

a∗
1,t(st−1) ∈ argmax

a1,t∈A1

rt(a1,t, st−1).
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Theorem 1 (Optimal policy of the deliberation-aware responder). A
sequence of decision rules

{
(popt

t (a1,t|st−1), p
opt
t (a2,t|ot, a1,t, st−1))

}N

t=1
maximis-

ing the reward (1) forms an optimal policy and is computed via modification of
dynamic programming [12] starting with ϕN (sN ) = 0, where

ϕt−1(st−1) = Et[(rt(s̄t, ot, st−1, a
∗
1,t, a

∗
2,t) + ϕt(st))|st−1, a

∗
1,t, a

∗
2,t]

a∗
1,t(st−1) ∈ argmax

a1,t∈A1

Et [rt(a1,t, st−1) + ϕt(st) | st−1] (12)

a∗
2,t(ot, a1,t, st−1) ∈ argmax

a2,t∈A2

Et [rt(a2,t, a1,t, ot, st−1) + ϕt(st) | st−1, a
∗
1,t]

Remark 1. Note that: (i) the actions a1,t, a2,t and the offer ot do not depend
on the previous offer ot−1 explicitly; (ii) the action a2,t and the offer ot do not
depend on deliberation cost Dt−1; (iii) the action a2,t does not depend on the
economic gains of proposers.

4 Decision Making of Economic Responder

This paper considers purely self-interested type of responder (so called economic
responder), which behaves in accordance with Game Theory and accepts all
offers as anything is better than nothing. The motivation of the economic respon-
der is pure economic profit, thus her reward function in the round t equals:

rt(st, st−1, at) = (ZR,t − ZR,t−1) − (Dt − Dt−1). (13)

For simplicity of presentation let us assume that the transition probability func-
tions of the proposers pt(ot|ZR,t−1, Z

a1,t
P,t−1, a1,t), ∀t ∈ T are given.

The desired optimal strategy should maximize the expected reward (1) while
respecting deliberation. Using (13) and Remark 1, the conditional expected
reward of the economic responder reads:

Et[rt(st, st−1, a1,t, a2,t)|st−1] =
∑

a1,t∈A1
a2,t∈A2

∑
ot∈O

[
[ot(a2,t − 1) − dtχ(a1,t, a1,t−1)]

× pt(a2,t|ot, a1,t, ZR,t−1)pt(ot|ZR,t−1, Z
a1,t
P,t−1, a1,t)

× pt(a1,t|ZR,t−1,Dt−1, Z
1
P,t−1, ..., Z

nP

P,t−1)
]
. (14)

With it, the optimal policy is given by Theorem1.

5 Illustrative Example

The example considered a N -round UG as described in Sect. 2, with N = 30,
q = 30, deliberation penalty d = 5 and number of proposers nP = 3. The transi-
tion probabilities of respective proposers were considered independent of the eco-
nomic profit. Before the simulation, the offers for all proposers were generated.
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Table 1. Data obtained from the simulation of four games

No of game ZR −DR DR ZR Z1
P Z2

P Z3
P

∑
Zi

P

1 515 0 515 385 0 0 385

2 458 0 458 0 442 0 442

3 494 0 494 0 0 406 406

4 628 40 668 110 38 84 232

1 2 3 4
0

100

200

300

400

500

600

700

Responder's gain
Proposers' gain
Deliberation penalty

Fig. 1. Responder’s overall profit (lowered by the deliberation penalty), economic gain
of all proposers and deliberation penalty for each of 4 games

The probabilities of the offers are drawn from Gaussian distribution with σ = 2
and mean equal to the pre-generated offer. Then four games were played. Classi-
cal UG with each proposer and deliberative multi-proposer N -round UG. In the
4th game the responder played according to the optimal strategy found in Sect. 3.
We analysed the result of the simulation by comparing the Responder gain in each
game. The results are summarised in Table 1 (ZR - Responder’s profit, DR - Delib-
eration cost, Zi

P - Economic gain of the i-th proposer,
∑

Zi
P - The total gain of

all proposers) and Fig. 1.

6 Concluding Remarks

The paper examined the deliberation of the responder in multi-proposer Ultima-
tum Game. The responder behaviour was modelled by MDP and the deliberation
cost was included into the responder’s reward function and optimised so as eco-
nomic profit. Comparison of the overall responder profit gained in the classical
UG and in the deliberative multi-proposer UG was made. The results shown
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that though switching of proposers incurred non-negligible deliberation costs,
the economic profit of the deliberation-aware responder was significantly higher
in multi-proposer UG.

Many challenging aspects remain to be studied, in particular: (i) modelling
other types of responders considering not only pure economic profit, but non-
economic aspects (fairness); (ii) incorporating affective aspects of decision mak-
ing, for example emotional state of the responder. Another direction is adding
an adaptive feature, i.e. learning of the stochastic environment, i.e. learning the
proposer model, see [13].
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Abstract. The distinction between cognitive goal-oriented and SR
habitual behavior has long been classical in Neuroscience. Nevertheless,
the mechanisms of the two types of behaviors as well as their interac-
tions are poorly understood, in spite of significant advances in the knowl-
edge of their supporting structures, the cortico-striatal loops. A neural
network (NN) model of the dynamics of these systems during a goal
navigation paradigm is presented within the framework of reinforcement
learning. The model supposing, the parallel interactive learning of cogni-
tive and habitual strategies, replicates key experimental results related
to the transition between them. The biological inspiration of the NN
architecture provides insights on the nature of their interactions, and
the conditions of their respective engagement in the control of behavior.

Keywords: Hippocampus · Entorhinal · Prefrontal · Parietal cor-
tices · Limbic · Cognitive · Sensori-motor cortico-striatal loops · Goal-
behavior · Habit

1 Introduction

Stimulus-response (S-R) and Cognitive opposed theories of behavior provide
a useful framework for exploring their neural bases. Indeed, Cognitive Theory
introduces the concepts of representation, and goal-oriented behavior, while the
S-R paradigm includes habits as a result of an over-practice of the cognitive
mode. Later on, these antagonistic views resolved into a multiple system account,
under which the two control modes coexist as complementary. We propose a
paradigm for representing and implementing cognitive and S-R habit strate-
gies within the unitary coding frame of transition cells (TC) [1,2,7]. The asym-
metrical learning dynamics prevailing in the two systems supposedly located in
the cortico-basal ganglia loops, under the modulation of dopamine (DA) are
supposed at the basis of the experimental and modeling results. Interrelated
hypotheses inspired by experimental data are tested here. They suppose first a

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 238–247, 2016.
DOI: 10.1007/978-3-319-44778-0 28
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parallel, interactive learning and implementation of the two control modes; sec-
ondly, a possible substitution of the two strategies after overtraining; third, the
reactivation of the cognitive strategy after an alteration of a previously learned
task or the adaptation to a novel one. Finally, beyond the competition between
the two strategies, the possibility of a cooperation at an early learning stage is
supposed, the cognitive strategy monitoring habit learning. After frontal-striatal
loops discovery cortical-subcortical relationships are presented as segregated,
parallel networks (limbic, associative-cognitive, sensory-motor), forming inde-
pendent, functional channels. But recent evidence of “spiraling” connections
between components of these loops, in particular between striatum compart-
ments and midbrain DA systems suggests unidirectional, anterior-posterior inter-
actions and integration, supposing oriented transfer of information and learning
between devoted channels. The mathematical NN model approach provides for
a precise mechanistic analysis of the dynamical processes and structural changes
that support the two strategies. The mechanisms operating in navigation [6]
could be generalized in a straightforward manner to general behavior [12].

2 Model and Biological Foundations

Cognitive goal-oriented and habitual SR behaviors both dedicated to goal-
capture relate to reinforcement learning (RL). In instrumental conditioning or
a more complex navigation task, the action first clearly oriented to goal cap-
ture, becomes through overtraining a SR habit independent of the goal value.
Environmental states acting as action-contexts, acquire a cached value [5] orig-
inally associated with the corresponding actions and become capable to orient
action choices. The main cortico-striatal loops are implicated in the transfor-
mation of motivation, related to vital drives or more general incentives, into
sequences of actions and general behavior. The limbic loop identifies the goals;
the cognitive loop planifies and controls the execution of adapted behaviors; and
the sensory-motor loop implements the details of the motor programs. These
loops function under the modulation of midbrain DA system which dynami-
cally adapts the functional configuration of the cortico-subcortical circuits as a
function of learning in particular. The mathematical NN model emulating these
functions supposes the learning of a map implementing goal-oriented cognitive
strategies corresponding to the associative-cognitive cortical-striatal loop; and a
NN implementation of a Q-learning algorithm for learning a S-R habit strategy.
Both systems receive similar hippocampal transition field inputs [1,2,7].

Transitions. Hippocampus (HS) fields CA3, CA1 and EC (entorhinal cortex)
deep layers combine spatial and temporal (sequential) information into dynam-
ical transition codes. Current direct EC input and preceding indirect DG (Den-
tate Gyrus) input upon respectively distal and proximal CA3 dendrites combine
to form transitions in CA3-CA1. Thus, the CA3 processing stages access both
present and previous input. Two successively activated place cells (PCs) recruit
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a cell (population) named Transition Cell [1,2]. CA3 and CA1 encode respec-
tively the prediction of accessible places from the current position, and the actu-
ally selected transition [2,10]. Combination between allothetic visual inputs and
idiothetic proprioceptive signals establishes a unique relationship between tran-
sition neural representation and the associated movement. The path integration
starting from the last place and computed on the basis of odometric input and
movement direction, associates a movement vector with every transition. The
actions represented by the directions to take are encoded by neural fields. Path
integration fields provide an unconditional input for movement selection.

Cognitive Map. In model-based RL, the state-action value estimation is based
on transition and reward functions learned by the agent through past experience
[5]. This function is performed here by the acquisition of a topological cognitive
map representing the adjacency between places, and where goals have been local-
ized. In the reactivated map, in working memory, the neuron synaptic weights
are endowed with fast learning dynamics. Earlier models of navigation [2,4,7]
activated a cognitive strategy when the agent could not directly perceive the
goal or a cue for implementing a simpler heading vector strategy.

Building a Cognitive Map. The buildup of a cognitive map supposes
a bottom-up process. Exploration of an environment establishes a temporal-
topological relationship between two successively recognized places i, j, through
a simple Hebbian modulation of the connections between corresponding nodes.
Thus a graph of the spatial relationships between places is constructed by iter-
ation of this process. Planning with this cognitive map supposes also learning a
link between a specific place and the satisfaction of a drive, during exploration.
A goal is defined as the location where a drive can be satisfied. Cells combin-
ing location and valence have been recorded in rat prelimbic-infralimbic (PL-IL)
medial prefrontal cortex [11]. During exploitation, drive satisfaction reinforces
a link between reward context (location) and the corresponding hypothalamic
drive-neurons. Thereafter, the reactivation of a drive neuron, e.g. expressing a
metabolic imbalance, induces the reactivation of the corresponding goal-related
PC. Diffusion through the map of this activation constitutes a plausible solu-
tion to the path planning process, as a particular case of a top-down activation
from hypothalamic drive neurons to the map storing sites, HS, prefrontal and/or
posterior-parietal cortices in particular. Indeed, by a similar top-down process,
the activation of PF goal cells modulates the activity of CA1 place cells, under
the form of a secondary place field [11]. These weak top-down activations are
still sufficient to bias the selection of competing inputs within the bottom-up
stream. Functioning of such a planning process requires the activity Xi of cog-
nitive map neurons to be a function of their topological distance (e.g. number
of intermediate place cells) to the goal. A normalized weight value Wmax lower
than 1 fulfils this condition.
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Fig. 1. Illustration of transitions and trajectories in the simulated environment.
(a) Graph of all learned transitions by TQ-learning in the simulated environment,
where the nodes represent place field location, and the links transitions between two
place fields. Darker colors mean higher Q values for the corresponding transitions. (b)
Trajectories taken by the agent during goal navigation using the cognitive map. The
goal location is represented by a disk in the upper left corner of the environment. (Color
figure online)

Implementation of the Cognitive Map. Different steps combine bottom-up
and top-down processes: 1-the agent recognizes the place field corresponding to
its current location; 2-the drive-modulated activation of the goal neuron diffuses
within the graph-map inducing a differential activation of its nodes; 3-the agent
moves in the direction maximizing the activity of the PC coding for the next
subgoal, the most active node directly linked to its current location. 4-when
the agent enters the place field corresponding to the subgoal, the process is
reiterated until reaching the final goal. The feedback diffusion of activation and
the feedforward computation selecting accessible transitions take place within
the cortical cognitive map and the CA3-CA1 HS field, respectively. Implementing
both in the same NN, the distance from the current position to the associated
places and the distance to the goal would be confounded in the activation level
of the single place cell layer.

XC
i (t) =

{
f(maxjWij(t) · XC

j (t)) if T (t) = 0, S(t) = 0
XMEM

i (t) otherwise
(1)

dWCC
ij (t)

dt
= T (t) · ((γ − WCC

ij ) · XC
i (t) · XC

j (t) − WCC
ij · (λ1 · XC

j (t) + λ2)) (2)

dWDC
ij (t)

dt
= S(t) · (XC

i (t) · XD
j (t)), for i,j = argmaxk,l(X

C
l (t) · XD

k (t)) (3)

XC
k (t), a short-term working memory, describes the activation of the node

k in the cognitive map; XMEM
i : memory activity saving the two past tran-

sitions executed. Wij(t): connection weight between the i and j nodes in the
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cognitive map; f : threshold-linear output function; T (t): binary signal (0 or 1)
corresponding to a transition activation; S(t): signal activated (0 or 1) when a
goal is encountered.

Equations 2–3: learning in the recurrent connections of the neurons support-
ing the cognitive map. T (t): as in Eq. 1, a binary signal (0 or 1) corresponding to
a transition activation; in this equation, it controls recurrent connection learning
WCC

ij ; γ is a parameter (smaller than 1), controlling the decremental diffusion
of activation through the CM; λ1 and λ2: respectively, active and passive decay
parameters on the CM recurrent connections, and thus the subtractive second
term in Eq. 2 corresponds to memory weight decay. For the result simulations,
λ1 = 0.01, λ2 = 0.0001 and γ = 0.8.

Equation 3 corresponds to connection learning between goal encoding node
in the cognitive map and corresponding drive node. The S(t) signal, as in Eq. 1,
is activated when a reward is encountered; XD

j : drive node, and XC
i : CM node

where reward is discovered. This signal controls the synaptic learning on WDC
ij ,

between drive XD
j and CM neurons XC

i , with activities described in Eq. 1. The
cognitive map can be conceived as a graph where nodes represent transitions, and
edges the links between transitions. Each link has a value below 1. A previously
learned transition can be forgotten if not reactivated, due to the active and pas-
sive decay parameters of the cognitive map [4]. Maps constitute fully-connected
graphs. Any place on the map can be reached from any other through a given
path. Such graphs contain a quasi-infinite number of trees according to starting
and arrival point or goal. The pruning of the branches which are not or little
practiced, along with the strengthening of the most practiced paths result in the
specification of linear (not branching) trajectories, which constitute, according
our hypothesis, the neural substrate of habit behaviors [14].

2.1 Transition-Q-learning

The state-action pair (s, a1) leading to state s′ of the classical Q-learning for-
malism can be represented by a transition ss′ associated with action a1. If the
transition ss′ is coded by a neuron (population) and the action a1 by another
one, then the strength of the link between the transition ss′ and a1 is equivalent
to the Q-value Qs,a1 in the classical formulation. In the Transition Q-learning
algorithm (TQ-learning) (Eq. 4), the transition ss′ is a substitute for the starting
state s, the action a1 and the resulting state s′. In the operation of the Transition
Q-learning (TQ), the learned Q values for each predicted transitions are used to
bias the activity of the transition cells (Fig. 2). A WTA competition allows select-
ing the optimal transition. The output of the competition is not a direct motor
action but rather a sensory-motor transition. This transition then activates its
corresponding action, which could range from elementary motor commands to
more complex behaviors. The following equation represents the adaptation of
the Q values, as a function of the previous ones and of the difference between
expected and received reward, at each time step t.

Qss′(t) = (1 − α)Qss′(t − 1) + α(r(t) + γ max
s′′

Qs′s′′(t) − Qss′(t − 1)) (4)
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In order to accelerate the simulation computation, the above equation was modi-
fied by taking also the maximum between r(t) and γ maxs′′ Qs′s′′(t)−Qss′(t−1).
The outputs of the cognitive and habit systems are compared through a WTA
operation deciding which system takes the control of the motor execution.

Fig. 2. NN implementation of the TQ learning equation: The different neural groups
a-d represent the transition space, endowed with different functions. All the connections
are one-to-one topology preserving, except one-to-all links between group a and c, for
Q-value learning in their connection weights. The connections from c to b induce a
modulation of the selected b transition as a function of its Q value. The upper path
implements the update of the Q values as a function of the prediction error. The group
d acts as a winner take all (equivalent to a max operation) and a storage group for the
preceding Qss′(t) values. The difference between the actual c signal and the max of the
expected d signal modulated by γ is added to the primary reward. The modulation of
this prediction error by α is used to update the weights of the connections between a
and c.

3 Results

Experimental Paradigm. The environment is an open square with 20 per-
fectly identifiable visual landmarks equally spaced along the walls (Fig. 1).
Obstacles are placed along southern and eastern walls, and around the goal,
in the upper left corner. Exploration being based on random movements, the
direction of the agent is periodically changed, through a Gaussian probability
function (over 360◦) centered on the current direction. A session supposes 200
to 300 successful captures of the goal, depending on the experimental group. A
new starting point at each trial induces the learning of a new path, and thus a
completion of the cognitive map [8,9].

Simulations. In absence of any control system, with a purely random behavior,
the system reaches the goal after a very long delay, without learning across
sessions (Fig. 3a). After initial inactivation of the habitual system, the cognitive
system alone reaches floor performance after a very few trials (Fig. 3b), whereas
early inactivation of the cognitive system, does not prevent learning, but the
habit S-R system alone learns slowly (Fig. 3c). When the two systems operate
together right from experiment onset (Fig. 3d and e), learning curve close to
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that of the cognitive system alone, suggests its dominance on behavior control
at this stage. In contrast to these asymmetric results, a late inactivation of either
one of the two systems does not affect significantly the performance, confirming
the equal capability of the two systems to control behavior after overtraining.
Nevertheless, habit system is significantly more performant that the cognitive
system. This can suggest an early cooperation and a late competition.

Fig. 3. Time needed for reaching the goal versus the number of trials. After
each completed trial, the agent is reset to a random position. Randdom exploration
(a) induces no learning with poor performance. (b) and (c) representing early lesions of
either the TQ-learning system or the cognitive system, demonstrate the fast learning
of the CM alone, and the more progressive learning of the TQ-learning alone. Yet,
the final performances (after 200 trials) are equivalent. The combination of the two
strategies (d) and (e) (first 200 trials), display fast learning and high performance
(hypothesis H1). Lesions of either TQ-learning or CM, after overlearning, does not
hinder the perfomance (hypothesis H2), yet with a sligh advantage for the TQ-learning
system alone. Enclosed in the figure is the mean time T̄ over 10 agents necessary for
reaching the goal; and standard deviation σ. Parameters are ε = 0.1, r = 1, γ = 0.8,
α = 0.5.

3.1 Discussion

Biological Justification of the Model. Under different denominations
(uncertainty, speed-accuracy trade-off...) the notion of competition between cog-
nitive and habit modes of behavior is recognized. Conversely, the hypothesis
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emphasized here of a cooperation between them is less obvious. It supposes in
particular that learning takes place in parallel within the cognitive and habit
systems. Yet, a strong support in favor of such a cooperation can be found in
the evolution of cortical afferents contribution to the activation of striatal neu-
rons, in the limbic loop in particular, under DA modulation. During a novel task,
the HS-subicular input (providing spatial-contextual information) plays a gating
function in the activation of the originally hyperpolarized medium spiny neurons
(MSN), the output neuron of striatum, by inducing an ‘upstate’ corresponding
to a partially deplolarized state, but still not sufficient to trigger spiking. Only
the co-occurrence of a mPFC input can trigger a spike discharge. Symetrically,
a mPFC input alone does not trigger discharge except for very strong ones.
This permissive function of mPFC input can be considered as the hallmark of a
cooperation between the two systems during learning, and more specifically of a
supervision of habit learning by the mPFC-dependent cognitive mode. Repeated
training in the same task reinforces the connection weights of the active pop-
ulations between HS-subiculum and nucleus accumbens (NAC) MSNs, up to
the point when subiculum neural population alone becomes capable to trigger
firing of MSNs. The successful performance of the task ensures reinforcement
through continuing phasic and tonic DA liberation which induces LTP in the
subiculum-NAC connections through D1 receptor activation, and inhibition of
the mPFC-NAC pathway through D2 receptor activation. This condition could
correspond to the incremental learning of an habit, with the instauration of an
S-R type of response, even though in the case of navigation S is in fact a whole
context. This situation perdures until a change in task conditions or a novel
task take over. In any case, the ensuing failure to capture the goal, and the
lack of an expected reward trigger a cascade of neural events: absence of burst
firing and phasic DA liberation in VTA neurons, inhibition of continuous DA
firing and of tonic DA liberation in the same neurons, and finally desinhibition
of mPFC-NAC pathway, through D2 receptor deactivation, characteristic of the
takeover of the mPFC control on NAC neurons and the hallmark of flexibility
and adaptive behavior.

Conditions of Engagement of the Control Modes. The different dynamics
of the cortical and ganglio-basal NNs suggest the conditions of dominant engage-
ment of each of the two systems. The fast build up of a spatial map in cortex,
through the mediation of the HS system, and the corresponding strengthening
of the connection weights on the ‘tree’ of the map leading to the goal ensures a
dominance of the cognitive mode at task onset. All the more so since variability
in starting positions favors the extensive exploration of the space and therefore
the fast build up of the map, but slows down the incremental learning of an
habit. Yet, noticeably this limited degree of variability in initial conditions does
not prevent the instauration of the habit mode, in as far as these initial con-
ditions can be merged into categories here corresponding to overlapping place
fields. A temporal asymmetry must be noted in the engagement of the two con-
trol modes: to the incremental buid up of the habit mode corresponds a fast
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reinstatement of the cognitive mode consecutive to a failure in the goal capture.
In any case, DA plays a crucial role in these changes through a dynamic modu-
lation of the connectivity of afferent inputs to striatal neurons, thus modifying
the functional organisation of these circuits. In the model, this DA modulation
is represented through the reinforcing reward values r(t) = +1, 0 according to
positive reinforcement, or failure triggering exploration. Importantly, the imple-
menting motor system being common to cognitive and habit mode, a binary
decision must be taken for the selection of the control mode implemented by a
WTA between the outputs of the cognitive and habit systems. A weighted linear
combination of the selections of each of the systems seems less plausible.

Insights from the Model in the Nature of the Interactions. The NN
model provides also a mechanistic explanation on how the supervision of the
habit learning by the cognitive system could take place. The fast learning of the
cognitive map allows selecting specific transitions leading to the goal that are
then imposed on both cognitive and habit systems. At the end of a trial, the
robot is displaced to the starting area. If the starting point was never learned
before, the exploration resumes on the basis of a random strategy. But as soon as
a previously learned segment of a trajectory (transition) to the goal is crossed,
the CM still remaining active, in particular the backpropagated activation of
the current goal, the missing part of the path leading to the goal is step by
step prospectively provided by the cognitive system according to the previously
reinforced path. This near-optimal proposed path acts as an attractor for the
habit system boosting habit learning which usually unfolds through random
exploration of the task space, when performing alone. After overtraining, the
system can take advantage of the two strategies, either favoring efficiency in
stability condition, or favoring adaptability, during context or task change. A
drop in tonic DA due to an absence of expected reward, triggers the transition
from habit to cognitive mode, as previously mentioned.

Different Modalities of Habituation. Finally, the model suggests at least
two possible kinds of habituation, plausibly consecutive during learning history.
Overtraining in a map-based cognitive strategy first gives rise to an allothetic S-R
habitual strategy, in which a complex stimulus, here the landmark configuration
giving rise to a place field, can trigger a S-R type of response, but still in an
allocentered reference frame. Yet, experimental evidence [13] points to a further
learning stage in which the motor action reference frame is shifted from an
allo- to an egocentered reference based on idiothetic proprioceptive stimuli, as
in path integration. A simple 180◦ change in the starting box location in a
cross-maze experiment allows to discriminate an external-cognitive referential
which maintains the reward capture, from an ego-centered referential which fails
capturing the goal. This shift of dominance of referential (external vs internal)
could correspond to the takeover of the direct loop between sensori-motor cortex
and DSL (dorsolateral striatum), previously performing under the supervision
of the cognitive loop.
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Abstract. We present a neuro-computational model that, based on
brain principles, succeeds in performing a category learning task. In par-
ticular, the network includes a fast learner (the basal ganglia) that via
reinforcement learns to execute the task, and a slow learner (the pre-
frontal cortex) that can acquire abstract representations from the accu-
mulation of experiences and ultimately pushes the task level performance
to higher levels.

Keywords: Categorization · Basal ganglia · Fast-learner · Reinforce-
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1 Introduction

Categorization is the capacity to group items according to specific commonali-
ties, in order to generalize or predict responses to new future stimuli and to build
concepts that provide the world with meaning. Humans are especially good in
this ability and therefore, we believe that to build a synthetic system capable of
categorization we should look at mechanisms grounded in neuroscientific data.

The basal ganglia (BG) are a set of subcortical nuclei shown to be involved
in a large number of categorization paradigms [1–5], especially those in which
learning occurs via trial and error [6,7]. The BG are also associated with action
selection [8], reinforcement learning [9] and it has been proposed to be involved
in the training of cortico-cortical connections [10].

The prefrontal cortex (PFC) has also been shown to be involved in cate-
gory tasks. It has been shown that neurons in this area can represent different
categories [11–13]. Furthermore, the PFC plays a well-known role in executive
functions [14].

We propose a novel principle of computation in which a fast-learner system
(the BG) executes a category learning task via reinforcement learning while
training a slower-learner system (the PFC) to acquire category information.

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 248–255, 2016.
DOI: 10.1007/978-3-319-44778-0 29
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2 Methodology

2.1 Network Description

In our network, each nucleus of the BG and the PFC are represented by rate-
coded neurons and their function arises from plastic synapses. Synaptic learning
rules and neural activity are governed by differential equations which are solved
by employing the Euler method with a time step of 1 ms. The network was built
using the ANNarchy neural simulator [15] version 3.0.

We used a cortico-basalganglio-thalamic (CBGT) loop model based on pre-
ceding work [16] and connected it to the inferior temporal cortex (IT), the PFC
and the premotor cortex (PM) (see Fig. 1). The IT represents stimuli informa-
tion which is read by the Striatum (STR) and the subthalamic nucleus (STN),
the two main input nuclei of the BG; the PM represents the different possible
motor responses which can be initiated by the BG via the thalamus; and the
PFC contains category information which will be acquired during the execution
of the task. For further information about our BG model architecture consult
[16].

In order to provide a sophisticated mechanism to learn categories, we have
mainly introduced three connections linking the PFC with the thalamus and the
IT. The IT is connected to the PFC with variable, excitatory synapses so that
categories can be learned from the stimuli information. Each of the two thalamic
neurons projects to a different PFC cell with fixed excitatory synapses, which
allows the BG to transmit its action decision signal to the PFC, selecting one of
the two PFC neurons to learn the current input pattern.

Finally, each PFC cell excites its afferent thalamic neuron back in order
to bias the motor decision once enough information has been acquired. In
particular, each PFC neuron is the only excitatory source of its correspond-
ing thalamic neuron. Thus, when learning in the IT �→ PFC connections still
has not occurred, PFC provides both thalamic cells with the same input which
is then just modulated or controlled by the inhibitory projections from the BG
output. However, when category learning has been fully established in the PFC,
the thalamic activity is completely biased by this knowledge. Then, a stimulus of
a particular category will activate just one PFC cell and in doing so, just one of
both thalamic cells will be activated by the PFC, impeding that BG can select
the other thalamic neuron and consequently, it is now PFC which mainly rules
thalamic activity and motor decision.

2.2 Experiment

We performed a numerical categorization experiment which consists of 400 trials
in which learning took place. The model is taught to classify stimuli into one
of two possible categories. Each trial starts with a rest period of 100 ms and
is followed by 50 ms in which a randomly chosen stimulus is exposed. At the
end of this period, the decision of the model is probabilistically evaluated via a
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Fig. 1. Connections and connection types of the novel parts of the network. THAL:
thalamus. PFC: prefrontal cortex. IT: inferior temporal cortex. PM: premotor cortex.
The boxes inside the big shadow are the nuclei of the basal ganglia which correspond to
the one introduced in [16]. One2One: each presynaptic population is only connected by
its corresponding neuron of the postsynaptic population. All2all: every neuron in the
presynaptic population is connected with every neuron in the postsynaptic population.
PFC ↔ THAL connections link half of the THAL neurons with half of the PFC
neurons, constructing two loop structures.

soft-max rule depending on the activation of the PM and, if the model produces
a correct response, reward is delivered for 500 ms.

Each stimulus or exemplar is defined by a 6 × 6 numerical matrix whose
columns have one element set to one and the rest to zero, allowing for a total of
66 different exemplars. Category A represents all the stimuli whose first column
has its first element set to one; the rest of exemplars belong to category B.

Each column of this matrix is considered as one of the stimuli’s dimensions
(color, shape, brightness, texture, size and orientation) and each row in the
matrix as a value of each dimension (green, yellow, pink, red, purple and black
for the color dimension), therefore category A encompasses all exemplars with
green color and category B the rest of stimuli.

3 Results

We ran a set of 100 experiments with randomly initialized weights in the learn-
able connections and measured, among the trials of all experiments, the percent-
age of correct decisions (see Fig. 2). At the beginning, the model starts with a
performance around 50% which progressively increases until it reaches around
95%, meaning that our model can successfully learn this category task.

The fast learning in the BG leads the STR cells to encode small sections
of the stimuli (see Fig. 3c) and due to the high diversity of exposed exemplars,
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Fig. 2. Model performance in the 100 experiments per each of the 400 trials. The
continuous line represents the average of successful trials and the two dotted lines
indicate the corresponding standard error. To smooth the line plot, the average and
the standard error are calculated from the data of the corresponding trial and the next
4 trials.

the input representation of most STR neurons strongly varies over time (see
Fig. 3d). The slow learning in the PFC allows to eventually extract more generic
and stable knowledge (see Fig. 3a and d).

In the exposed stimuli of each category, the IT neurons representing “color”
are more probable to be active and thus more strongly encoded in PFC than
the other IT cells. In the case of category A, the IT “green color” cell is always
active and therefore, the PFC representations of category A eventually become
selective just to this IT cell. In the case of category B, IT “color” neurons are
just slightly more probable to be active than the rest of IT cells and thus, the
PFC category B representations encode a broader range of IT neurons than just
IT “color” cells. However, due to the random experiences in each experiment,
the bias for encoding IT “color” cells can only be clearly observed in the average
of the category B representations across all experiments (see Fig. 3b).

To compare both the STR and the PFC representations, we tested, at the
end of each experiment, the capacity of both the PFC and the BG to correctly
classify new, unseen, stimuli without the influence of the other while suppressing
learning in the network. First, the effect of the PFC was tested by running 400
trials after removing the connections between the output nucleus of the BG and
the thalamus. Then, the effect of the BG was tested by also running 400 trials
after setting back the weights of the projections from the input neurons to the
PFC to its initial conditions, thus removing any knowledge stored in them. The
results of both are presented in Fig. 4.

Figure 4 shows that PFC can correctly classify around 99% of the new stimuli
while the BG, around the 68%. This confirms that the slow learning system can
acquire a better category representation. However, this is only possible due to
the initial training performed by the BG.
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a) b) c)

d)

Fig. 3. “Receptive fields” of example PFC and STR cells at the end of the learning
period. As illustrated in a), the x-axis, the y-axis and the grey scale of each subplot
indicate the dimension of the input, the value of the input and the synaptic strength,
respectively. (a) Two example PFC cells; one cell specializes in category A and the other
in category B. (b) Mean across all experiments of the synaptic input representations in
the two PFC cells. (c) Example of 16 STR neurons, which encode only small parts of
stimuli information. (d) Evolution of the synaptic weights in one neuron of STR (first
row) and one cell of PFC (second row) over time at nine different moments (trials).

4 Discussion

Our model succeeds in a category classification task and provides insight into
the role of fast and slow learning in category acquisition. The high variability in
the exposed stimuli impedes the input nuclei of the BG to clearly encode each
category due to fast changes in the synaptic weights that force the neurons to
extract only features of the most recent stimuli, while forgetting the rest. For
this reason, the fast learning of the BG fails to produce a stable and complete
category representation required for generalizing. However, it proves to be good
enough to teach correct associations to the PFC.

Contrary to the stimuli specific knowledge acquired by the fast leaner, the
slow learning in IT �→ PFC projections allow them to gather a more general
or broader amount of information. And because the fast leaning in BG pro-
duces a high enough number of correct associations, the BG train the PFC to
more strongly encode those elements common in the stimuli of the corresponding



Fast and Slow Learning Role in Categorization 253

Fig. 4. Performance of the PFC and the BG alone in generalizing new stimuli. For
each of both the PFC and the BG, there are three bars representing the percentage
of trials correctly classified. Each bar disposes of an error bar indicating its standard
error.

category, thus generating stable category representations that generalize across
individual exemplars.

However, the slower learner would not be required if the number of stimuli
were small enough. Hence, the fast learning could produce stable representations
of the stimulus-response (SR) associations necessary to quickly achieve the high-
est performance [16–18]. Nevertheless, the task is no longer a category learning
task but an SR learning task.

Although the fast learning system is not suitable for achieving the greatest
scores in our task, it is appropriate for executing the initial trials, as it can
reach a high performance in a small amount of time. Using a slow learner alone
(without a fast learner) would take too much time to reach a high performance.
Therefore, we believe that the brain requires a combination of both fast and
slow learning for acquiring category representations while having a high task
performance from the beginning.

Assigning fast and slow learning to BG and PFC respectively is in accordance
with physiological considerations [19] built in a brain theory that proposes: first,
a fast learning for extracting specific stimulus information, and a slow learning
for identifying the commonalities among the elements of the same class [19]; and
second, the BG to learn fast specific stimulus-motor associations while slowly
teaching the PFC to learn categories [19–21]. Likewise, our model’s function
and architecture is in agreement with brain anatomy and neuroscience studies
[22–24] which, for example, understand BG-cortex interaction via a cortico-basal
ganglio-thalamic loop.

As in neuroscience, the machine learning community has been investigating
the category recognition phenomenon. In particular, the state of the art of this
field in machine learning belongs to deep neural networks with supervised learn-
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ing (SL) which have won the latest contests and outperformed records in this
domain [25,26]. However, learning to distinguish between entities just from the
correct examples provided by a teacher (i.e. SL) works well if learning is done off-
line. Category learning as discussed here relates more closely to reinforcement
learning (RL), in which an agent pursues a goal by exploring and exploiting
actions in its environment in order to maximize reward sensation [27].

Specifically, our model brings together both RL and categorization in such a
way that fast RL learns useful actions while trains the slow learning to acquire
category knowledge. Therefore, this model could be proposed as a novel deep
networks’ classifier, which could efficiently perform SR tasks, in case of a small
number of stimuli, and categorization tasks, otherwise. Finally, further work
should focus on adapting this model to more complex stimuli, for example, to
learn to classify real objects by their shape.

Acknowledgments. This work has been funded by DFG HA2630/4-1 and in part by
DFG HA2630/8-1.
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Abstract. Striatal medium spiny neurons (MSNs) constitute input
nuclei of the basal ganglia. Most well-known dichotomous of stri-
atal MSNs stem from dopaminergic modulation of striatal processing.
Dopamine modulates excitability in striatal MSNs with a complex under-
lying mechanism and lack of balance in this delicate system leads to
pathologies such as Parkinson’s disease. On the contrary, investigation
of such a system requires simple, but yet comprehensive models that
are capable of capturing complex behaviour of MSNs. We propose a
reduced-computational but biologically plausible model that mimics the
cell dynamics of striatal D1- and D2-type MSNs with different levels of
dopamine using data from a recent study. Proposed computational model
shows good matches to the MSN responses and captures some essential
features of MSNs such as first spike latencies, dopamine modulated state
transitions and enhanced response to depolarizing input during dopamine
intervention.

Keywords: Dopamine · Electrophysiology · Medium spiny neurons ·
Simple model

1 Introduction

The striatum is a subcortical structure located in the human forebrain and one
of the principal component of the basal ganglia, a group of nuclei that have
a wide variety of functions but are best known for their role in cognitive func-
tions and voluntary movement [1,2]. Realization of a specific inhibitory function,
either during a cognitive task or action selection, depends on dopamine (DA)
modulated activity of the medium spiny neurons (MSNs) within the striatum
[3,4]. The striatum serves as the primary input to the basal ganglia system
and is also shown to have a strong influence on basal ganglia output. In this
sense, DA modulated striatal activity triggers the initiation of a decision on the
sensory, limbic, or heteromodal information through multiple anatomical loops
that process the information. Membrane excitability alterations by DA provide a
c© Springer International Publishing Switzerland 2016
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selection mechanism for cognitive and psychomotor functions, and a malfunction
in the striatal circuitry and death of DA cells in the SNc are shown to be involved
in several neuropsychiatric conditions including Parkinson’s Disease (PD) and
schizophrenia [5,6]. DA level in PD remains incapable of driving D1 neurons to
up state leading to excessive cortical inhibition. Schizophrenia causes excessive
DA in the basal ganglia and low level of DA in the prefrontal cortex (PFC).
This suggests a low-threshold for information update, causing attention to be
easily altered; however, reduced activity in the PFC causes less maintenance of
the representation [7].

One important way to enhance our understanding about the dynamics of
MSNs is to employe mathematical/computational models to generate predic-
tions. A wide variety of computational studies have been undertaken to inves-
tigate ion channel activities and electrophysiological properties of MSNs [8–10].
The model presented in [8] proposed a biologically realistic model that is capa-
ble of covering complex dynamics of MSNs and their modulation by DA. Their
study established further differences between D1- and D2-type neurons and bista-
bility of MSNs. Moreover, computational-models have provided valuable fore-
sights about the deficits in striatal mechanism, and also drug medication [11,12].
Another relevant model suggested a unified role of phasic and tonic DA levels
in PD on- and off-medication cases [11]. In [12], they discussed the DA modu-
lation in basal ganglia network and also effect of drug medication. Additionally,
some studies focused on DA modulated selection mechanism during cognitive
and motor tasks by including cortico-striato-thalamocortical circuit [13,14]. In
the light of these studies, study presented here aims to provide a simple com-
putational model for use in large-scale striatum models. Construction of such a
large-scale model should be simple, but yet still capable of capturing complex
behaviour of MSNs. For this purpose, we extended Izhikevich’s simple model of
MSNs to mimic dopaminergic modulation of intrinsic ion channels. We aim to
provide a novel set of mathematical model whose dynamics are modulated by
intrinsic ion channel properties and extracellular dopamine level. D1 and D2-type
receptor MSN models are tuned using data from a recent model and simulations
revealed notable matches with the data in [15].

2 Medium Spiny Neurons

2.1 Physiology of MSNs

DA modulates excitability by interacting with a family of receptor subtypes and
the assignment of these subtypes is based on the activated G protein type and
whether it excites (D1-type) or inhibits (D2-type) adenylyl cyclase [16]. This
leads to opposite effects of DA in modulating excitability of two classes of DA
receptors. D1 MSNs contain inward-rectifying K channel (KIR) that is active at
hyperpolarized potentials. KIR current hyperpolarizes MSN to an unusually low
membrane potential (−85 mV), mentioned in the introduction as the down-state
[17]. A second underlying mechanism of the transition between up- and down-
state is L-type Ca2+ channel that leads to increased discharge once the up-state
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had been achieved [18]. D1 receptor activation has been shown to enhance L-type
Ca2+ currents in MSNs where opposite effect is shown for D2 receptors [19]. For
our purpose, we concluded that for D1 and for D2 receptor activation may be
mediated through differential modulation of L-type Ca2+ currents and through
an increase in KIR currents. Studies also revealed a contrary DA modulation
for MSNs as to enhanced/lowered state maintenance in response to depolarizing
input for D1/D2 receptors. Such effect is interpreted as a result of changes in
conductances from the baseline values [8,20]. An increase in conductance allows
MSNs to have a stronger maintenance of the current state; stay in up-state or
remain hyperpolarized at down-state.

2.2 Computational Models of MSNs

We fitted the proposed model to correctly match the input-output relation
obtained in [15]. Considered study in [15], NEURON model of the MSNs estab-
lished a dichotomy in excitability due to dendritic area properties; however, we
take into consideration the electrophysiological properties of MSNs in terms of
frequency-input curve (f-I curve) and spike generation characteristics. In [21],
they built a computational model of basal ganglia, with a population-based
model, realizing an action selection mechanism in terms of signal selection. Study
concluded with a different interpretation of the basal ganglia architecture where
the employment of various pathways are devoted to the selection and the control
pathways. Presented study in [22] offers a multicompartment NEURON model
of MSN in nucleus accumbens by taking all known ionic currents into account for
these cells. They arrived at the conclusion that afferent NMDA/AMPA input
ratio to MSNs may be a key reason underlying in the hysteresis of up- and
down-state transitions and entrainment to oscillatory input. In addition, pro-
posed model attributes a possible role to NMDA/AMPA ratio in schizophrenia
and addiction due to lack/abundance of transition probabilities between states.
Computational model proposed in [23] described a dynamical system accounting
for DA modulation in terms of synchronized firing between MSNs and concluded
with increased synchronization in D1-type MSNs by the DA intervention. Dif-
ferentiation of our model from other similar works is first its simplicity since we
consider realization of dynamics by a simple neuron model. Second, proposed
model is still capable of giving some foresights about DA modulation of ion
channels even though it is simple.

3 A Computational Model of MSNs

Each individual neuron is modeled as a spiking point-like neuron of the threshold-
firing type. We employed the simple model proposed by Izhikevich for spike
generation [24]. It is given that v is the membrane potential, and u is the contri-
bution of the dominant ion channel. Dynamics for the membrane potential of D1

and D2 MSNs and the recovery current are described by the following equations.
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D1 → C
dv(t)

dt
= k[v(t) − vr][v(t) − vt] − u(t) + I(t) + φ1gDA(v(t) − EDA), (1)

D2 → C
dv(t)

dt
= k[v(t) − vr][v(t) − vt] − u(t) + I(t) + (1 − φ2)gDA(v(t) − EDA), (2)

D1 and D2 → du(t)
dt

= a(b[v(t) − vr] − u(t)) (3)

where C is the membrane capacitance, vr, the resting membrane potential and vt,
the instantaneous threshold potential. I(t) is the total DC current applied to the
MSN at time t. We modeled contribution of dopamine sources by the parameters
φ1 (for D1) and φ2 (for D2), normalized in the interval [0, 1]. Parameter a is the
recovery time constant; k and b are obtained from frequency-current curve (f-I
curve) by measuring the instantaneous firing-rate versus the synaptic current.
As it can be followed from Eqs. 1–2, we extended the classical Izhikevich model
by adding the contribution of the DA on the stability of up- and down-states;
considering the contrary influence of different MSN subtypes. Stability of the
state refers to the state where a MSN maintain the current up- or down-state
and a transition between them is less likely to occur. In a D1-type MSN, this
effect is modeled by an increase in the DA conductance from the baseline that is
proportional to the DA level [8]. However, DA level constitutes an opposite effect
on D2-type MSN. We describe an additional term for modeling such an effect on
D2 MSN in Eq. 2, differentiating the proposed model from [8]. We consider the
following spike-generation conditions and reset of MSNs:

if vD1/vD2 ≥ vpeak then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dD1 ← dD1(1 − φ1L) ,D1 MSN reset
vrD1 ← vrD1(1 + φ1K) ,D1 MSN ”
vD1/2 ← cD1/2 ,D1 and D2 MSN ”
uD1/2 ← uD1/2 + dD1/2 ,D1and D2 MSN ”

(4)
These extensions are inspired by [8]. Additional reset condition for parame-

ter d allows MSN to enhance sensitivity to depolarizing input. Generation of a
second spike becomes more likely to occur as L-type Ca2+ activation threshold
reduces with the first spike. Another expansion involves parameter vr that cor-
responds to enhancement of KIR current, hyperpolarising the membrane after
depolarization. This modulation of the parameter results in decreased resting
potential after depolarization, stabilizing down-state while avoiding subsequent
spikes. Down-regulation of resting potential brings MSN closer to the reversal
potential. We don’t consider any extension of the reset condition for D2 MSN.
All derived parameters for D1- and D2-type receptors are given in Table 1.

Simulated neuron’s firing behaviour is shown in Fig. 1. Model presents the
MSN’s characteristic delay to first spike after current injection and as input cur-
rent increases, spike latency disappears [25]. We also observed that D1 receptor
stays hyperpolarized at around −85 mV without any stimulation and the level
is higher for D2 receptors [15]. Resting membrane potential for D1 receptor is
found at −83 mV, and −78 mV for D2 MSN. Up-state threshold for D1 MSN
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Table 1. MSNs parameters

Parameter C vr vt a b c d k EDA gDA L K

MSN D1 50µF −75.9mV −33.8mV 0.04 −8.0 −55 700 1.13 −68.4mV 21.7mS/cm2 0.731 0.131

MSN D2 50µF −77.0mV −44.1mV 0.05 −15 −55 600 1.10 −68.0mV 21.1mS/cm2 - -

requires a membrane potential around −60 mV [15]. The rheobase current was
significantly greater in D1 MSN (D1 MSN: 270 pA; D2 MSN: 130 pA, compati-
ble with [15]). We obtained a good fit to the f-I curve from simulations, shown
in Fig. 2. As dichotomous between MSNs offered, D2-type receptors are more
excitable then the D1 MSNs and has stronger response to depolarizing current.
For both models, we obtained a linearity of MSN model’s response to input. We
also investigated the changes in bimodality and response of D1-type receptor
with the modulation of DA, and results are given in Fig. 3. In Fig. 3-A, we noted
that increase in DA level doesn’t allow MSN D1 to response lower-injections
but rather increases response during up-state and even causes burst of spikes.
Figure 3-B shows that in the abundance of DA, slope of the f-I curve increases,
and transition from down- to up-state is more abrupt but still found to be linear.
We didn’t obtain a left-shift in the f-I curve. Besides increasing firing response
to injected current, spectrogram results also reveal an increase in power of D1

activity in Fig. 3-C. DA-free simulations reveals a spread of power over different
frequency values, specifically for low-level inputs in Fig. 2-A; however, DA inter-
vention reveals most prominent frequency component more clearly, and also in
a narrower frequency interval.

This may suggest that DA modulated increase in conductance in Eq. 1 ensures
maintenance of up-state and allows a MSN to sustain this state during the DA
intervention. Another prominent change was the repetitive spike generation of
the D1 MSN. DA increase lowers the activation threshold of L-type Ca2+ current,
enabling a second or third spike to occur within a hundred milliseconds interval.
Enhancement in hyperpolarizing KIR currents during depolarized state remains
incapable of avoiding short-interval spikes.
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Fig. 1. Initial spike generation for D1- and D2-type receptors. As compitable with [15],
activity of both receptor type presents spike latencies for the first spike and later spikes
occur without such a delay with L-type Ca2+ current contribution.
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Fig. 2. Simulation results revealed a good fit to the considered study. (A) Left: f-I
curve for modeled MSN D1-type neuron with results from [15]. Right: spectrogram
results for varying levels of DC input. (B) Left: f-I curve for modeled MSN D2-type
neuron with results from the multicompartment model in [15]. Right: spectrogram
results for varying DC input. Both MSNs present a linear change in their response to
depolarizing input. Rheobase current is higher for D1-type neuron; D1 MSN: 270 pA;
D2 MSN: 130 pA.

Fig. 3. D1 simple model predicts increase in the slope of the f-I curve with DA appli-
cation and no change in rheobase current. (A) D1 MSN response to DC current for
400 pA. (B) f-I curve comparison during DA free condition and DA modulated activity.
(C) Spectrogram results for varying levels of input current.



262 S.U. Çelikok and N.S. Şengör

4 Discussion

Proposed simple model is shown to be able to successfully present some impor-
tant dynamics of striatal MSNs and excitability modulation by DA. It is also
pointed out that DA modulation causes a strong response to same current injec-
tion while avoiding response to lower injections compared to the DA free trials,
ensuring high signal to noise ratio. As proposed, D1 dopamine receptor activation
increases by augmenting L-type Ca2+ currents and DA ensures maintenance of
the up-state. Results satisfied our aim which was to build a simple model that is
capable of capturing electrophysiological dynamics of MSNs. Main contribution
of the proposed model can be appreciated more specifically by the employment
in a large scale model including the basal ganglia, the thalamus and the cere-
bral cortex. Recently, we have proposed a computational-model for the switching
mechanism of the basal ganglia and integration of the proposed model into the
design may allow us to have a deeper intuition about the underlying mechanism
for action selection and working memory processes [26]. Such integration may
enable us to investigate synchronization by DA modulation and deficits observed
in PD. Lastly, this study puts support behind the usage of simple models in the
investigation of complex brain mechanisms. Simplified model reveals notable fits
to the corresponding study [15].
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Abstract. The dynamics of the stimulation protocol become relevant
when investigating multi-item working memory (WM). In this work,
we explore what is the effect of the stimulation protocol in the encod-
ing and maintenance of multiple items in WM. To this end, we con-
sider a biophysically-realistic attractor model of visual working memory
endowed with synaptic facilitation. We show that such a mechanism plays
a key role when sequential stimulation protocols are considered. On one
hand, synaptic facilitation boosts WM capacity. On the other hand, it
allows us to account for the experimentally reported recency effect (i.e.
in sequential stimulation protocols, those items presented in the final
positions of a sequence are more likely to be retained in WM). In this
context, the time constant of the synaptic facilitation process has been
found to play an important role in modulating such effects with large
values leading to larger capacity limits. However, too large values lead
to neuronal dynamics which are not compatible with the recency effect,
thus constraining the range of values that the time constant may take.

Keywords: Working memory · Synaptic facilitation · Attractor
networks

1 Introduction

Working memory (WM) is a cognitive function which is necessary to maintain
and manipulate information that is not present physically through the senses.
Its integrity is basic for higher cognitive functions, such as language, memory or
reasoning. A hallmark property of WM is its limited capacity. Interestingly, sev-
eral theories suggest a relation between WM and fluid intelligence (gF). Among
the different factors involved in the WM construct, capacity is thought to play
a key role in mediating the WM-gF relation [1].

Until recently, many studies supported the view that WM shows strict upper
limits [2]. However, in the last few years, two competing theories have emerged
which attempt to explain such capacity limits by not only paying attention
to such absolute bounds but also to the accuracy with which the items are
memorized. Fixed capacity models (or discrete-slot models) [3] claim that all
c© Springer International Publishing Switzerland 2016
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items are recalled with equal precision up to an upper limit (3–4 items in the
case of visual WM) and no information is stored beyond this limit. In contrast,
dynamic allocation models (or shared-resource models) [4] state that the limited
resources are shared out between all of the items in the memory set although
not necessarily equally. Although both models have been able to successfully
account for psychophysical results, little neurophysiological evidence about the
neural mechanisms underlying such predictions is available.

In fact, selectively enhanced activity throughout the delay period of delayed
match-to-sample tasks has been traditionally regarded as a neural correlate of
WM function [5]. Most neurophysiological studies have, nonetheless, been mostly
concerned with the storage of single items in WM. Our reality is, however, more
complex in that we simultaneoulsy receive many stimuli through the senses, and
many of them must be kept in WM to understand the world around us. Although
the neural mechanisms underlying the maintenance of multiple items in WM
have not been clearly identified yet, several hypotheses have been considered,
which include (1) sustained neural activation (e.g. [6–8]), (2) neural oscillations
(e.g. [9]), or (3) patterns of synaptic strength [10].

Temporal Dynamics of Visual Stimuli and Multi-item WM Capacity
Limits

It is clear that our perceptual reality is generally far from static. This is a
consequence of the continuous influx of changing stimuli entering through our
senses. While some of these stimuli appear simultaneously in the physical world,
others appear asynchronously. In this work, we will focus on visual information
processing and, in particular, on what is the impact of the temporal dynamics of
visual stimuli on visual working memory (vWM). Of note, such temporal dimen-
sion has some important implications regarding not only how many of those
items are maintained in vWM but also which of them are preferentially kept. In
the remaining of the paper, sequential stimulation will refer to a serial display
of the visual stimuli which are individually shown with a temporal separation
between different items. Interestingly, several features specific to sequential stim-
ulation protocols have been reported. In particular, both primacy and recency
effects have been found (e.g. [11]). The primacy effect implies that items pre-
sented earlier during the stimulation protocol are recalled more often than those
presented towards the middle of the sequence. In contrast, the recency effect
establishes that those items which appear later in the sequence are also prefer-
entially recalled when compared to the items which appear in the middle of the
sequence. Multi-item WM and temporal dynamics are, thus, two concepts which
are necessarily bound to each other. Yet, few systematic investigations about
the role that the sequential stimulation protocol plays in establishing both the
capacity limits of the WM system and the prevalence of an item as a consequence
of its serial position have been conducted. Only recently, Kool et al. [12] have
addressed this issue by assessing different dynamical aspects of vWM by means
of sequential stimulation protocols.

In order to gain further insights into the neural mechanisms which give rise
to a limited capacity WM system, we consider a biophysically-realistic attractor
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network with spiking neurons [13]. The spiking neural network considered in this
study is based on the model proposed by Brunel and Wang [14] and is endowed
with synaptic plasticity. Of particular interest to our study is the work by Edin
et al. [6], in which a continuous attractor network is used to model visuospatial
WM and the mechanisms underlying WM capacity are analyzed in depth. The
authors show that there exists an upper boundary to the capacity limit arising
from lateral inhibition in parietal cortex. Our model reproduces similar results
while also accounting for the experimental results of a sequential test, inspired
by Miller’s distractor experiments and described in detail in [15].

It is worth noting that it is unclear how and whether the stimulation protocol
modifies WM capacity. In this work, we tackle this question by means of a
computational study. For simplicity, the level of accuracy with which a visual
item is kept on visual memory has not been specifically addressed. Thus, we
have considered that visual items are either kept in WM memory with sufficient
precision for its reporting or not kept at all.

2 Materials and Methods

2.1 Computational Model

The model consists of a network structured into statistically homogeneous neural
populations. In particular, the statistical properties of the synaptic currents and
the connection strengths are identical for all the neurons within the same popula-
tion. There is one population of inhibitory cells and one population of excitatory
cells, which is partitioned into 10 subpopulations. Each of these populations
selectively responds to a particular object. Each of these excitatory populations
represents one short term memory by maintaining its activity during a delay
period after a cue (λ1, λ2, ..., λ10, of value λi = 3.3125 Hz/synapse) has been
applied.

Recurrent connections between neurons from the same selective subpopula-
tion are potentiated by a factor ω+ > 1 with respect to the baseline connectivity
level, while connections between neurons from different selective subpopulations
are weakened by a factor 0 < ω− < 1. The strength of inhibitory-to-excitatory
connections and inhibitory-to-inhibitory connections is denoted by the weight
ωinh. The synaptic connection strengths used in this study are: ω+ = 2.3, ω− =
0.87, ωinh= 0.97. The integrate-and-fire spiking network contained 1000 neurons
(80 % excitatory and 20 % in the inhibitory pool). Each neuron in the network
receives external Poisson inputs λext from 800 external neurons at a rate of
3.05 Hz/synapse to simulate the effect of inputs coming from other brain areas.

The behavior of the neurons is modeled by means of the leaky integrate-
and-fire (LIF) model, in which the membrane potential V(t) obeys the following
differential equation:

Cm
dV (t)

dt
= −gm (V (t) − VL) − Isyn(t) (1)
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where Cm is the total membrane capacitance, gL is the passive conductance, VL

is the resting potential, and Isyn(t) is the synaptic current that charges the neu-
ron. In this work, four families of synapses have been considered. The recurrent
excitatory postsynaptic currents (EPSCs) have two components, which are medi-
ated by AMPA and NMDA receptors. In contrast, only AMPA receptors mediate
external EPSCs and GABA receptors mediate the inhibitory components. The
total synaptic current is defined as follows:

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t) + IGABA(t) (2)

A full description of the model can be found in our original work [13].

2.2 Short-Term Facilitation and Stimulation Protocols

To the standard integrate-and-fire network [14], and following the model pre-
sented in [13], we added synaptic facilitation. Short-term synaptic facilitation
has been implemented by using a phenomenological model of calcium-mediated
transmission [10], which obeys the following equation:

duj(t)
dt

=
U − uj(t)

τF
+ U (1 − uj(t))

∑
k

δ(t − tkj ) (3)

In our model, the synaptic efficacy of the recurrent connections between
all of the excitatory neurons is modulated by the utilization parameter u (the
fraction of resources used) reflecting the calcium level. The value for the baseline
utilization factor is U (0.15). The time constant of the decay of the synaptic
facilitation is regulated by the parameter τF .

Since our focus in this study is on the temporal relationship between the
stimuli, we have considered both simultaneous and sequential stimulation pro-
tocols. In both cases, each cue lasts for 1000 ms. In the sequential stimulation
protocols, however, there is also an interstimulus period of 1000 ms between con-
secutive stimuli which is equivalent to that considered in [15]. In this work, we
investigate the role that the time constant τF plays in terms of establishing an
upper boundary for WM capacity but also how it crucially shapes the neuro-
dynamical response of the system, which strongly depends on the stimulation
protocol.

3 Results

3.1 Network Model Endowed with Short-Term Plasticity

In this section, we confront the predictions of our previously published model
[13], which was validated only in the context of simultaneous stimulation proto-
cols, with the results obtained when sequential stimulation protocols are consid-
ered. Figure 1A and B show how the number of items maintained in WM changes
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Fig. 1. Items maintained in visual WM. Histogram illustrating the percentage
of trials in which different number of pools show high activity during 500 ms of the
delay period 2 s after the last item of the memory set is displayed for simultaneous
stimulation protocol (A) and sequential stimulation protocol (B) in 100 trials.

as a function of the number of items which have received suprathreshold stimu-
lation. As can be seen, and in agreement with previous studies (e.g. [6,7]), the
model predicts that the number of items that can be stored in WM reaches an
upper boundary capacity value, which is around 5.

In order to further investigate the relevance of the stimulation protocol, we
have focused on a particular case in which the number of items that are stimu-
lated is above the capacity limit. This allows us to assess whether there is any
dependence on which stimuli are maintained in WM as a function of the serial
order. In all of the examples that we are showing next, 9 pools receive external
stimulation as a consequence of the visual display of items to which the neuronal
populations selectively respond. Interestingly, although there is no preference as
to which items are kept in WM during the delay period in the simultaneous stim-
ulation paradigm, Fig. 1B shows that, when the sequential stimulation paradigm
is considered, those items which are seen last are less likely to be maintained
in WM. A closer examination of Fig. 1B suggests that the reason for this hap-
pening is that such stimuli are less likely to be correctly encoded during the
stimulation period. This is because of the competition between excitatory pools
mediated by the inhibitory pool, whose activity increases when subsequent pools
are stimulated during the experimental protocol and prevent the last pools from
reaching a high firing rate during the stimulation (i.e. failure to encode the corre-
sponding stimulus during the stimulation period). This is, however, at odds with
the experimental observations suggesting a recency effect and indicates that this
model, as it currently holds is not able to reproduce such findings.
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3.2 Assessing the Role of τF

As discussed in [13], synaptic facilitation boosts WM capacity because of the
effectively increased synaptic strengths of those pools to which the cues are
applied, and then maintenance of this synaptic facilitation in just those pools
when the cue is removed by the continuing neuronal firing in those pools. The
time constant τF plays a critical role in establishing the dynamics of this mech-
anism. We have explored its role on the encoding and maintenance of items in
WM.

In particular, Fig. 2A shows that WM capacity increases for increasing val-
ues of τF for sequential stimulation protocols. The same holds for simultaneous
stimulation protocols (data not shown). Interestingly, as can be seen in Fig. 2B,
there exists a value of τF between 1500 ms and 1000 ms below which the recency
effect emerges. Thus, one should consider both WM capacity but also the emer-
gence of the recency effect to establish an appropriate working regime for the
network.
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Fig. 2. Distribution of items in WM during the delay period. Results derived
from computational simulations (100 blocks of 100 trials) when different values of τF
(550 ms, 750 ms, 1000 ms, 1500 ms) are considered. Maintenance in WM is estimated
by assuming that an item is held in memory when its associated selective pool shows
a mean persistent activity ν > 20 Hz during a period of 500 ms, 2 s after the last visual
cue is removed. (A) Boxplot showing the number of items kept in WM during the
delay period when 9 items are sequentially stimulated. An increasing number of items
is kept in WM when τF increases. (B) Probability of maintaining an item in WM as
a function of its serial order within the sequence. The likelihood that the last items in
the sequence are kept in WM increases when τF decreases.

In order to understand the neurophysiological basis of the previous results, we
have further investigated the dynamics of the utilization parameter u. Figure 3
reveals that the synaptic facilitation variable ui associated which each pool i that
is maintained in WM during the delay period not only reaches higher stationary
values (denoted ui∞) but also more pools, among those which have received a cue
during the stimulation period, reach such state characterized by a persistently
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Fig. 3. Prediction of synaptic facilitation and firing rates. Simulations obtained from
the network model. The stimulation period is depicted in pink whereas the delay period
is depicted in gray. In these plots different values of τF have been considered. The
panels on the left show the temporal evolution of the synaptic facilitation variable (u)
for (A) τF=550 ms, (B) τF= 750 ms, (C) τF=1000 ms, (D)τF=1500 ms. The panels on
the right represent the corresponding firing rates for (E)τF=550 ms, (F) τF=750 ms,
(G) τF=1000 ms, (H)τF=1500 ms.

high firing rate when τF increases. Moreover, varying the time constant of the
facilitation process also reverses the undesired effects regarding the sequential
stimulation discussed in Fig. 1A and B (i.e. the last items were less likely to
be successfully encoded). Interestingly, decreasing τF reduces WM capacity in
a way that is compatible with reproducing the recency effect since the neuronal
activity of the most recently stimulated pools is less likely to decay.

4 Conclusions and Discussion

In this work, we have investigated the importance that the stimulation proto-
col has on establishing WM capacity limits. In contrast to most computational
studies, which only consider the behavior of the network during the steady state,
we claim that it is most important to pay full attention to the encoding stage
as well. We hereby recall the notion of effective WM (eWM [7]) as a construct
which takes into account the important constraints imposed to the WM system
during the encoding stage. This complete account provides both a general frame-
work to investigate WM function and, importantly, a plausible explanation of
the neuronal mechanisms yielding WM capacity limits.

In agreement with previous studies [13], we have found that synaptic facil-
itation boosts the WM capacity limit by effectively increasing the synaptic
strengths one for those pools to which a cue is applied. Then, the synaptic
facilitation is maintained by the continuing neuronal firing in only these same
pools when the cue is removed. We suggest that short-term facilitation is a
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neurophysiological mechanism with a key role in establishing the WM capac-
ity limits while also modulating the system response to the intrinsic dynamics
of the experimental protocols. In particular, the time constant of the synaptic
facilitation process τF has been found to play an important role in modulating
WM with large values leading to larger capacity limits in both sequential and
simultaneous stimulation protocols. However, too large values lead to neuronal
dynamics which are not compatible with the recency effect reported in different
experimental works (e.g. [11,12]), thus constraining the range of values that the
time constant may take. In particular, it is within the range τF ∈ [750−1000] ms
that 4–5 items are kept in WM and the system displays the recency effect.
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Abstract. Learning mechanisms inspired by the animal cerebellum
have shown promising achievements in artificial motor adaptation,
mainly by focusing on the computation performed in the molecular layer.
Other sites of cerebellar plasticity however are less explored whereas
their understanding could contribute to improved computational solu-
tions. In this study, we address the advantages of a form of plasticity
found in the glomerulus, thought to control the temporal gating dynam-
ics of the cerebellar pontine input. We explore this hypothesis from a
system-level perspective within a simulated robotic rejection task, by
implementing a model of the cerebellar microcircuit where adaptation of
the input transformation dynamics, accounting for glomerular informa-
tion processing, is controlled by a cost function. Our results suggest that
glomerular adaptation (1) improves motor learning by adjusting input
signal transformation properties towards an optimal configuration and
shaping time and magnitude of the cerebellar output, and (2) contributes
to fast readaptation during sudden plant perturbations. Finally, we dis-
cuss the implications of our results from a neuroscientific and articifical
control perspective.

1 Introduction

Recent research in motor control has been focusing on understanding the type
of computation performed by the cerebellum together with the adaptive capa-
bilities that machines can gain by implementing a form of cerebellar adaptive
feedforward control that overcomes the noise and delay of the sensory feedback
[7–9,13,15]. A common algorithm used to study cerebellar functions [1,4] sug-
gests that a single microcircuit would act as an analysis-synthesis adaptive filter
performing a decomposition of its input into a set of bases characterized by
different temporal profiles and accounting for the expansion of the signal car-
ried by mossy fibers in the cerebellar granular layer. The output signal is then
obtained by a weighted integration of the bases according to a teaching signal
conveyed by the climbing fibers and accounting for plasticity in the molecular
layer. Cerebellar in-vitro physiology however suggests that synaptic plasticity
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 272–279, 2016.
DOI: 10.1007/978-3-319-44778-0 32



Plasticity in the Granular Layer Enhances Motor Learning 273

found at the parallel fibers - Purkinje cell synapsis is not the only source of
adaptation in the cerebellum. Adaptation in the glomerulus, at the input stage
of the cerebellar microcircuit, is thought to modulate the characteristics of the
input signal expansion [2,3] driven by the recursive excitatory-inhibitory non-
linear dynamics introduced by the interplay between granule and Golgi cells,
with significant effects on the temporal profile and amplitude of the transforma-
tion [10]. In a recent computational study [6], we supported this hypothesis by
proposing a model of the cerebellar microcircuit where a fixed threshold applied
to the cortical bases (accounting for glomerular non-linear response) achieved
the temporal modulation of an acquired response according to the magnitude of
the input signal (CS intensity effect). However a computational strategy for the
active modulation of such threshold, and therefore accounting for input stage
plasticity within the current model, is still missing. Here we propose a novel
implementation of the cerebellar microcircuit based on [6] that interprets the
adaptation in the glomerulus as a dynamic threshold applied to the excitatory
and inhibitory components of the cortical bases. This is used to adjusts the
non-linearity of the response to the input signal according to a cost function
and to modulate the cerebellar output both at the input stage (basis functions
expansion) and output stage (basis functions integration), improving its tempo-
ral resolution and fine-tuning its magnitude response to the input signal. We test
the behavioral and computational advantages of the proposed model in a simu-
lated robotic setup analogous to a human postural task [8,14], where an agent
has to learn to anticipate the effects of a predictable disturbance by issuing
an adaptive motor action. We design two sets of experiments involving trial-by-
trial adaptation under constant disturbance and constant plant properties in one
case, and constant disturbance and variable plant properties in the other, and
compare the performance of the same control architecture under control con-
dition (adaptation in the molecular layer only), and adaptive-input condition
(adaptation in both granular and molecular layer). We suggest that input stage
adaptation can lead to an enhanced decomposition of the input signal by con-
verging to threshold values that shape the bases response profile in an optimal
way according to the provided target signal and contributes to improved per-
formance and learning speed. Finally, we discuss the implications of our results
from a neuroscientific and robot-control perspective suggesting how the present
results, coherent with physiological studies on cerebellar information processing,
could possibly enhance the adaptation of artificial agents involved in real world
tasks.

2 Methods

We implemented a trial-by-trial robotic postural task as a simulated cart-pole
setup where an agent has to maintain a position of equilibrium (90◦ with respect
to the horizontal axis) by resisting an external disturbance (Fig. 1.D) of 4 N that
displaces the pole from its fixed point. The goal of the agent is to learn to antici-
pate the disturbance by issuing an appropriate motor response useful to minimize
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Fig. 1. A. Model of the cerebellum: input (y) is decomposed into bases (p) within the
granular layer (g). Output (z) results form the weighted (w) sum of each component
(p). C and E represent the teaching signals. B. Effect of threshold on bases response
profile. C. Adaptive control architecture composed by reactive and adaptive layer. D.
Postural task setup.

the error so that an initially reactive motor response is complemented with an
anticipatory feedforward one acquired over trials by the cerebellar controller.

The agent is controlled by a layered architecture formed by a reactive and an
adaptive component (Fig. 1.C). Within the reactive layer a feedback controller
(PID) is in charge of stabilizing the angular position of the pendulum around
its point of equilibrium by mapping the perceived delayed error (80 ms) into an
appropriate motor output. Within the adaptive layer the cerebellar controller
is in charge of learning to associate an initially neutral stimulus (the proxim-
ity signal to the disturbance) with a copy of the reactive motor response. After
learning, such stimulus acquires a predictive value and triggers a learned antic-
ipatory response that bypasses the error feedback and therefore precedes the
reactive motor response. In order to achieve this, we use a learning algorithm [6]
consistent with cerebellar physiology and anatomy [4] (Fig. 1.B), that expands
an input y(t) into a set of 100 bases (granular layer), where each basis is the
results of a fast excitatory component (exc) subtracted by a slow inhibitory one
(inh). Each component is obtained as a double convolution with two exponen-
tials so that the response to a unitary pulse resembles an alpha function. The
value obtained after the two convolutions is then thresholded and scaled. The
final value of a basis function (p(t)) is computed by integrating exc and inh com-
ponents and the output of a single adaptive module is obtained as a weighted
linear combination the bases vector. Importantly, the threshold factor (h) is used
to modulate the temporal and magnitude properties of a basis response to the
input so that a low hexc to the exc component coupled with a high hinh of the
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inh component accounts for a fast rise - fast decay profile with lower amplitude
and a a slow rise - slow decay with higher amplitude vice versa (Fig. 1.B).

The current implementation of the cerebellar microcircuit presents two forms
of adaptation: (1) the weight (w) associated to each linearly integrated basis is
individually updated according to a variation of the Widrow-Hoff rule such that:

Δwj(t) = βe(t)pj(t − δ)

where β (=10) is the learning rate, δ accounts for feedback delay (= 80 ms)
and e is the error at every time step, namely the difference between the reactive
command and cerebellar output. (2) As main element of novelty, the thresholds
hexc and hinh are adjusted dynamically. To achieve this we define a cost function
C as:

C(θ(t), θtgt) =

t∫

0

(θtgt − θ(t))2

where t is a time step over the duration of a single trial, and θtgt and θ(t) are the
target angle and the current angle position, respectively. We define this function
under the assumption that an optimal configuration of the bases response can be
found so that each component would more efficiently perform input expansion
by better approximating the temporal and magnitude characteristics of the error
signal and leading to a more effective integration of every component forming
the output signal. Assuming that an optimal value for hexc and hinh can be
jointly found by modulating the ratio of excitatory and inhibitory ranges across
all the bases, we define an online update rule within the h parameter space to
minimize C such as:

Δh(n) = α(sign(C − C(n − 1))sign(Δh − Δh(n − 1)))

where Δh(n) represents the change of threshold at trial n, α represents the
learning rate (here fixed to 0.01) governing the magnitude of the change. C and
Δh are the mean of the cost value and of the change in threshold values, respec-
tively, for a number of previous trials. The change in threshold is then added to
the parameters hexc and hinh with opposite signs computing the value for the
next trial.In this way, we obtain a trial-by-trial modulation of the bases non-
linear response that potentially spans from a combination of high excitatory -
low inhibitory ranges to a combination of low excitatory - high inhibitory ranges.

3 Results

To test the effects of glomerular adaptation on motor learning we design two
experimental procedures comparing adaptive-input condition (AI - adaptation
in both granular and molecular layer) and control condition (CT - adaptation in
molecular layer only). First, we asked whether the range of hexc and hinh could
have an effect on the error minimization so that an optimal configuration, namely
a balance between excitation and inhibition, can be found. If so, an online strat-
egy for adaptation of such parameters should lead to convergence to optimal
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Fig. 2. A. Final error: s is the systematic change at every session where s = 0 corre-
sponds to a range of 0.4–0.6 for both hexc and hinh. Normalization by session at trial
1. B. Learning speed: a denotes the slope of the regression function fit performed on
the learning curve for each session. C. Mean response peak time for early (trial 0–23),
middle (trial 24–46) and late (trial 47–70) stages. D. Mean response amplitude. E. F.
Example of convergence for excitatory and inhibitory ranges respectively from different
starting points. (Color figure online)

values appropriate for the task. To answer this question we instantiate a number
of training sessions composed by 70 trials for each condition, where the initial
hexc and hinh are both set to 0.4–0.6 and systematically updated every session
by an increment step s of 0.05 in order to cover a full range of possible threshold
configurations spanning from low excitatory range (0.0–0.2) coupled with high
inhibitory one (0.8–1.0) and vice versa. In Fig. 2.A, a systematic change of h
confirms, in CT , the presence of a global minimum error achieved with s of −0.2
(red arrow) corresponding to hexc = 0.2 − 0.4 and hexc = 0.6 − 0.8. This result
suggests that, beside extreme initial conditions, the precise value of h is not crit-
ical for performance, as a relatively large range of parameter values converges
to a similar error, nevertheless it supports faster learning for values closer to
optimal (Fig. 2.B). As such, adaptation in the granular layer should guarantee
optimal performance for every initial condition together with a faster learning
curve. In (Fig. 2.A), a minimization of the error below 0.2 is achieved for almost
every non-optimal initial value by progressively adapting the threshold parame-
ters according to the trial-by-trial computed cost of the system (Fig. 2.E and F),
while an improved learning speed is achieved, leading to faster convergence for
every initial condition (Fig. 2.B). As expected, performance in the optimal range
is highly comparable for both the control and the adaptive condition. Interest-
ingly we show that the adaptation of the bases response influences both peak
time and amplitude of the cerebellar output: an initial mean peak time of 0.52 s
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from cue signal onset detected at the early stages of learning for both condi-
tions converges to a value of 0.62 s only in adaptive input condition (Fig. 2.C).
In addition, initial mean peak amplitude of 0.25, equal for both conditions and
expectedly low given the early stage of learning, converges to higher values (0.7)
for the adaptive condition at the end of each session (Fig. 2.D).

Fig. 3. A. Learning curve after plant perturbation (trial 0). B. Peak response time evo-
lution after plant perturbation relative to disturbance peak time. C. Adaptive response
after plant perturbation. D. Pendulum angle after plant perturbation. Dashed: mean
trial 0–5; Solid: mean trial 55–60. (Color figure online)

In the second experiment, after the learning phase we introduce a sudden
plant perturbation (i.e. lighter plant: cart weight at 0.2 kg) resulting in a decrease
in the inertia (linear momentum) governing the motion of the agent. Shorter con-
trol latencies require less anticipation and make the previously acquired response
inadequate (i.e. over-anticipation). The controller should therefore compensate
for the self-introduced error or reduce anticipation. We test the system under
AI and CL conditions, using h values found to be optimal (0.2–0.4 for hexc and
0.6–0.8 for hinh) in standard plant configuration. An increased error at early
trials soon after the perturbation is due to over-anticipation, visible in the angu-
lar position of the pendulum (Fig. 3.D, red arrow) and adaptive motor response
(Fig. 3.C, red arrow) before the delivery of the disturbance. Note that feedback
control is also affected by shorter latencies and contributes to poorer perfor-
mance. Error minimization however, can be appreciated in both conditions, even
with different learning dynamics. In CL, a slower and constant reduction of the
error reaches a minimum normalized value of 0.31 at trial 60. Differently, in AI,
a sudden drop of the error can be appreciated at trial 10 (error at 0.33) followed
by a progressive constant reduction till the end of the session (with a final value
of 0.3) (Fig. 3.A). If this difference is due to the effect of the modulation of the
glomerular signal transduction properties in re-adaptation a sudden change in
the timings of the adaptive response which matches the evolution of the error
should be visible in adaptive-input condition. This hypothesis is confirmed in
(Fig. 3.B) where an initial similarity in the adaptive response time (relative to
first disturbance peak) for the two conditions is broken by a suddenly delayed
response in AI (starting at trial 5) that quickly moves and stabilizes around a
relative peak time difference of −0.03 s (from trial 10 on), accounting for the
shorter control time imposed by linear momentum. This shift in time eliminates
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the error generated by over-anticipation and produces an adaptive response more
suitable for the properties of the new plant, and ultimately, useful for faster error
minimization.

4 Discussion and Conclusions

We have shown that precise temporal dynamics can be shaped by glomerular
modulation in a computational model of the cerebellum to: (1) achieve faster
learning and improved performance by optimally shaping the bases response
profile and (2) enhance the robustness of an already trained system under plant
perturbation by adjusting the adaptive response peak latency to the new dynam-
ics introduced by a lower system inertia. Our results are consistent with the
modulation of the burst initiation delay and gain adaptation found at the mossy
fiber granule cell synapses, where the active adjustment of the input threshold
mimicked the effect of recurrent excitatory-inhibitory interplay among granule
and Golgi cells [2]. Granular layer processing has been previously suggested
to act as an automatic gain control mechanism maximizing the information
transfer of the pontine input [12]. In contrast, our system level model suitable
for robotic control, supports the hypothesis that the regulation of granule cells
response initiation could implement an adaptive delay line affecting downstream
activation of the cerebellar circuitry [3,10]. In addition, we proposed that adap-
tation could be driven by a mechanism of cost minimization as supported by
recent physiological evidence showing a climbing fiber dependent modulation of
the inhibition provided by Golgi cells onto the activation of granule cells [16].
Consistently with our model, such feature could serve as gating mechanism for
the pontine input signal and result in an enhanced temporal coupling with the
error signal conveyed by the same climbing fiber signal affecting Purkinje cell
- parallel fiber synapsis. It has been suggested that multiple sites of cerebel-
lar plasticity (i.e. parallel fiber - Purkinje cell synapsis, Purkinje cell - Deep
Nucleus synapsis and Mossy fiber - deep nucleus synapsis) could account for
the learning at different time scales shown in visuo-motor adaptation tasks [5].
Consistently in our model, a double form of plasticity provides a combination of
fast reconfiguration of the bases profile with a slower adaptation of the weighted
integration of these components, yielding enhanced re-adaptation of the adap-
tive control signals after sudden changes in the properties of the plant. Finally,
this biomimetic feature could represent an advantage for humanoid robots pos-
tural control strategies during weight lifting tasks [11] where sudden changes
in mass distribution severely affects stability and requires sophisticated adapta-
tion. Future work should address the current limitations (i.e. the constant range
width for both thresholds or the joint update of both excitatory and inhibitory
thresholds) and explore more complex cost functions possibly resulting in an
improved adaptation strategy with advantages for real-world control.
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Abstract. This study is an analysis of scene recognition in a pre-trained
convolutional network, to evaluate the information the network uses to
distinguish scene categories. We are particularly interested in how the
network is related to various areas in the human brain that are involved
in different modes of scene recognition. Results of several experiments
suggest that the convolutional network relies heavily on objects and fine
features, similar to the lateral occipital complex (LOC) in the brain,
but less on large-scale scene layout. This suggests that future scene-
processing convolutional networks might be made more brain-like by
adding parallel components that are more sensitive to arrangement of
simple forms.

Keywords: Convolutional neural networks (CNNs) · Scene recogni-
tion · Human visual system

1 Introduction

It is remarkable that humans are able to perceive and interpret a complex scene
in a fraction of a second, roughly the same time needed to identify a single object.
When an image is briefly presented with less than 100 ms of exposure, observers
usually perceive global scene information, e.g. whether the image was outdoor
or indoor, well above chance. On the other hand, observers perceive details of
objects with a couple of 100 ms more exposure time [2]. It has also been found
that an exposure of 20–30 ms is enough for categorizing a scene as a natural or
urban place [4]. However, it takes twice of that time to determine the basic level
category of the scene, e.g. a mountain vs. a beach [3].

Studies in behavioral, computational and cognitive neuroscience suggest two
complementary paths of scene perception in humans [7]. First, an object-centered
approach, in which components of a scene are segmented and serve as scene
descriptors (e.g., this is a street because there are buildings and cars). Second,
a space-centered approach, in which spatial layout and global properties of the
whole image or place act as the scene descriptors (e.g. this is a street because it
is an outdoor, urban environment flanked with tall frontal vertical surfaces with
squared patterned textures).
c© Springer International Publishing Switzerland 2016
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Several brain regions responsible for processing different scene properties have
been identified, particularly the parahippocampal place area (PPA; a region of
the collateral sulcus near the parahippocampal lingual boundary), the retros-
plenial complex (RSC; located immediately behind the splenium of the corpus
callosum), and the occipital place area (OPA; around the transverse occipital
sulcus). PPA and RSC are most studied and respond preferentially to pictures
depicting scenes, spaces and landmarks more than to pictures of faces or single
movable objects [6].

While both PPA and RSC show selectivity to the spatial layout of the scene
in various tasks, the responses of neither of them are modulated by the quantity
of objects in the scene i.e., both regions are similarly active when viewing an
empty room or a room with clutter [1].

The response of PPA is selective to different views of a panoramic scene,
suggesting a view-specific representation in PPA. On the other hand, RSC seems
to have a common representation of different views in a panorama, suggesting
that RSC may hold a larger representation of the place beyond the current
view [9]. However, scene representations in PPA have been found to be tolerant
to severe transformations i.e., reflections about the vertical axis [7].

PPA and LOC represent scenes in an overlapping fashion. While PPA con-
fuses scenes with similar spatial boundaries, regardless of the type of content,
LOC confuses scenes with the same content, independent of their spatial layout
[8]. LOC is not the only brain region involved in object processing, and thus mul-
tiple regions may represent different types of content and objects encountered
in a scene [7].

Convolutional networks have many structural parallels with the visual cortex.
Furthermore, they have recently begun to rival human performance in various
vision tasks, including scene recognition as well as object recognition, stereo-
scopic depth estimation, etc. We would like to understand how similar the deci-
sion mechanisms of convolutional networks trained for scene recognition are to
the corresponding mechanisms in the human cortex. As a first step, we analyze
here the sensitivity of a scene-recognition network to certain input perturbations,
to evaluate whether the network is more object-centred or space-centred.

2 Methods

We used the Places CNN [10], a network that has been previously trained for
scene recognition on the Places205 dataset. The network has the same struc-
ture as [5]. It receives an image of a scene as input (e.g. the bedroom image
in Fig. 1A). It has 205 outputs, corresponding to different scene categories.
It is trained to output a high value for the category to which a given input
image belongs (e.g. bedroom) and low values for other categories (e.g. assembly
line, etc.).
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2.1 Occlusion

We systematically occluded parts of the image in order to gauge how important
different parts of the scene were for the network’s prediction. To find which parts
of an image were most important for the network, we slid a square occlusion
window over an image. We set pixel values within the square to zero, passed the
occluded image through the network, and recorded the output of the softmax
output unit that corresponded to the correct category. In order to study the
effect of objects of various sizes in the image, this procedure was repeated with
squares of 9, 23, 39, 51, 87 and 113 pixels on a side. The full images had a fixed
resolution of 227 × 227.

2.2 Blurring

We randomly selected 50 images from different categories in the Places205
test set and blurred them with a Gaussian filter of standard deviation vary-
ing between 0 and 13, in steps of 0.5. Thus there were 26 filtered images for
each image in the original set of 50 images, leading to a total of 1300 images
which were fed to the network. The output probabilities for correct predictions
were normalized by dividing them by their maximum values across blur levels
(typically the maximum occurred with zero blur). This was done to map the
predictions for all the images to the same scale.

2.3 Spatial Boundaries

As discussed in Sect. 1, in the human visual system, PPA confuses scenes with
similar spatial boundaries, regardless of the type of content, whereas the LOC
makes the opposite errors, i.e. confusing scenes with the same content, indepen-
dent of their spatial layout [7].

We conducted an experiment to explore whether the network resembles either
PPA, LOC or both of them in terms of the kind of mistakes it makes. First, two
categories having similar spatial boundary were selected, ‘forest path’ and ‘cor-
ridor’. Ten images of each of these categories were selected, and the average
predicted probability (average of probability that it’s a forest/corridor over 10
images) for both categories was recorded. Then two categories having similar
content were selected, ‘classroom’ and ‘conference room’, and the average pre-
dicted probability for both categories was also recorded. All the images for this
experiment were taken from a Google images search, i.e. not from the Places205
dataset.

2.4 Panoramic Scenes

As discussed in Sect. 1, PPA is selective for different views of a panoramic scene,
while the response of RSC has a common representation of different views in a
panorama [9]. Motivated by this, we conducted an experiment to see whether
the response of the network was selective for different views in a panoramic
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scene. We collected 100 images from 12 different scene categories (images were
obtained from a Google Images search), and split them up into left and right
segments. These segments were then passed through the network and the corre-
lation between the unit activations for the left and right segments were averaged
over each layer and plotted as a function of layer number.

3 Results

3.1 Occlusion

Figure 1 shows heatmaps of occlusion effects over an image of a bedroom, for six
different occlusion-window sizes. It is clear from the heatmaps that the bed is
the most important object in the scene on which the model prediction is based.
Moreover, occluding small parts of the bed has little impact on the model pre-
diction, but occluding large areas has a large impact. This result was consistent
with other experiments (not shown) in which we occluded various parts of the
scene with unrelated pictures.

3.2 Blurring

Figure 2A visually shows the amount of blurring caused by the range of standard
deviations used, on one of the sample images. Figure 2B shows the effect of

Fig. 1. Heatmaps of the effect of occlusion on the bedroom scene. The right image in
each panel shows a heatmap superimposed on a black and white negative of the image.
The image and the heatmap are also shown individually for clarity (left and centre; the
left image is the same in each case). The red areas in the heatmap show the areas in
the scene which are important for classification (the plotted values are the probabilities
output by the bedroom node, with occlusion centred at the corresponding pixels; red is
the lowest probability, or highest “effect” of occlusion). A–F: heat maps obtained by
using occlusion windows of 9, 23, 39, 51, 87 and 113 pixels, respectively. (Color figure
online)
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Fig. 2. Results of the blurring experiment. A: Effect of blurring on a sample image
(shown for visual comparison). B: Effect of blurring on the confidence level of the
network. The vertical axis shows the confidence level of the network normalized to lie
within [0,1], averaged over 50 example images. The horizontal axis shows the standard
deviation of the Gaussian filter used to blur the image (in pixels). (Color figure online)

blurring on the confidence level of the network (averaged over 50 randomly
selected images). The confidence level of the model falls quickly with an increase
in the standard deviation of the Gaussian filter. This shows that the model is
not able to make predictions based on only the global features of the scenes, if
it can’t extract the local scene properties. This implies that the predictions of
the network are based on local scene properties.

Table 1. Results from the spatial boundaries experiment. Integers indicate category
indices (e.g. “Forest” is category 78).

Forest [78]
(Opponent:
corridor)

Corridor [54]
(Opponent: forest)

Classroom [44]
(Opponent:
conference room)

Conference room [51]
(Opponent:
classroom)

Categories
predicted

[78, 78, 78, 78, 78,
78, 78, 79, 78,
78]

[54, 54, 54, 54, 54, 54,
54, 54, 54, 54 ]

[51, 44, 44, 44, 44, 44,
51, 44, 44, 51]

[51, 51, 51, 51, 51, 51,
51, 51, 51, 51]

Avg. proba-
bility

0.570 (grayscale:
0.562)

0.892 (grayscale: 0.929) 0.612 (grayscale: 0.606) 0.733 (grayscale: 0.581)

Avg. proba-
bility (oppo-
nent)

2.935e-05
(greyscale:
1.327e-04)

8.343e-06 (greyscale:
4.869e-06)

0.159 (greyscale: 0.115) 0.018 (greyscale: 0.025)

Top 5 proba-
bility

[(0.570, ‘forest path
78’), (0.288,
‘forest road
79’), (0.043,
‘rainforest
149’), (0.0362,
‘bamboo forest
16’), (0.0129,
‘tree farm
186’)]

[(0.892, ‘corridor 54’),
(0.033, ‘locker room
144’), (0.025,
‘lobby 113’),
(0.015, ‘hospital
94’), ’(0.007,
‘jail cell 105’)]

[(0.6122, classroom
44’), (0.159,
‘conference room
51’), (0.0586,
‘conference center
50’), (0.0448,
‘cafeteria 37’),
(0.0375,
‘auditorium 12’)]

[(0.733,
‘conference room
51’), (0.064,
‘Conference center
50’), (0.029,
‘banquet hall 17’),
(0.025,
‘dinette/home 70’),
(0.021, ‘office 129’)]
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Fig. 3. Visualization of forest (bottom) and corridor (top) categories using a heatmap.
The two rows show the negative of the scene on the left, heatmap in the middle and
the heatmap superimposed on the scene on the right. The red areas are the most
important for scene prediction. The important areas include distinguishing features of
objects (e.g. tree trunks). (Color figure online)

3.3 Spatial Boundaries

We examined the extent to which the network confused scene categories with
similar boundaries (specifically, forest paths and corridors) and categories with
similar contents (classrooms and conference rooms).

The results are shown in Table 1. The network classified 3 of the 10 classrooms
as conference rooms. However, it did not confuse forest paths and corridors. The
average probability of the opponents is low for both forest and corridor, but
higher for classroom and conference room. This suggests that the model confuses
scenes with similar content but not the scenes with similar spatial boundaries.
This was confirmed by looking at the top-5 predictions of the model. For exam-
ple, for the ‘forest’ category, all top-5 predictions contained trees, but spatial
boundaries varied (e.g. forest path vs. tree farm). Figures 3 and 4 also show the
heatmaps for the four categories chosen in this experiment. The heatmaps sug-
gest that the network is using objects to make its predictions. For example, in
the classroom tables and chairs are important.

To test the extent to which colour differences accounted for the lack of con-
fusion between forest paths and corridors, we repeated the tests with greyscale
images. The results were similar to those with colour images (Table 1).

3.4 Panoramic Scenes

Figure 5 shows the correlations between the unit activations of the left and right
segments of the panoramic scenes averaged over the units in each layer, over 100
different images. As expected, the average correlation is low for the input layers
and increases for higher level layers.
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Fig. 4. Visualization of classroom (bottom) and conference room (top) categories using
a heatmap. The two images show the negative of the scene on the left, heatmap in the
middle and the heatmap superimposed on the scene on the right. The red areas are
the most important for scene prediction. (Color figure online)

Fig. 5. Average correlation for left and right segments plotted as a function of layer
number. Correlations were calculated between the activations of each unit in response
to left and right parts of the panoramic images. The correlations of all units within a
layer were then averaged to compute the average correlation for each layer. The later
layers respond similarly to different views of each scene, similar to RSC.

4 Discussion

Our experiments suggest that the network is more object-centered (reliant on
objects or local scene properties for its predictions) than space-centered (reliant
on global scene properties). Its performance is impaired by occlusion of specific
objects. It is sensitive to small amounts of blur (whereas humans can categorize
scenes using very low spatial frequencies). This suggests that it is not able to
make accurate predictions based only on the global scene properties, if it can’t
extract the local scene properties. Additionally, the network confuses scenes with
similar content (objects, e.g. chairs etc.), but it does not confuse scenes with
similar spatial boundaries but different textures. This further emphasizes the
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importance of objects in a scene for accurate predictions, and suggests the rel-
ative insignificance of spatial layout for distinguishing different scenes. It would
be worthwhile in future work to more specifically compare the effects of the same
image manipulations on human and network performance.

It may be possible to make convolutional networks for scene recognition more
robust, or at least more similar to the human visual system, by adding parallel
components that are specifically trained to encourage space-centered represen-
tations. One possible approach would be to train such a parallel network on
blurred images. The parallel networks might then complement each other in a
way that is similar to the multiple scene processing regions in the human brain.
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Abstract. Brain-Computer Interfaces (BCIs) are systems which convert
brain neural activity into commands for external devices. BCI users gen-
erally alternate between No Control (NC) and Intentional Control (IC)
periods. Numerous motor-related BCI decoders focus on the prediction
of continuously-valued limb trajectories from neural signals. Although
NC/IC discrimination is crucial for clinical BCIs, continuous decoders
rarely support NC periods. Integration of NC support in continuous
decoders is investigated in the present article. Two discrete/continuous
hybrid decoders are compared for the task of asynchronous wrist posi-
tion decoding from ElectroCorticoGraphic (ECoG) signals in monkeys.
One static and one dynamic decoder, namely a Switching Linear (SL)
decoder and a Switching Kalman Filter (SKF), are evaluated on high
dimensional time-frequency-space ECoG signal representations. The SL
decoder was found to outperform the SKF for both NC/IC class detec-
tion and trajectory modeling.

Keywords: Asynchronous BCIs · Switching linear models · Switching
Kalman filter

1 Introduction

Brain-Computer Interface (BCI) systems permit severely motor-impaired
patients to use their brain activity to control external devices such as a cur-
sor on a screen, upper limb orthoses or protheses etc. [9]. Several steps are
usually necessary to translate users neuronal activity into effector commands.
First step consists in invasive or noninvasive brain activity acquisition. Inva-
sive BCIs are generally more efficient than noninvasive ones [9]. Neurons’ Single
Unit Activity (SUA), Multi Unit Activity (MUA) and ElectroCorticoGraphic
(ECoG) signals are the main signals acquired by invasive methods. SUA/MUAs
are recorded by microelectrode arrays directly implanted in the cortex. They are
spatially highly resolved, but biocompatibility issues result from the microelec-
trode array’s implantation [10]. ECoG signals are acquired by arrays implanted
on the cortex surface. ECoG signals offer a trade-off between biocompatibil-
ity and signal quality [10]. Pre-clinical and clinical studies have confirmed the

c© Springer International Publishing Switzerland 2016
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potential of ECoG for long-term and accurate BCI systems [3,19]. Signal acqui-
sition is followed by feature extraction. Characteristics related to user inten-
tions are extracted from brain signals [10]. A decoder is then used to estimate
the user’s intention from the brain features. Different decoding strategies have
been explored to provide continuous control over a neuroprosthesis or orthe-
sis position in time. SUA/MUA-based BCIs generally rely on the decoding of
the continuously-valued kinetics or kinematics of the intended movement. Best
strategy for ECoG decoding is still unclear. Several studies exploited the differ-
ence in patterns generated by various motor imageries (e.g., [19]) to discriminate
between a few available directions. Promising decoding results using regression
approaches were reported recently [3,14]. The latter approach is expected to be
more intuitive for users [14].

The BCI system developed at Clinatec aims at providing quadraplegic
users with control over a 4-limb exoskeleton [5]. The wireless 64-channel ECoG
WIMAGINE implant [12] was developed for stable and chronic signal acquisi-
tion. A set of decoding algorithms based on a high dimensional time-frequency-
space representation of ECoG neural activity was proposed [4]. After encouraging
preclinical studies, the next step consists in bringing Clinatec’s BCI system to
practical application in a clinical setting. Despite several proofs of concept in
laboratory environments, clinical application of BCI systems for neuroprosthesis
or orthesis control is a challenging task [9]. Asynchronicity of control is one of
the objectives which remain to be addressed. Most BCI studies are conducted
using cue-paced control paradigms. Control over the BCI system is only periodi-
cally available to the user, namely between exterior cues [11]. Asynchronous BCI
decoders are continuously available to users, who alternate between No Control
(NC) periods and Intentional Control (IC) periods [11]. NC support is highly
desirable for clinical applications. Solutions for NC support have initially been
studied for binary decoders (Brain-Switches). Integration of NC/IC class detec-
tion in continuous decoding approaches was considered for both SUA/MUA and
ECoG signal (e.g., [2,17]). Hybrid discrete/continuous decoders use a class detec-
tor to bring out NC and IC periods. Continuous movement models are applied
when appropriate. The movement decoder associated to NC periods issues the
NC neutral value. In the majority of studies [6,17,18], class and movement
decoders are independent. They are generally combined using a Winner-Takes-
All strategy: the movement model corresponding to the most likely class at a
given time is applied on input data. Another approach which embeds state detec-
tion inside the continuous decoder was proposed in [15]. Namely, a Switching
Kalman Filter (SKF) was used for a simulated task of EEG-based asynchronous
wheelchair control. The use of a SKF has also been reported for the task of 2D
wrist position decoding from SUA signals in monkeys, but latent classes were not
associated to NC and IC periods [22]. Both static and dynamic linear movement
models were used by hybrid decoders. Wiener filters were combined with LDA
class detector in SUA signals [16], and were mixed with logistic regression [2]
or linear classification [6,21] in ECoG signals. Kalman filters and variants were
gated by LDA in SUA signals [17] or Bayes classifier in ECoG signals [18].
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In this paper, the performance of one static and one dynamic hybrid decoder
was evaluated for the task of asynchronous wrist position decoding from high
dimensional representations of ECoG data in monkeys. The Switching Linear
(SL) decoder was developed as a particular case of supervised Mixtures of
Experts (ME). The SL decoder computes the Bayes estimator of the target value
by gating the movement model predictions according to estimated class proba-
bilities. This permits to overcome the major drawback of the Winner-Takes-All
strategy, namely abrupt model transitions. The Switching Kalman Filter (SKF)
was chosen as a dynamic hybrid decoder with embedded class detection. The
SL decoder was found to outperform to SKF approach for both trajectory and
NC/IC class estimation.

2 Methods

2.1 Switching Linear Decoder

The SL decoder combined an NC/IC class decoder and movement models using
the framework of MEs [20]. Let xt ∈ R

m be the explanatory variable, and
yt ∈ R

n be the continuous response variable. Samples are indexed by t ∈ N.
Let zt ∈ {0, 1} represent the class variable: zt = 0 if sample t belongs to class
“NC”, and zt = 1 if sample t belongs to class “IC”. The Bayes estimate ŷt =
E(yt|xt) of target variable yt is computed via the decomposition of conditional
expectation [20]:

E(yt|xt) =
1∑

k=0

E(yt, zt = k|xt) =
1∑

k=0

P (zt = k|xt) E(yt|xt, zt = k) . (1)

The posterior class probabilities P (zt = k|xt), k ∈ {0, 1} are issued by the class
decoder. The conditional expectations E(yt|xt, zt = k) correspond to the move-
ment estimated by the NC or IC movement models (zt = 0, zt = 1 respectively).
The NC model issues the NC neutral value. Various discrete and continuous mod-
els can be combined by this hybrid structure. Typically used in MEs [20], logistic
regression was applied in this article to model the input-dependent mixing coef-
ficients P (zt = k|xt). This classification method determines the probability of
the outcome zt = k on the basis of a linear combination (score) of the observed
features xt ∈ R

m. Estimation of trajectory expectation E(yt|xt, zt = 1) was per-
formed using a noise Gaussian probability density associated to a linear model.
Prior to application, Maximum Likelihood estimation of the class and move-
ment model parameters Θ = {Θe, Θg} was performed using a training data set
{X,Y,z} = {xt,yt, zt}Tt=1. Because the sequence z = {zt}Tt=1 is known, the
typical Expectation-Maximization ME training is simplified.

2.2 Switching Kalman Filter

The SKF model (also referred to as Switching Dynamic Linear Model) considers
a continuous state variable ỹt ∈ R

ñ, a switching latent variable zt ∈ {0, 1} and
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an explanatory variable xt ∈ R
m [13]:

zt+1 = Zzt , (2)

ỹt+1 = Azt ỹt + wt
zt , (3)

xt = Czt ỹt + vt
zt . (4)

The SKF model is composed by switching transition Eq. (2), response vari-
able transition (3) and emission (4) equations. By contrast to the SL decoder,
the continuous response (state) variable ỹt ∈ R

ñ is composed by the trajec-
tory coordinates and derivatives (velocity, acceleration etc.). Z is the switching
transition matrix. As expressed by (2), variable zt is assumed to be generated
by a first-order Markov process. Ak ∈ R

n×n and Ck ∈ R
m×n are the tran-

sition and emission matrices. wt
zt ∈ R

n and vt
zt ∈ R

m are the transition and
observation noises with Gaussian distributions P (wt| zt = k) ∼ N (0, Γk) and
P (vt| zt = k) ∼ N (0, Σk). The transition and emission parameters are con-
ditioned on zt. Supervised Maximum-Likelihood estimation of SKF parameters
Θ = {Z,Ak,Ck,Γk,Σk} was performed using a training data set {X,Y,z} =
{xt,yt, zt}Tt=1. The traditional unsupervised Expectation-Maximization train-
ing presented in [13] was reduced to a single M-step with known (zt)T1 . Estimate
ŷt = E(yt|x1:t), x1:t = (xi)ti=1 is iteratively computed by the SKF. Inference
formula can be found in [13].

2.3 Application

Data Set and Feature Extraction. Decoders were evaluated on a publicly
available ECoG dataset (http://neurotycho.org/food-tracking-task) [3]. The cor-
tical activity of 2 Non-Human Primates (Monkeys A and K) was recorded by
a subdural ECoG array (32-channel and 64-channel arrays for Monkeys A and
K respectively) during a 3D food reaching task. ECoG signals were acquired
at a sampling rate of 1 kHz. A motion tracking system tracked monkeys’ wrist
coordinates. The dataset consists in 5 sessions acquired with Monkey A and
of 3 sessions acquired with Monkey K. Session duration is 17.7±2.0 min. Full
description of the experimental set-up can be found in [3].

Time-frequency features were extracted for each channel from Δt-long ECoG
sliding epochs (Δt = 1 s, sliding step 100 ms) following [4]. A Complex Contin-
uous Wavelet Transform (CCWT) was applied on the ECoG epochs (Morlet
wavelet). Frequency content was analyzed between 1 and 250 Hz. Sampling of
this frequency domain was achieved via 38 daughter wavelets chosen with a log-
arithmic scale. Average logarithm of the CCWT’s absolute value was computed
in 100ms windows. Following [14], low frequency components were estimated
using a Savitzky-Golay filter and added to the CCWT-based frequency features.
Finally, ECoG epoch [t − Δt] was described by the temporal-frequency-spatial
feature vector xt: xt ∈ R

m, where m = 32×10× (38+1), m = 64×10× (38+1)
for Monkeys A and K respectively. Wrist position yt ∈ R

3 was issued by the
motion tracking system. Velocity ẏt ∈ R

3 was derived from position using a

http://neurotycho.org/food-tracking-task
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central-difference approximation. NC and IC periods were labelled on the basis
of monkeys’ tracked wrist movements: zt = 0 (NC) when monkey’s wrist speed
was close to zero, and zt = 1 (IC) otherwise.

Decoder Implementation and Training

Switching Linear Decoder. Dimensionality reduction was carried out before feed-
ing neural features to the logit class decoder. Neural feature vector xt ∈ R

m was
projected onto the low dimensional latent subspace issued by a PLS regres-
sion between xt and zt [7]. Dimension of the latent subspace was chosen by
6-fold cross-validation. Maximum Likelihood estimation of the logit model para-
meters was performed using Iteratively Reweighted Least Squares [1]. Move-
ment model parameters were identified using PLS regression on IC samples
{XIC,YIC} = {xt, yt}t∈[1,T ]s.t. zt=1 of the training data set. The optimal num-
ber of PLS factors was estimated by 6-fold cross-validation. Neutral NC position
was estimated as ȳNC = 1

card(zt=0)

∑
t∈[1,T ]s.t. zt=0 y

t. PLS regression was cho-
sen because of its ability to extract relevant information from high dimensional
explanatory variables, in particular when the explanatory variable’s dimension
is higher than the number of training samples.

Switching Kalman Filter. The SKF state variable (i.e., response variable) was
composed of the monkey’s wrist position and velocity

[
yt ẏt

]
, as it was reported

as optimal for ECoG decoding [14]. Similarly to the SL class decoder, dimen-
sionality reduction was carried out to reduce the SKF computational cost. PLS
regression between xt and

[
yt ẏt

]
was used to identify the low-dimensional sub-

space. Subspace dimension was chosen by 6-fold cross-validation.

Performance Indicators. Assessment of class detection accuracy relied on the
confusion matrix. It gathers the number of NC samples which are correctly (True
Negatives, TN) or wrongly (False Positives, FP) labelled, and the number of IC
samples which are correctly (True Positives, TP) or wrongly (False Negatives,
FN) labelled by the decoder [11]. The True Positive Rate TPR = TP/(TP+FN)
and False Positive Rate FPR = FP/(FP + TN) were used to monitor the
performance of asynchronous NC/IC decoding.

Trajectory decoding accuracy is assessed via the Pearsons Correlation Coeffi-
cient PCC (y, ŷ) = cov (y, ŷ) /(σy σŷ) and the Normalized Root-Mean-Squared
Error NRMSE = ‖y − ŷ‖2 / ‖y − ȳ‖2, where y and ŷ are observed and esti-
mated trajectories, ‖.‖2 is the l2-norm and ȳ is the average value. The Normalized
Mean Absolute Error NMAE = ‖y − ŷ‖1 / ‖y − ȳ‖1 , and the Normalized

Mean Absolute Differential Error NMADE =
∥∥∥ẏ − ˆ̇y

∥∥∥
1
/ ‖ẏ − ¯̇y‖1, where

‖.‖1 is the l1-norm, were additionally computed. The NMAE issues a measure
of the l1-error between y and ŷ, and is less sensitive to outliers than the NRMSE.
The NMADE was used to measure the smoothness of the decoded trajectory.
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Table 1. Overall decoding performance

Axis Method PCC NRMSE NMAE NMADE

y1 SL 0.52 0.88 0.90 1.40

SKF 0.43 1.07 1.22 1.86

y2 SL 0.76 0.66 0.76 1.28

SKF 0.67 0.80 0.98 1.62

y3 SL 0.85 0.51 0.38 1.41

SKF 0.75 0.71 0.73 1.75

3 Results

Both the SL decoder and the SKF were applied to decode wrist trajectories
yt ∈ R

3 from ECoG features xt ∈ R
m. Decoders were trained on the first 70 %

of each session, and were tested and compared on the remaining 30 %. Table 1
shows the overall decoding performance of the SL and SKF approaches. The SL
decoder significantly (significance level α = 0.05) outperformed the SKF decoder
for overall trajectory decoding. The PCC, NRMSE, NMAE and NMADE criteria
were in average improved by 17 %, 21 %, 31 % and 21 % (p = 0.00, p = 0.00, p
= 0.00 and p = 0.00, respectively).

Fig. 1. Example of hybrid (A) and generic (B) trajectory decoding
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The SL-based class detection (median FPR = 5.7 %, TPR = 90.6 %) signifi-
cantly outperformed the SKF-based detection (median FPR = 20.4 %, TPR =
84.9 %) (p = 0.02 and p = 0.03 respectively). Figure 1A presents an example of
hybrid SL- and SKF-based trajectory decoding.

4 Discussion

Kalman Filter (KF) dynamic modeling is one of the most popular approaches
for limb kinematic decoding from SUA/MUA signals in BCI studies. Limb tra-
jectory decoding from ECoG signals is mainly performed using linear regression
approaches. PLS family decoders were reported as an efficient tool by several
teams [2–4]. Motivation of the present study was to evaluate these two major
approaches in the framework of ECoG-based hybrid decoder supporting NC
periods. Importance of hybrid decoders is illustrated by the comparison between
Figs. 1A and B, where generic, non-hybrid decoders (PLS-based Wiener filter,
PLS-W and KF) were applied. In our study the SL PLS-based decoder signif-
icantly outperformed the SKF for all performance indicators. Reasons for this
could be the Kalman filter sensitivity to outliers. ECoG data are known to be
liable to artifact corruption (e.g., [4]). The SKF is considered as efficient tool for
smooth trajectory decoding [8]. Interestingly, the SKF model failed to improve
the NMADE criterion which reflects trajectory smoothness. It can be explained
by lower performance of SKF for class decoding. Erroneous switches may degrade
smoothness while the KF itself provides smooth solutions. Admissible number
of FP and FN depends on the application and command rate, but a general
consensus states that FP occurrences must be as rare as possible for a viable
BCI clinical application. Low class decoding accuracy of SKF could limit its
practical application. It should be noticed that sample misclassification does not
necessarily result in trajectory jumps, because of probabilistic gating in both
the SL decoder and the SKF. Additional studies are required to explore decoder
performance during online BCI experiments. Closed-loop performance can be
significantly different from open-loop decoding performance [8].
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performance of self-paced brain computer interface technology. Neil Squire Society,
Vancouver, BC, Canada, Technical report (2006)

12. Mestais, C.S., Charvet, G., Sauter-Starace, F., Foerster, M., Ratel, D., Benabid,
A.L.: WIMAGINE: wireless 64-channel ECoG recording implant for long term
clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 10–21 (2015)

13. Murphy, K.P.: Switching kalman filters. Technical report (1998)
14. Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C.: Prediction of

arm movement trajectories from ECoG-recordings in humans. J. Neurosci. Meth.
167, 105–114 (2008)

15. Srinivasan, L., Eden, U.T., Mitter, S.K., Brown, E.N.: General-purpose filter design
for neural prosthetic devices. J. Neurophysiol. 98, 2456–2475 (2007)

16. Suway, S.B., Tien, R.N., Jeffries, S.M., Zohny, Z., Clanton, S.T., McMorland, A.J.,
Velliste, M.: Resting state detection for gating movement of a neural prosthesis.
In: 6th International IEEE EMBS Conference on Neural Engineering (NER), pp.
665–668 (2013)

17. Velliste, M., Kennedy, S.D., Schwartz, A.B., Whitford, A.S., Sohn, J.W., McMor-
land, A.J.: Motor cortical correlates of arm resting in the context of a reaching
task and implications for prosthetic control. J. Neurosci. 34, 6011–6022 (2014)

18. Wang, P.T., Puttock, E.J., King, C.E., Schombs, A., Lin, J.J., Sazgar, M., Chui,
L.A.: State and trajectory decoding of upper extremity movements from electro-
corticogram. In: 6th International IEEE EMBS Conference on Neural Engineering
(NER), pp. 969–972 (2013)

19. Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-Kabara, E.C., Schwartz, A.B.,
Moran, D.W., Kelly, J.W.: An electrocorticographic brain interface in an individual
with tetraplegia. PloS One 8, e55344 (2013)

20. Waterhouse, S.R.: Classification and regression using mixtures of experts. Ph.D.
thesis (1998)

http://arxiv.org/abs/1106.3395


296 M.-C. Schaeffer and T. Aksenova

21. Williams, J.J., Rouse, A.G., Thongpang, S., Williams, J.C., Moran, D.W.: Differ-
entiating closed-loop cortical intention from rest: building an asynchronous elec-
trocorticographic BCI. J. Neural. Eng. 10, 046001 (2013)

22. Wu, W., Black, M.J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J.P.:
Modeling and decoding motor cortical activity using a switching Kalman filter.
IEEE Trans. Biomed. Eng. 51, 933–942 (2004)



Dimensionality Reduction Effect Analysis
of EEG Signals in Cross-Correlation

Classifiers Performance

Jefferson Tales Oliva(B) and João Lúıs Garcia Rosa
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Abstract. In this paper, it is reported a study conducted to verify
whether the dimensionality reduction of electroencephalogram (EEG)
segments can affect the application performance of machine learning
(ML) methods. An experimental evaluation was performed in a set of
200 EEG segments, in which the piecewise aggregate approximation
(PAA) method was applied for 25 %, 50 %, and 75 % settings of the
original EEG segment length, generating three databases. Afterwards,
cross-correlation (CC) method was applied in these databases in order
to extract features. Subsequently, classifiers were built using J48, 1NN,
and BP-MLP algorithms. These classifiers were evaluated by confusion
matrix method. The evaluation found that the reduction of EEG segment
length can increase or maintain performance of ML methods, compared
to classifiers built from EEG segments with original length in order to
differentiate normal signals from seizures.

Keywords: Electroencephalogram · Piecewise aggregate approxima-
tion · Cross-correlation · Machine learning

1 Introduction

According to the World Health Organization (WHO)1, mental and neurological
disorders affect approximately 700 million people in the world, corresponding to
13 % of the global burden of disease [24]. Epilepsy, for example, is the fourth
most common neurological disorder, less incident only than migraine, stroke,
and Alzheimer’s disease [19]. Epileptic seizures are brief occurrences of signals
and/or symptoms resulting from disturbances in the brain electrical activity [7].
This disease can be diagnosed by electroencephalography, whose records are
called electroencephalograms (EEG), which is an important tool for detecting
epileptiform discharges and diagnosing this illness [1].

J. T. Oliva would like to thank the Brazilian funding agency Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES) for financial support.

1 http://www.who.int.
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EEG and other examinations are stored in medical databases to maintain
the patients’ clinical history in order to be reused by experts in decision-making
processes for diagnosis of illnesses and accomplishment of future procedures [15].

However, the large amount of information makes its manual analysis an
unfeasible task. Also, rigorous training of experts for EEG analysis is required
due to the fact that this examination can contain patterns that are difficult to
be identified. In this context, data mining supported by machine learning (ML)
methods can be applied for building predictive classifiers from implicit knowledge
existing in the data to support these tasks [23].

In order to use ML methods, the data should be represented in an appropriate
format, e.g., attribute-value table. To do so, several feature extraction methods
are described in the literature, such as the cross-correlation (CC) [5], which uses
an arbitrary EEG signal as reference for its correlation with other EEG signals.

The CC method was applied and evaluated in other works that use ML tech-
niques. In [11], CC and other feature extraction methods with ML techniques,
such as decision trees, naive Bayes, and support vector machines (SVM) are per-
formed in order to classify EEG signals as healthy or epileptic. In [6], CC and
artificial neural networks (ANN) are used for heart beat categorization. In [20],
CC and logistic regression are applied aiming to identify tasks of motor imagery
tasks. In [22], CC and SVM are applied for emotion recognition based on EEG
signals.

Although these works have reached good results, the computational cost
for extracting features is directly proportional to the EEG length, i.e., their
processing can be highly costly for large EEG databases.

To the best of our knowledge, no study has been conducted to evaluate
whether the reduction of EEG segment length by a preprocessing technique
can affect the application performance of CC and ML methods in the classifier
building. In [21], for example, the dimensionality reduction method called par-
ticle swarm optimization [12] is applied in order to investigate the impact of the
selection of multiple electrodes and EEG features in a brain computer interface
application. In [9], a dimensionality reduction algorithm, based on spatio-spectral
decomposition [14], is proposed and applied in order to analyze brain oscillations.

In this sense, this work verifies whether the reduction of EEG segment dimen-
sion by a preprocessing technique (Sect. 2.2) can affect the performance of clas-
sifiers built using CC and ML methods.

2 Materials and Methods

2.1 EEG Dataset

The Bern-Barcelona EEG database2 [3] was used for the experimental evalu-
ation. This database is publicly available and organized into five sets, where
each set contains 100 single-channel EEG segments with 23.6 s. Accordingly, a

2 http://epileptologie-bonn.de/cms/front content.php?idcat=193\&lang=3.

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3
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128-channel amplifier system using common average referencing3 was applied to
sample these segments, at a sampling rate of 173.61 Hz and 12-bit resolution,
from different subjects. Also, these signals were band-pass filtered at 0.53–40 Hz
and the international 10–20 system was used for electrode placement. The sub-
ject descriptions for each set are the following: (A) non-epileptic subjects with
eyes open, (B) non-epileptic subjects with eyes closed, (C) hippocampal forma-
tion of the opposite brain hemisphere from epileptic patients, (D) epileptogenic
zone from patients diagnosed with epilepsy, and (E) seizure activity from epilep-
tic patients.

In this paper, only the sets A (normal) and E (abnormal), totalling 200
EEG segments, were considered in the experimental evaluation. Figure 1 shows
a sample for an epileptic (abnormal) EEG example.

Fig. 1. Epileptic EEG segment sample.

2.2 Preprocessing

This step is performed to solve potential problems related to data, such as: noise,
presence of outliers, missing values, oversize, among others [4]. In this work, the
preprocessing is focused on dimensionality reduction of time series (TS). To do
so, the piecewise aggregate approximation (PAA) method was used.

The PAA method (Eq. 1) reduces the dimensionality of a TS with size n to
an equivalent TS (TS’) with size n′, n′ < n. This is achieved by division of
TS into equal-sized segments, in which the arithmetic mean of each segment is
calculated [13].

TS′(i) =
n′

n
∗

n
n′ ∗(i+1)−1∑

j= n
n′ ∗i

TS(j) (1)

2.3 Feature Extraction

Feature extraction is an essential task for medical data representation and it
influences the classification performance [11]. In this work, we extracted features

3 Average of all potentials generated by electrodes.
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based in a mathematical operation named cross-correlation (CC) [5], which is
used to measure the extent of similarity between two signals [16].

CC between signals X and Y can be calculated by Eq. 2, where n is the signal
length and Φ is the time shift parameter, Φ = {−n + 1, ...,−1, 0, 1, ..., n − 1}.

CC(X,Y, Φ) =

⎧⎪⎪⎨
⎪⎪⎩

n−Φ−1∑
i=0

Xi+Φ ∗ Yi Φ ≥ 0

CC(X,Y,−Φ) Φ < 0

(2)

In this sense, the application of CC method generates cross-correlogram (CCo)
with length 2∗n−1, where the j-th CCo value is the CC measured using the j-th
time shift. Figure 2 shows examples of two CCo, one resulted from a healthy and
an epileptic EEG segments, and the other between two epileptic EEG segments.

Fig. 2. CCo examples for: an epileptic and a healthy EEG segments (a) and two epilep-
tic EEG segments (b).

In this sense, the following features can be measured from CCo [5]: peak
value, which is the maximum value; instant value, that is the value of CCo
at any particular instant associated with peak value; centroid, the geometric
center of the CCo; equivalent width, the wave width from the peak; and mean
square abscissa, which is the spread of CCo amplitude on the centroid. To do so,
initially, an arbitrary EEG segment is selected as reference, decreasing by 1 the
instance number. Subsequently, this EEG is used with all other EEG segments
to generate CCo [11].

2.4 Building Classifiers

In this step, classifiers were built using ML methods: (1) decision tree (DT),
(2) nearest-neighbor (NN), and (3) artificial neural network (ANN).

Method (1) builds classifiers using a divide-and-conquer paradigm. The DT
data structure is hierarchically organized, whose classes are represented by a set
of rules, which are derived from the tree. For classification of new examples, the
classifiers are traversed from its root to verify values of features and to label the
analyzed example [17].

Method (2) classifies a new example by calculating its similarity to examples
of training set, whose classes were previously defined by experts. In the NN
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method, the similarity is computed by distance measurements, such as Euclidean
distance. This method is based in memory and it does not build a classifier, i.e.,
the classifier is the training set itself [2].

Method (3) builds mathematical classifiers inspired by the biological neural
structure and it is generally abstracted as an interconnected neuron system,
whose computational capacity is achieved by learning and generalization. ANN
training is commonly performed by using the error correction approach [10].

In this work, the DT and NN methods were applied because their abstractions
can be understandable by professionals without computational expertise and
ANN technique was performed due to its high generalization ability.

2.5 Classifier Evaluation

In this step, classifiers are evaluated according to their efficiency to predict classes
of new examples. This step may be conducted using the confusion matrix (CM)
method, which is used to evaluate relationships between two or more nominal
variables, was applied. In the CM, the following measures can be calculated [8]:
positive predictive value (PPV), negative predictive value (NPV), sensitivity
(Sen), and specificity (Spe).

In this paper, evaluation methods were applied in classifiers, separately,
according to databases generated by PAA method and the original database.
Also, the classifiers were evaluated separately according to ML techniques.

In this sense, Java4 language with NetBeans5 development environment was
used to build a tool for preprocessing and feature extraction of EEG segments.
The WEKA tool6 was used to build and to evaluate the classifiers. This tool
contains several ML algorithms, such as J48 (based on C4.5 algorithm) [18] used
to build DT, 1NN (1-nearest-neighbor) [2] applied to perform NN method, and
BP-MLP (backpropagation based on multilayer perceptron) [10] used to build
ANN.

3 Results and Discussion

In this work, we evaluated whether the application of the PAA method in EEG
segments before feature extraction based on CCo can influence the performance
of ML methods. To do so, an experimental evaluation was conducted in a set of
200 EEG segments, being 100 healthy (normal) and 100 epileptic (abnormal).

Posteriorly, the PAA technique was performed in the EEG segments set using
the following settings: 25 % (EEG25), 50 % (EEG50), and 75 % (EEG75) of the
original length for each EEG segment. In this sense, 200 EEG segments were gen-
erated for each setting. So, considering the original EEG segment set (EEG100),
four EEG sets were used.

4 http://www.oracle.com/technetwork/java/index.html.
5 https://netbeans.org/.
6 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.oracle.com/technetwork/java/index.html
https://netbeans.org/
http://www.cs.waikato.ac.nz/ml/weka/
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Subsequently, the first abnormal EEG from each set was selected as reference
for CCo building and its respective feature extraction. Each remaining EEG
segment was represented by a set of five features. It is important to emphasize
that the same EEG signal from the EEG100 set used as a reference was used
in its reduced form in the databases generated by PAA method. Thus, four
datasets were constructed using CC method. The CCo can be understandable
by professionals without computational expertise because it can be displayed
through charts, as shown in Fig. 2, in which it is possible to observe graphically
the correlation between different signals.

Afterwards, the J48, 1NN, and BP-MLP algorithms were applied in each
dataset to build classifiers. In this way, 12 classifiers were built. Unlike related
work [6,11,20,22], this paper compares the performance among these algorithms
to differentiate EEG segments between abnormal and normal classes. Also, J48
and 1NN methods were used in this work due to their low computational cost.
The BP-MLP method was performed due to its high adaptability with non-linear
problems.

The classifiers were evaluated according to their predictive accuracy using
the CM method. In resulting matrices, precision measures such as PPV, NPV,
Sen, and Spe were extracted. Table 1 presents four precision measures for each
built CM.

Based on Table 1, classifiers built using the J48 algorithm obtained the high-
est values for parameters PPV, NPV, sensibility, and specificity considering their
respective datasets.

For each ML method, the J48 built classifier using the EEG25 dataset
obtained the highest values for PPV, NPV, and specificity parameters, determin-
ing that this classifier was more accurate to classify normal EEG segments and
was more likely to rightly categorize abnormal and normal EEG than the other
J48 classifiers. However, all J48 classifiers obtained the same value for the sen-
sibility parameter, which reached 97.98 %, finding that J48 classifiers achieved
the same accuracy to classify abnormal EEG segments.

The 1NN trained classifier using the EEG25 dataset obtained the highest
value for PPV, NPV, and specificity parameters, evidencing that this classifier
was more accurate to classify healthy EEG segments and it was more likely
to rightly categorize epileptic and healthy EEG than the other 1NN classifiers.
Nonetheless, all 1NN classifiers reached the same value for the sensibility para-
meter, which was measured as 90.91 %, evidencing that 1NN classifiers achieved
the same accuracy to classify epileptic EEG segments.

The BP-MLP classifier, built using the EEG75 dataset, obtained the highest
value for PPV, NPV, and sensibility parameters, finding that this classifier was
more accurate to classify abnormal EEG segments and was more likely to rightly
categorize abnormal and normal EEG than other BP-MLP classifiers. However,
all BP-MLP classifiers obtained the same value for the specificity parameter,
which was measured as 90.00 %, finding that BP-MLP classifiers achieved the
same accuracy to classify normal EEG segments.
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Table 1. Measures calculated in each CM.

Dataset Algorithm PPV NPV Sen Spe

EEG25 J48 100.00 % 98.04 % 97.98 % 100.00 %

1NN 93.75 % 91.26 % 90.91 % 94.00 %

BP-MLP 89.58 % 87.38 % 86.87 % 90.00 %

EEG50 J48 98.98 % 98.02 % 97.98 % 99.00 %

1NN 92.78 % 91.18 % 90.91 % 93.00 %

BP-MLP 89.58 % 87.38 % 86.87 % 90.00 %

EEG75 J48 97.98 % 98.00 % 97.98 % 98.00 %

1NN 92.78 % 91.18 % 90.91 % 93.00 %

BP-MLP 89.69 % 88.24 % 87.88 % 90.00 %

EEG100 J48 98.98 % 98.02 % 97.98 % 99.00 %

1NN 92.78 % 91.18 % 90.91 % 93.00 %

BP-MLP 89.58 % 87.38 % 86.87 % 90.00 %

4 Conclusion

In this work, the PAA method was applied in three settings (25 %, 50 %, and
75 % of the original length for each EEG segment), generating EEG25, EEG50,
and EEG75 databases. Thus, these sets and the original database were used
in order to extract features based on cross-correlogram (CCo) and to build 12
classifiers using the J48, 1NN, and BP-MLP algorithms.

The evaluation found that J48 classifiers performed better and was more
likely to classify EEG segments in each database. Also, considering only the eval-
uation of each algorithm, J48 and 1NN classifiers generated by EEG25 dataset
reached the highest value for positive predictive value (PPV), negative predictive
value (NPV), and specificity (Spe) parameters. However, all J48 and 1NN classi-
fiers obtained the same value for sensitivity (Sen) parameter. The BP-MLP built
by EEG75 dataset reached the highest value for PPV, NPV, and Sen. Therefore,
all BP-MLP classifiers obtained the same value for Spe.

In this sense, with the evaluation using CC method, it was found that the
reduction of EEG segment length can increase or maintain performance of ML
methods, compared to classifiers built from EEG segments with original length
to differentiate normal EEG signals from seizures. Thus, the computational cost
of feature extraction based on CCo can be reduced without significant loss of
accuracy in building classifiers, considering widely different EEG signals.

Future studies include using other approaches for evaluation of the classifiers
generated in this work, feature extraction based on CCo using other EEG data-
bases, expansion of the EEG representation by using other feature extraction
methods, and development of an approach to select an EEG as reference.
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Abstract. REM Behavior Disorder (RBD) is a serious risk factor
for neurodegenerative diseases such as Parkinson’s disease (PD). We
describe here a recurrent neural network (RNN) for classification of EEG
data collected from RBD patients and healthy controls (HC) forming a
balanced cohort of 118 subjects in which 50 % of the RBD patients even-
tually developed either PD or Lewy Body Dementia (LBD). In earlier
work [1,2], we implemented support vector machine classifiers (SVMs)
using EEG mean spectral features to predict the course of disease in the
dual HC vs. PD problem with an accuracy of 85 %. Although largely suc-
cessful, this approach did not attempt to exploit the non-linear dynamic
characteristics of EEG signals, which are believed to contain useful infor-
mation. Here we describe an Echo State Network (ESN) classifier capa-
ble of processing the dynamic features of EEG power at different spec-
tral bands. The inputs to the classifier are the time series of 1 second-
averaged EEG power at several selected frequencies and channels. The
performance of the ESN reaches 85 % test-set accuracy in the HC vs. PD
problem using the same subset of channels and bands we selected in our
prior work on this problem using SVMs.

Keywords: Echo state networks · RNNs · EEG · Parkinson’s disease ·
Reservoir computing

1 Introduction

The human brain can be modeled as a highly dimensional complex dynamical
system in which electrochemical communication and computation play a central
role. Electroencephalographic (EEG) and magnetoencephalographic (MEG) sig-
nals contain rich information associated with these processes. To a large extent,
progress in the analysis of such signals has been driven by the study of classical
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temporal and spectral features in electrode space, which has proven useful to
study the human brain in health and disease. For example, the “slowing down”
of EEG is known to characterize neurodegenerative diseases [3,4]. However, brain
activity measurements exhibit non-linear dynamics and non-stationarity across
temporal scales that cannot be addressed well by classical, linear approaches.
The complexity of these signals calls for the use of novel tools capable of exploit-
ing such features and representing rich spatio-temporal hierarchical structures.
Interestingly, deep learning techniques in particular and neural networks in gen-
eral are bio-inspired by the brain—the same biological system generating the
electric signals we aim to decode. They should be well suited for the task.

Here we explore a particular class of recurrent neural networks (RNNs) called
Echo State Networks (ESNs) that combine the power of RNNs for classification
of temporal patterns and ease of training. RNNs and, in particular, ESNs imple-
ment non-linear dynamics with memory and seem ideally poised for the clas-
sification of complex time series data. The main concept in ESNs and related
types of so-called “reservoir computation” systems is to have data inputs drive a
semi-randomly connected, large, fixed recurrent neural network (the “reservoir”)
where each node/neuron in the reservoir is activated in a non-linear fashion—
see Fig. 2. The interior nodes with random weights constitute what is called the
“dynamic reservoir” (DR) of the ESN. The motivation for keeping interior con-
nection weights random but fixed (not to be learned) is, on the one hand, to
allow for high dimensional feature mapping of the inputs (in a sense much like
a kernel method) while, on the other, to avoid the complex problem of training
recurrent neural network architectures (such as the vanishing of training error
gradients [5]). An important feature of ESNs is that only the output weights (and
various hyperparameters) are trained [7,8]. Although we explore ESN architec-
tures here, other relevant RNN options include long-short term memory networks
(LSTMs) [6].

2 The Dataset

The data in this study consisted of resting-state EEG collected from awake
patients using 14 scalp electrodes [4]. The recording protocol consisted of con-
ditions with periods of “eyes open” of variable duration (∼2 min) followed by
periods of “eyes closed” in which patients were not asked to perform any par-
ticular task. EEG signals were digitized with 16 bit resolution at a sampling
rate of 256 S/s. The amplification device implemented hardware band pass fil-
tering between 0.3 and 100 Hz and notch filtering at 60 Hz to minimize the
influence of power line noise. All recordings were referenced to linked ears. The
dataset includes a total of 59 patients diagnosed of REM (random eye movement
sleep) Behavioral Disorder (RBD) and 53 healthy controls without sleep com-
plaints in which RBD was excluded. EEG data was collected in every patient at
baseline, i.e., when they were still RBD. After 1–10 years of clinical follow-up,
14 patients developed Parkinson disease (PD), 14 Lewy body dementia (LBD)
and the remaining 31 remained idiopathic. The data was collected by the
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Hopital du Sacre-Coeur, Montrèal [4]. Our classification efforts here focus on
the HC vs. PD dual problem involving the available 14 PD converters and 14
HCs randomly selected for each classification train/test cycle. Each data snipped
per subject contains information of power in 10 bands, 14 elecrtrodes and about
200 samples.

EEG feature time series to feed the ESN (typically five channel-band signal
streams—see Fig. 1) were extracted after manual quality control and artifact
correction of the data. Only eyes-closed sequences were considered for further
analysis. Here we computed essentially a spectrogram per subject to extract
temporal series of power for each electrode and band. In particular, we used
a set of features selected in prior work for average power SVM classification
[1] which include the combination of delta and theta band power from frontal
and temporal channels. While we explored the use of 4 s and 1 s spectrogram
windowing, the latter provided superior performance. As we discuss below, we
hypothesize that this improvement reflects a better capture of relevant signal
dynamics which can be used by the ESN. Our present study aimed to explore
whether there is useful dynamic information on the EEG power data time series
from subjects. We did not carry out an exhaustive test of the performance of
classifiers using multiple feature and channel combinations, which is left for
future work.

Fig. 1. Example of ESN input data. Five streams of EEG power time series at differ-
ent bands and scalp channels. From top to bottom: Delta-T4 power, Theta-F8 power,
Theta-T4 power, Theta-F7 and Theta-F4 power (horizontal units are samples corre-
sponding to 1 s window power averages sliding every 0.5 s).
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3 Echo State Network Description

Following [7,8] we have designed ESNs driven by multi-channel temporally-
varying power data as inputs, and providing as desired output the class label
(after mapping it to a square like signal taking values in {−0.5, 0.5}, see Fig. 3).
The ESN node dynamics are captured by the state variable x ∈ R

D, and driven
by inputs u ∈ R

Nin . Evolution is described iteratively by

x(n + 1) = αleak f(W in[u(n + 1); 1] + Wx(n) + W backy(n) + noise)
+(1 − αleak)x(n) (1)

and
y(n) = f(W out[u(n);x(n); 1]), (2)

with f(x) = tanhx (point by point hyperbolic tangent) [7,8]—see Fig. 2. The
internal weight matrices are initialized semi-randomly using a sparsity criterion
and an important parameter—called αW here and usually known as the spectral
radius—that determines the damping of the system. We explored ranges of αW =
0.5 to 2. We note that while it is normally stated that values less than one are
required for a stable ESN, greater values applicable in some cases when the
ESN inputs are non-zero [9]. W out is computed using regularized least squares
to ensure a match of output with the target signal in the training phase.

Overall, the parameters in our implementation of the ESN model are:

– D: DR dimension/the number of internal nodes. In our problem, the best
performances were obtained with reservoirs with 3000 nodes (the maximum
we tested).

– Sparsity threshold S: enforces sparsity in the W matrix when it is first created
using a random uniform distribution in the range ±1. Values with absolute
value below the threshold are set to 0.

Fig. 2. ESN model displaying input, internal and output nodes and bias terms.
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– αW : spectral radius. Used to map the thresholded random W → αW W/S(W ),
where S(A) denotes the spectral radius of a matrix A. Defines the “gain” of
the DR.

– αin: sets the scale of random input connections Win to the range of ± 1
2αin.

– αback: sets the scale of random connections of the feedback teacher signal
Wback to the range of ± 1

2αback.
– αleak: leaking rate of the neurons, useful for time smoothing of the dynamics.
– λ: Tickhonov parameter for regularization of the inverse problem of the output

weights Wout (in the sense of modifying least squares cost to F (w) = 1
σ ||Aw−

y||2 + λ||w||2).
– Input Channels and bands: The selection of Ninput input time series.
– Initial conditions of the nodes of the ESN: x(t0).
– Training noise level: noise

Different parameter configurations have been tested, with emphasis on the
relevance of spectral radius, DR size, the role of feedback teacher signal Wback

and the initial conditions of the nodes of the ESN x(t0). In particular, three
scenarios are discussed here after the ESN has been trained to assess the stability
of the network following the analysis in [7]:

– Teaching signal (output for feedback) ‘on’ for the whole duration of ESN run
(see Fig. 3 first row). All other parameters of the ESN are kept constant,
including the initial conditions of the nodes of the ESN.

– Teaching signal ‘on’ for a short interval, then turned off and provided by the
ESN output (see Fig. 3 second row). All other parameters of the ESN are kept
constant, including the initial conditions of the nodes of the ESN.

– ESN provides its own feedback all the time (see Fig. 3 third row). All other
parameters of the ESN are kept constant, except the initial conditions of the
nodes of the ESN.

4 Classification Performance Assessment

In order to map out the classification performance of the ESN for different
parameter sets, we implemented a set of algorithms in Matlab (run on a MacBook
Pro laptop) as described by the following pseudocode:

FOR each parameter set:

REPEAT M times (runs):

A- Create (random, balanced) training and test sets

B- Find a good DR (W_out matrix) with respect to the

training set (see below)

C- Evaluate its performance on training and test set

END

Compute mean performances over the M runs, save

END

Provide a map of the saved mean performances in parameter space



Echo State Networks for EEG Classiffication in Parkinson’s Disease 311

Fig. 3. Sample pot of the match of ESN output to desired target with accuracy for
the trained signal (first three plots in sequence: ESN with teacher forcing, ESN with
teacher forcing discontinued after N =300, and ESN with no teacher forcing at any
time) and for the test set signal in the last row. The cyan and green lines denote the
rescaled subject ID (cyan is HC, green PD). The horizontal axis denotes sample. (Color
figure online)

For each run, 10 % of the BandPower data of the PD and HC groups (subject-
wise) was left out as a test set (step A above). Cycles of 50 iterations of leave-
10%-out train/test were carried out to obtain an estimation of the classification
performance for each set of parameters. Typically, classification accuracy in the
training set was near 95–100 % across all parameter configurations.

To select a good ESN DR (i.e., the Wout matrices) using the training data
(step B above), the following steps were employed:

1. The DR network is initialized with random weights for all weight matrices
(except output connections Wout).

2. In the parameter configuration where the feedback teacher signal Wback is
on, the network is “forced” with the desired teacher signal (with values of
Wback = ±0.5), and the associate state dynamics saved. Otherwise, the state
dynamics of the network with no feedback are saved.

3. The best output connections Wout are found in the optimized, Tikhonov
regularized least squares sense by comparing the output dynamics with the
desired teacher signal. This provides the following quality metrics: the (L2)
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mean squared error (MSE) of output to teacher, and an accuracy metric. The
accuracy per subject is measured by finding which teacher signal the output
is closest to in the L2 sense.

4. Once the Wout are computed, a second run is then carried out to extract the
training MSE and accuracy.

5. The above process is repeated N times or until good training set accuracy is
provided, to find a good Wout matrix set based on the prior step. The best
Wout and its corresponding parameter set are saved, and the ESN classifier
is thus fully defined.

Finally, the performance of the ESN classification is estimated the test set
with the selected Wout and its corresponding parameter set on the testing data
(step C above).

5 Discussion

A first observation is that—as proposed in [8]—our best results were obtained
with large dynamic reservoirs (D = 3000) with least-squares regularization, with
accuracies reaching an 85 % average on the test set. In addition, spectral radii
larger than one were effective as well—with good results with αW ∼ 2—and
feedback did not seem to play an important role in the problem.

These early results are promising, as is the fact that the match of ESN outputs
to target was excellent on training set and often on test sets (see Fig. 3 bottom
row for an example of 100 % classification performance on the test set). However,
from this alone it does not follow that the ESN was actually exploiting dynamical
features in the data streams (which is what we wished to demonstrate). One
simple way to test if this is happening is to reshuffle the data time-wise (within
each subject) to see if classification accuracy is affected. We indeed found that
classification performance degraded if the data was reshuffled in time (85/55 %
train/test accuracy). While suggestive, however, this may simply highlight the
fact that ESNs require some “smooth” input dynamics to emulate data streams
at all.

A better test to check for the used amount of information in the dynamics as
opposed to mean amplitude is to normalize each input stream—independently
per channel and per subject—to unit standard deviation. This is rather
extreme—it would make any spectral power based classification impossible. We
found that this did indeed cause a degradation of performance both for training
and test sets, but not as much as temporal reshuffling (with train/test accuracy
up to 95/65 %). Thus, although mean power amplitude information is used by
the network, we conclude that the ESN is also using dynamic information in the
inputs. Along these lines, it is especially interesting to note that we also saw an
improvement in performance using 1 s vs. 4 s sliding windowed data (about 10 %),
with accuracy consistently in the range 80–85 %. This result is rather interesting
in itself and suggests we could get additional classification performance by fusing
ESN classifiers with SVM-spectral ones.
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Finally, we note that in this particular study we did not carry out an exhaus-
tive search in the feature space of channels and bands, but relied on the best
performing features found in prior SVM classification studies which were blind
to dynamically encoded information. More tests exploring the feature space and
different feature combinations should therefore be carried out even if the search
is restricted to bandpower signals (not the only choice with EEG data). Future
work should also explore the role of dynamic reservoir architecture, which with
large dimensions ought to be studied as a complex network [10].
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Abstract. The latency of the N100m transient component of the mag-
netic auditory evoked fields presents a widely reported correlation with
perceived pitch. These observations have been robustly reproduced in the
literature for a number of different stimuli, indicating that the neural gen-
erator of the N100m has an important role in cortical pitch processing.
In this work, we introduce a realistic cortical model of pitch perception
revealing, for the first time to our knowledge, the mechanisms responsi-
ble for the observed relationship between the N100m and the perceived
pitch. The model describes the N100m deflection as a transient state
in cortical dynamics that starts with the incoming of a new subcortical
input, holds during a winner-takes-all ensemble competition, and ends
when the cortical dynamics reach equilibrium. This model qualitatively
predicted the latency of the N100m of three families of stimuli.

Keywords: Cortical dynamics · Auditory evoked fields · N100m · Pitch
perception · Perceptual integration · Multi-attractor systems

1 Introduction

Auditory evoked fields (AEFs) observed in MEG experiments systematically
present a transient deflection known as the N100m, elicited around 100 ms after
tone onset in the antero-lateral Heschl’s Gyrus. The exact N100m’s latency is
correlated with the perceived pitch of a wide range of stimuli [5,7,8], suggesting
that the cortical source of the transient component has an important role on the
processing of pitch in auditory cortex [9]. However, the biophysical substrate of
the relationship between pitch decoding and the N100 morphology remains an
enigma.

Existing models of pitch, focused on perceptual phenomena, do not explain
the mechanisms generating cortical evoked fields during pitch processing in bio-
physical detail (e.g. [1,6]). Cortical models of the evoked fields, like the Dynamic
Causal Models [3], often assume an unrealistic cortical input (e.g. white noise)
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 314–321, 2016.
DOI: 10.1007/978-3-319-44778-0 37
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and are thus unable to reproduce stimulus-driven properties of the AEF. In this
work, and for the first time to our knowledge, we introduce a model of interact-
ing neural ensembles describing how stimulus-dependent cortical pitch process-
ing gives rise to the observed human neuromagnetic responses. Specifically, we
focus on the N100m transient dynamics and its peak latency. Our conclusion is
that the N100m reflects a decoding process occurring in the onset of the stimuli,
that can be described as a competition between neural ensembles sensitive to
different pitch values.

2 The Model

Subcortical input was simulated using a realistic model of the peripheral auditory
system generating realistic auditory nerve spike trains [14] followed by a delay-
and-multiply processing carried out by chopper neurons in cochlear nucleus and
coincidence detector units in the inferior colliculus [6]. The spike trains generated
by the peripheral system, represented by the probability of spiking p(t), are
phase-locked to the waveform of the stimulus, thus preserving all the periodicities
of the sound. Chopper neurons systematically delay input spike trains by {δtn}N1 ,
whilst coincidence detector units spike for such specific delays of the auditory
nerve fibres. The final subcortical output An(t) represents a leaky-integration of
the coincidence detectors output as follows:

τsc
n Ȧn(t) = −An(t) + p(t)p(t − Δt) (1)

Lag-dependent time constants τsc
n were taken from the literature [11].

The formulation in Eq. 1 yields a series of N = 300 channels characterised
by the chopper delays δtn. Channel n activates when the stimulus’ waveform
presents a periodicity with frequency f0 = 1/δtn. Channels corresponding to
lower harmonics of the peridocities of the stimulus (i.e. channels characterised
by delays δtn = 1/kf with k = 1, 2, . . . ) are also coactivated after the delay-and-
multiply process. Figure 1 shows the subcortical inputs elicited by three different
tonal stimuli with the same pitch (f0 = 250 Hz, δ = 4 ms).

Fig. 1. (Left) Average of the subcortical input generated by the model for a pure tone,
a harmonic complex tone, and an iterated rippled noise. All stimuli have the same
f0 = 250 Hz. (Right) Average cortical output for the same stimuli. Plots show the
activity per ensemble averaged at 100–200 ms after onset.
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The cortical model consists of a series of N = 300 cortical microcolumns
described as sets of two neural ensembles: one excitatory He

n and one inhibitory
Hi

n (see Fig. 2). An excitatory ensemble in one of such blocks n receives realistic
input from the nth subcortical channel. A large activation in a column is typically
associated with a fundamental pitch of δtn [1].

Excitatory ensembles connect to both excitatory and inhibitory ensembles
of adjacent blocks; whereas inhibitory ensembles connect globally with other
inhibitory and excitatory populations. Crucially, inhibitory-to-excitatory con-
nections are stronger when they link a population encoding the period δtn with
a population encoding any of its lower harmonics kδtn (see full connectivity
matrices in Fig. 2); in agreement with reported data on cortical connectivity in
mammals [10]. This setting facilitates the inhibition of low harmonics elicited
during the peripheral processing as will be discussed next.

Fig. 2. (Left) Basic schematics of the model. Each block represents a cortical micro-
column. Each column consist of excitatory pyramidal neurons (blue) and inhibitory
interneurons (red). (Right) Connectivity weights between the ensembles of the model.
Excitatory-to-excitatory (e-e), excitatory-to-inhibitory (e-i), inhibitory-to-excitatory
(i-e) and inhibitory-to-inhibitory (i-i) connectivity matrices. Note that, although the
excitation is local, inhibition is induced globally. (Color figure online)

Ensembles are modelled using a neural rate model with a mean-field approx-
imation, where empirically shaped transference functions φe,i(I) are [13]:

τpop(t) Ḣe,i
n (t) = −He,i

n + φe,i(Ie,in (t)) (2)

with

φe,i(I) =
ae,iI − be,i

1 − e−de,i(ae,iI−be,i)
(3)

Excitatory connections consist of NMDA- and AMPA-driven synapses.
Inhibitory connections are only of the GABAA type. AMPA and GABA synapses
were modelled using leaky integrators with instantaneous rising times [2]:

Ṡj
n(t) = −Sj

n(t)
τj

+ He,i
n (t), j = AMPA,GABA (4)
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NMDA dynamics were modelled considering slow rising times [2]:

ṠNMDA
n (t) = −SNMDA

n (t)
τNMDA

+ γ(1 − SNMDA(t))He,i
n (t) (5)

Additive synaptic noise was introduced in the form of white noise in the gat-
ing variables Sj

n. Subcortical input was driven by NMDA and AMPA dynamics
according to Eqs. 4 and 5, using the ensemble firing rates of the coincidence
detectors An(t) as gate triggers. Thus, the total synaptic input for the excita-
tory populations can be written as follows:

Ien(t) = JNMDA,th SNMDA,th
n (t) + JAMPA,th SAMPA,th

n (t)

+
∑
k

Cee
n,k

(
JNMDA SNMDA

k (t) + JAMPA SAMPA
k (t)

)

−
∑
k

C ie
n,k JGABA SGABA

k (t) (6)

In Eq. 6, the first two terms correspond to the subcortical input, the third term
accounts for cortical excitatory input, and the last term accounts for cortical
inhibitory inputs. The conductivities JNMDA,th, JAMPA,th, JNMDA, JAMPA, and
JGABA were taken from the literature [13] and slightly tuned within the bio-
physical range to match the experimental observations.

Synaptic inputs for the inhbitory populations follow a similar pattern:

Iin(t) =
∑
k

Cei
n,k

(
JNMDA SNMDA

k (t) + JAMPA SAMPA
k (t)

)

−
∑
k

C ii
n,k JGABA SGABA

k (t) (7)

The connectivity matrices used in Eqs. 6 and 7 (Cee,Cei,Cie, and Cii) are
depicted in Fig. 2. The connectivity patterns were designed ad-hoc, always fol-
lowing biophysical constraints defined in the literature [10].

Neural adaptation in cortex was modelled as an effective negative input cur-
rent Be,i

n (t) in the neural ensembles He,i
n [4]. Adaptation effective currents fol-

lowed leaky-integrator-like dynamics:

τadaptḂ
e,i
n (t) = −Be,i

n (t) + θadaptH
e,i
n (t) (8)

Adaptation parameters were identical in both excitatory and inhibitory
ensembles. τadapt was chosen from the literature [4] and θadapt � 1 such that
the effect of adaptation is only noticeable under high firing rate regimes.

3 Results

The model was tested using three families of stimuli typically eliciting N100m
auditory cortex responses highly correlated with pitch: pure tones (PT), har-
monic complex tones (HCT), and iterated rippled noises (IRN, consisting on the
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aggregation of iteratively lagged copies of a white noise with a fixed delay δt).
HCTs typically evoke the pitch of the fundamental frequency f0 of the harmonic
mixture, even if f0 itself is not present in the tone (phenomenon known as virtual
pitch [6]). IRNs evoke a pitch equivalent to the inverse of the delay 1/δt.

We considered a variable number of harmonics in the HCT (with and without
missing fundamental) and IRNs of 8, 16 and 32 iterations; for a range of pitch
values between 200Hz and 1000Hz for all stimulus types. After an unstable
transient response of around 100–150 ms, the activity in the cortical ensembles
systematically converged to a unimodal distribution centred on the population
corresponding to the perceived fundamental (see Figs. 1 and 3), fully in line with
predictions of abstract pitch perception models from the literature [1] (Fig. 3).

Fig. 3. Time evolution of the activity of the ensembles for three different stimuli with
the same pitch (f = 333 Hz). From left to right, plots show the temporal evolution
of the N = 300 ensembles (y-axis) in each of the different groups: excitatory popu-
lations He(t), inhibitory populations Hi(t), and subcortical populations A(t). From
top to bottom, each row shows results for: a pure tone, a harmonic complex tone with
10 harmonics, and an iterated rippled noise with 32 iterations.

Simulations were performed using the same parameters for all stimuli, with
the only exception of the conductivity of the connection between subcortical and
excitatory cortical ensembles Jthal, which was tuned for each of the three fami-
lies of stimuli in order to compensate the large differences between the average
activity elicited in the subcortical patterns (see Fig. 1).

Auditory evoked fields were predicted by the activity dynamics of the exci-
tatory pyramidal ensembles in the cortical model. Auditory evoked fields are



Neural Competition Underlies Pitch-Related Evoked Field Dynamics 319

typically represented using equivalent dipoles that model neural activity in a
localised cortical area. Dipoles in auditory cortex are usually fitted using band-
passed MEG fields averaged along a few hundreds of trials. In order to predict the
elicited fields, we assumed that all microcolumns in our model present the same
orientation. Then, the total dipolar moment elicited by the cortical model is pro-
portional to the aggregated activity across populations m(t) =

∑
n He

n(t + Δt),
where Δt accounts for the time elapsed from tone onset until the signal first
arrives in primary auditory cortex (Δt � 30–50 ms). To account for the trial to
trial variability of the model, we further averaged the predicted dipole moment
across 10 runs M(t) = 〈m(t)〉runs.

An example of the simulated fields is shown in Fig. 4 for several stimuli. The
resulting waveform components can be related with the evoked fields observed in
MEG auditory experiments: the first large negative transient predicts the N100m
component, whilst the sustained model response shows a good agreement with
the sustained field.

In order to assess quantitatively the relation between the N100m and the
model’s output, we computed the latency of the component for pure tones
and HCTs and compared them with available results in the literature [5,7,8].
Results are shown in Fig. 4. Good agreements between the model’s response and
the experimental data were generally observed in the range f0 ∼ 150–2000 Hz.
Specifically, latency predictions over 1000 Hz where all quite similar, consistently
with experimental observations.

Stimuli presenting fundamental or effective frequencies under f0 = 150Hz
yielded an overly late predicted N100m. This is due to intrinsic limitations of
the peripheral model, that does not present cochlear channels solving frequencies
under f = 125Hz [14]. Stimuli with f0 > 2000Hz failed to yield satisfactory
perceptual outputs, as a reflection of the limit for phase-locking in the peripheral
auditory system [14].

4 Discussion and Conclusions

We introduced a biophysical model of cortical responses related to pitch process-
ing. The model accounts for the pitch-related components of auditory evoked
fields for the first time to our knowledge, and quantitatively explains the observed
N100m transient neural response in a range of stimuli as a transient instability in
the neural dynamics underlying pitch processing. The instability period begins
at the cortical input onset i.e. when cortical ensembles start to integrate the
subcortical activation patterns. Pyramidal neurons encoding the perceived pitch
and lower harmonics become increasingly active, propagating forward activity
to the inhibitory ensembles; whose feedback reduce the activation of excitatory
ensembles encoding lower harmonics. Thus, the aggregated activity in the exci-
tatory neurons shows a transient component that begins with the subcortical
input onset, peaks when the inhibitory/excitatory input is balanced, and sta-
bilises when the population encoding the perceived pitch is the more active one;
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Fig. 4. Simulations of the auditory evoked fields evoked by pure tones, harmonic com-
plex tones, and iterated rippled noises. In the left column, we show an example of the
M(t) for each of the families of stimuli with a pitch of 500 Hz (blue shades represent the
standard deviation). In the right column, we show the derived predictions of the N100m
latency and the observed experimental data for a range of fundamental frequencies.

accounting for the perceived pitch. A balanced excitation and inhibition set-
ting such as the one shown in this model has been found to underlie cognitive
flexibility [12].

Importantly, we found that the latency of the N100m component directly
stems from the time required by the model to achieve equilibrium after stimulus’
onset. High-pitched sounds typically have a larger amount of lower harmonics
represented in cortex than low-pitched ones, and thus they elicit bottom-up acti-
vation in more excitatory ensembles; which induce top-down inhibitory activity
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in a larger amount of inhibitory populations. Namely, high pitched sounds trigger
top-down inhibition faster, thus explaining the observed dependency on pitch of
the N100m’s latency.

Conclusion. This study shows that N100m morphology associated with pitch
perception can be explained by transient dynamics of a winner-takes-all com-
petition among balanced, excitatory and inhibitory populations, tonotopically
distributed in cortex. In conclusion, we suggest that these characteristics pro-
vide a specific mechanism which enables alHG ensembles to process pitch.
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Abstract. We consider a biologically plausible model of the basal gan-
glia that is able to learn a probabilistic two armed bandit task using
reinforcement learning. This model is able to choose the best option
and to reach optimal performances after only a few trials. However, we
show in this study that the influence of exogenous factors such as stimuli
salience and/or timing seems to prevail over optimal decision making,
hence questioning the very definition of action-selection. What are the
ecological conditions for optimal action selection?

Keywords: Decision making · Neural dynamics · Basal ganglia ·
Optimal behavior

1 Introduction

Basal ganglia are known to be involved in decision making and action selection
based on reinforcement learning and a number of models have been designed to
give account on such action selection [2,3,10]. We have been studying a specific
computational model of the basal ganglia that has been introduced in [4] and
replicated in [13]. This model has been used to explain, to some extent, decision
making in primates on a two armed bandit task. One of the questions we attempt
to address in this study is to what extent the physical properties of the stimulus
such as the visual salience or other characteristics affect the decision and lead
to a suboptimal choice. For example (and quite obviously), a stimulus is very
likely to be selected, if it is presented before the other stimuli and this selection
will be made irrespectively of the potential reward associated with this stimulus.
Moreover, there may be other factors such as stimulus salience or population size
that may also disrupt the optimal performance. This led us to do a systematic
study of the influence of such exogenous factors to understand what are the
ecological conditions for optimal decision making.

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 322–329, 2016.
DOI: 10.1007/978-3-319-44778-0 38
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2 Methods

2.1 Task

The task that has been used to demonstrate action selection in the model is a
probabilistic learning task that is described in [8]. Four target shapes are asso-
ciated with different reward probabilities (see Fig. 1). A trial is a time period
in which any two of the four possible shapes are presented at two random posi-
tions (out of the four possible positions - up, right, down and left). The model
is allowed to settle for the first 500 ms of the trial and then two random cues are
presented. By the end of trial period, a choice is made and the reward is given
according to the reward probability associated with the chosen shape.

Trial start Cue presentation Go signal Decision Reward Trial stop

0.5s - 1.5s 1.0s - 1.5s 1.0s - 1.5s
Time

P = 1.00

P = 0.66

P = 0.33

P = 0.00

Reward probabilities

Fig. 1. The two armed bandit task as described in [4,8].

A trial is considered to be successful if a decision is made by the model,
irrespective of the reward received. In a single independent trial, the cognitive
decision (shape of the cue) and motor decision (position of the cue) are indepen-
dent of each other. At any decision-making level of the model, each of the four
cue shapes and each of the four motor movement directions is represented by one
unit (neuron) each. Thus in a given trial, when two cue shapes are presented at
two different positions, two cognitive, two motor and two associative (in cortex
and striatum, see Fig. 2) neurons are activated. The task is run for a session,
a number of trials, while at the end of each trial, the model learns the reward
associated to its selection. (see Learning).

2.2 Model

In [5], authors demonstrated an action selection mechanism in the cortico-basal
ganglia loops based on a competition between the positive feedback, direct
pathway through the striatum and the negative feedback, hyperdirect pathway
through the subthalamic nucleus. In [4], authors investigated further how multi-
ple level action selection could be performed by the basal ganglia, and the model
has been extended in a manner consistent with known anatomy and electro-
physiology of the basal ganglia in the monkey (see Fig. 2). This model allows
a bidirectional information flow between loops such that during early trials,
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Fig. 2. Architecture of the basal ganglia model which is organised around three parallel
loops: cognitive, associative and motor. Only the direct and hyperdirect pathways have
been modelled.

a direction can be selected randomly, irrespective of the cue positions. How-
ever, after repeated trials, the model is able to consistently make the cognitive
decision before the motor decision in each trial (see Fig. 3) and most frequently
the motor decision, biased by the cognitive decision, towards the position of the
more rewarding cue shape.

Learning. Learning has been derived from a simple actor-critic algorithm [12]
that shapes the gain between the cognitive cortex and the cognitive striatum.
According to the amount of reward received at the end of each trial (0 or 1),
the model learns to estimate the value of chosen stimulus and then the cognitive
pathway is biased in favor of the stimulus with the highest value.

Neuronal Dynamics. This model uses the same, simple neuronal rate model as
in [4,5] to focus on the network dynamics. Within each structure, each neuron
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(in each channel of any loop) is modeled as a single rate coded neuron with the
equation:

τ
dm

dt
= −m + Is + IExt − T (1)

decay time constant of the synaptic input τ , negative values of activation, m
and threshold of the neuron T are set to respective constant values as per the
model in [4]. IExt is an external input representing the sensory visual salience
of the cue, which is unchanged throughout the process of learning.

Fig. 3. Time course of a decision in the motor cortex (blue curves) and cognitive cor-
tex (red curve) before learning. At trial start (t = 500 ms), there is a first bifurcation
between stimuli that are actually presented and those who are not. The second bifur-
cation around t = 750 ms is the actual decision of the model. (Color figure online)

3 Results

In all the following cases, we consider 4 stimuli A, B, C, D respectively associated
with reward probability of 1.0, 0.66, 0.33 and 0.0. Learning is performed over
120 trials until the model reaches a performance of 0.90, meaning it chooses
the best stimulus 90 % of the time. We then stopped learning in the model and
simulated a scenario where one stimulus is presented first and the other follows
after a certain delay. Another scenario involved presenting one stimulus with
more salience than the other. In both the scenarios, the intent was to emphasize
the advantage (earlier presentation or higher salience) to the lesser rewarding
stimulus and see if that leads the model to a suboptimal decision. We presented
the model with various scenarios involving different delays and saliences. (see
Fig. 4).

3.1 Influence of Delay

We first tested the influence of a small delay (between 0 ms and 60 ms) between
the presentation of the two stimuli. The worst stimulus, that is the one associ-
ated with the lesser probability of reward, is presented first and after the delay,
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Fig. 4. Two stimuli A & B can differ in salience (ΔV ) and/or in timing (Δt). ΔV
is expressed as the relative ratio between the less salient and the most salient stimuli
(ΔV = (VA − VB)/VB . Δt is expressed as the delay separating the two stimuli onsets
(Δt = tA − tB).

the second (better rewarding) stimulus is presented. We have been testing sys-
tematically all combinations of stimuli (A/B, A/C, A/D, B/C, B/D, C/D) and
averaged the mean performance over 25 trials (see Fig. 5). As expected, the per-
formance decreased with the increase in delay and the crossing (i.e. performance
is random) happens around 35 ms for all combinations but the last one (C/D)
that happens very early, around 20 ms. This specific case can be explained by
the poor estimation of the value of C and D during learning because those stim-
uli are almost never chosen (most of the time, they are presented with a better
stimuli).

Fig. 5. Performance of the model as a function of the delay between the worst and
the best stimuli. All combinations have been tested and mean performance has been
averaged over 25 trials.
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3.2 Influence of Salience

We tested the influence of salience by presenting simultaneously the two stimuli
but the worst stimulus, i.e., the one associated with a lesser probability of reward,
has been made virtually stronger than the other. The model, having learned the
rewarding probabilities, is expected to select the higher rewarding stimulus irre-
spective of the salience. However, the increased salience of the lesser rewarding
stimulus affects the model and leads it to take a bad decision (see Fig. 6). As
the salience of the lesser rewarding stimulus increases, a consistent decrease in
the performance of model is observed. Interestingly, the threshold percentage
of salience difference after which the performance of the model decreases, is a
characteristic of the difference in the reward probabilities of both the stimuli
presented. Quite visibly (Fig. 6), it takes higher salience difference for a lesser
rewarding stimulus to be chosen against the best rewarding one (in this case,
A) whereas a lesser increase in salience seems to be sufficient to compromise the
decisions involving lesser rewarding stimuli, like B.

In various neuropsychological studies on humans, like in [7,9], it has been
emphasized that the visual saliency of stimuli influences the choices over the
learned preferences and visual working memory. Interestingly, in [7] where at an
exposure time of 1500 ms, which is quite similar to that of the model discussed
here, the influence of visual saliency was particularly evident when there were
no strong preferences among the options. This observation is supported by the
early performance decline of the model discussed here, when presented with two
closely rewarding stimuli (Stimuli C/D in Fig. 6).

Fig. 6. Performance of the model as a function of the delay between the worst and
the best stimuli. All combinations have been tested and mean performance has been
averaged over 25 trials. Decrease in performance of the model when the lesser rewarding
stimulus is presented with stronger salience than the higher rewarding stimulus.
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3.3 Joint Influence of Delay and Salience

We further tested the model and studied the joint influence of delay and salience
by make the worst stimulus to be presented earlier and with a stronger salience.
As shown in Fig. 7, this dramatically degrades the performance and the domain
of optimal performance is even more restricted compared to original results.

Fig. 7. Joint influence of delay and salience on the performance of the model. The two
effects appears to linearly sum up and the domain of optimal performance is even more
restricted.

4 Conclusion

These early results tend to question the very notion of optimal action selection as
defined in a number of theoretical works. The action may be considered optimal
provided the two options are presented simultaneously and with an equivalent
representation. In the reinforcement learning paradigm, such consideration does
not hold much relevance. However, from a more behavioral and embodied per-
spective, we think this is an important dimension to consider because an animal
is scarcely confronted by a set of perfectly equivalent options (but their asso-
ciated value). One may come first or one may just appear more “obvious” (i.e.
more salient). In such a case, the inner dynamics of the model may lead to a
suboptimal choice as it is the case using the model from [4]. Although we did not
perform the study presented here on primates yet, the results from the model
assert the need for a closer look at the way we perceive decision making para-
digms. The question is to know to what extent some dedicated brain mechanisms
are able to cope with these problems. For example, concerning the time delay,
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a stop signal, as it has been reported in [11], may represent a potential mechanism
to be able to solve the problem for small delays (< 200 ms).

For the salience difference however, and to the best of our knowledge, there
is no such dedicated mechanism. In [6], a stimulus-reward association study on
macaque monkeys, spike recordings showed significant reward dependence in their
responses to the visual cues. In [1], rewards were shown to teach visual selective
attention maximizing the positive outcomes. However both the studies do not
identify the underlying mechanisms that caused the observations on the effect of
salience. This study hence suggests that measuring experimentally performance
using different salience levels could bring useful insights into decision making.
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Abstract. Ultimate Game serves for extensive studies of various aspects
of human decision making. The current paper contribute to them by
designing proposer optimising its policy using Markov-decision-process
(MDP) framework combined with recursive Bayesian learning of respon-
der’s model. Its foreseen use: (i) standardises experimental conditions for
studying rationality and emotion-influenced decision making of human
responders; (ii) replaces the classical game-theoretical design of the play-
ers’ policies by an adaptive MDP, which is more realistic with respect
to the knowledge available to individual players and decreases player’s
deliberation effort; (iii) reveals the need for approximate learning and
dynamic programming inevitable for coping with the curse of dimen-
sionality; (iv) demonstrates the influence of the fairness attitude of the
proposer on the game course; (v) prepares the test case for inspecting
exploration-exploitation dichotomy.

Keywords: Games · Markov decision process · Bayesian learning

1 Introduction

Since ancient times people trade with each other. Modern man cannot imagine
life without exchange of goods, services, information etc. It is something like the
cornerstone of our civilization. This human activity divides people to proposers
of some merit and responders who either accept or refuse it. Both of them can
often bargain but a price tag in the store represents a sort of ultimatum: if we
buy the product we agree with the seller’s price without any direct negotiation.
This motivates investigations of human behaviour connected with the bargaining
and trading. They concern economical, game-theoretical, social, cultural and
emotional aspects and they often use standardised “laboratory” variants of the
discussed interaction. Ultimatum Game (UG) is a prominent test case [18].

UG considers a fixed number of rounds of the two-player game. A fixed
amount of money is split in each round. The proposer offers a part of this amount
and the responder either accepts the offer and money are split accordingly or
refuses it and both get nothing. Seemingly, the game should have a definite

This research was supported by Grant Agency of the Czech Republic, No 13-13502S.

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 330–338, 2016.
DOI: 10.1007/978-3-319-44778-0 39



Adaptive Proposer for Ultimatum Game 331

course: the proposer offers the smallest possible positive amount and the respon-
der accepts it. No such behaviour is observed in reality as people judge the game
not only according to monetary profit. Typically, they try to earn at least as
their opponent, they care about self-fairness [8,20] influenced by culture, sex,
etc. [5]. An important influence of emotions are also studied [7].

While an appropriate model of self-fairness leads to surprisingly accurate
predictions of responders’ behaviours [9], to get a statistically significant quan-
tification of emotional influences has been found quite hard. The hypothesis that
an actively optimising proposer could make this influence more pronounced has
led to the design of the standardised active proposer described here. Theory of
Markov decision processes (MDP) [17] was selected as the basis of such a design.
This choice avoiding the standard game-theoretical formulation [22] is motivated
by the inherent trap of the dimensionality curse [3] of the Bayesian games [10].

The use of MDP supposes knowledge of responder’s model, which is in real-
istic scenarios unknown and, moreover, it is very individual in the targeted
emotion-oriented studies. This calls for a combination of MDP with a perma-
nent learning of this model, i.e. for adaptive MDP. The inherent small amount
of available data singles out recursive Bayesian learning in the closed decision
loop as the (only) appropriate methodology [16]. Even then, approximations of
recursive learning like [11] and dynamic programming [21] are needed. This text
makes just the preparatory steps towards the complete solution. It recalls MDP,
the dynamic programming as the optimisation tool and the recursive Bayesian
learning, Sect. 2. UG is formulated in MDP terms for various types of proposers,
Sect. 3. A numerical illustration is in Sect. 4. Section 5 adds remarks.

2 Mathematical Background

This section is based on [3,9,16,17]. It introduces the adopted notions, recalls
the used mathematical tools, and makes the paper relatively self-containing.

2.1 General Formulation and Solution of Markov Decision Process

The considered systemconsists ofdecisionmaker (DM), and responder.They inter-
act indiscrete time (decision epochs) t ∈ T = {1, 2, . . . , |t|}, |t| < ∞.DMchooses a
discrete-valued action (an irreversible decision) at ∈ A = {1, 2, . . . , |a|}, |a| < ∞,
in each epoch t ∈ T. Consequently, the closed decision loop transits fromadiscrete-
valued state st−1 ∈ S = {1, 2, . . . , |s|}, |s| < ∞ to the state st ∈ S. The use
of regression pair ψt = (at, st−1) ∈ Ψ = (A,S), t ∈ T, simplifies the pre-
sentation. With it, the random transition is described by transition probabilities1(
p(st|ψt)

)
t∈T

∈ P =
{

p(st|ψt) ≥ 0
∣∣∣ ∑

st∈S p(st|ψt) = 1, ∀ψt ∈ Ψ
}

. After the

transition, the DM receives a real-valued reward r(st, ψt) ∈ R =
{

r(st, ψt)
∣∣∣ st ∈

S, ψt ∈ Ψ, t ∈ T
}

. The DM cannot use the state st for choosing the action at ∈ A
and thus it can at most maximise aggregate expected reward

1 All functions with time-dependent arguments generally depend on time.
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∑
t∈T

E[r(st, ψt)] =
∑
t∈T

∑
st∈S,ψt∈Ψ

r(st, ψt)p(st, ψt) (1)

=
∑
t∈T

∑
st∈S,at∈A

st−1∈S

r(st, ψt)p(st|ψt)p(at|st−1)p(st−1).

The last equality in (1) follows from the chain rule [17]. It expresses the proba-
bility p(st, ψt) as the product of the given transition probability p(st|ψt) ∈ P, of
the optional decision rules (p(at|st−1))t∈T ∈ Π =

{
p(at|st−1)

∣∣∣st−1 ∈ S, at ∈ A
}

forming the decision policy and of the state probability p(st) ∈ PS, where

PS =
{

p(st)
∣∣∣ p(st) =

∑
ψt∈Ψ

p(st|ψt)pt(at|st−1)pt(st−1), st ∈ S, t ∈ T
}
. (2)

The state probability p(st) is influenced by the “policy prefix”
(
p(aτ |sτ−1)

)
τ≤t

and the probability p(s0) of the initial state s0 ∈ S. Often, p(s0) = δ(s0, s̃0) with
Kronecker δ equal to 1 for equal arguments and 0 otherwise. It concentrates p(s0)
on a given s̃0 ∈ S.

Thus, the optimising DM maximises the aggregate expected reward (1) over
decision policies Π. For known R, P and s̃0, DM takes as the optimal policy

(popt(at|st−1))t∈T ∈ Arg max
(p(at|st−1))t∈T∈Π

∑
t∈T

E[r(st, ψt)]. (3)

Definition 1 (Optimal MDP). The given 7-tuple {T,A,S,PS,P,R,Π}
together with the maximisation (3) is referred as Markov decision process
(MDP).

Theorem 1 (Dynamic Programming, proof e.g. in [17]). The policy
(popt(at|st−1))t∈T ∈ Π maximising the aggregate expected reward (3) consists of
the deterministic decision rules popt(at|st−1) = δ(at, a

�
t (st−1)), where

a�
t (st−1) ∈ Arg max

a∈A
E[r(st, a, st−1) + ϕt(st)|a, st−1] with value function

ϕt(st) =
∑

st+1∈S

[r(st+1, a
�
t+1(st), st) + ϕt+1(st+1)]p(st+1|a�

t+1(st), st).

The backward recursion starts with ϕ|t|(s|t|) = 0,∀s|t| ∈ S.

2.2 Bayesian Learning of Transition Probabilities

The unrealistic assumption that the transition probabilities from the set P are
given, see Definition 1, is removed via Bayesian recursive learning [16] recalled
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here. It relates the state st ∈ S to the action at ∈ A and observed states
sτ ∈ S, τ < t, by transition probability parameterised by its unknown values Θ

p(st|at, . . . , a1, st−1, . . . , s0, Θ) = p(st|ψt, Θ) =
∏
s∈S

∏
ψ∈Ψ

Θ
δ(s,st)δ(ψ,ψt)
s|ψ ,where

Θ ∈ Θ =
{

Θs|ψ ≥ 0
∣∣∣ s ∈ S, ψ ∈ Ψ,

∑
s∈S

Θs|ψ = 1, ∀ψ ∈ Ψ
}

. (4)

It provides the transition probabilities as predictors

p(st|ψt, . . . , ψ1) =
∫

Θ

p(st|ψt, Θ)p(Θ|st−1, ψt−1, . . . , ψ1)dΘ, (5)

where the posterior probability density p(Θ|st−1, ψt−1, . . . , ψ1) has the support
Θ and is given by the observed condition st−1, ψt−1, . . . , ψ1. Bayes’ rule [4,16]
evolves it

p(Θ|st, ψt, . . . , ψ1) =
p(st|ψt, Θ)p(Θ|st−1, ψt−1, . . . , ψ1)

p(st|at, ψt−1, . . . , ψ1)
. (6)

An optional prior probability density p(Θ) = p(Θ|ψ1, ψ0) initiates (6).
Importantly, the learning (5), (6) is valid for any policy for which the para-

meter Θ ∈ Θ is unknown, i.e. which meets natural conditions of control [16]

p(at|ψt−1, . . . , ψ1, Θ) = p(at|ψt−1, . . . , ψ1). (7)

The learning is correct in loops closed by any (say human) policy meeting (7).
The product forms of the model (4) and of Bayes’ rule (6) imply Dirichlet’s

form of the posterior probability density, [12], which uses Euler’s gamma Γ [1],

p(Θ|ψt, . . . , ψ1) = p(Θ|Vt) =,
∏

ψ∈Ψ

Γ
(∑

s̃∈S

Vt;s̃|ψ
)∏

s∈S Θ
Vt;s|ψ−1

s|ψ
Γ(Vt;s|ψ)

, where

Vt;s|ψ = Vt−1;s|ψ + δ(s, st)δ(ψ,ψt), form occurence array, s ∈ S, ψ ∈ Ψ. (8)

The initial occurrence array V0 = (V0;s|ψ > 0)s∈S,ψ∈Ψ describes the used con-
jugated (Dirichlet form preserving) prior probability density p(Θ). The gained
predictive probability resembles the frequentist estimate Θ̂ ∈ Θ of Θ ∈ Θ

p(st = s|ψt = ψ, Vt−1) =
Vt−1;s|ψ∑

s̃∈S Vt−1;s̃|ψ
= Θ̂t−1;s|ψ, s ∈ S, ψ ∈ Ψ. (9)

3 Ultimatum Game as Adaptive MDP

According to UG rules, |t| (tens) rounds are played. Possible actions at ∈ A of
the proposer P (DM supported here) in the round t ∈ T are the offered splits
of q = |a| + 1 (often monetary) units. The responder R generates the observed
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response ot ∈ O = {1, 2} = {reject the offer, accept the offer}. The profits of the
proposer Zt;P and responder Zt;R accumulated after tth round are

Zt;P =
t∑

τ=1

(q − aτ )(oτ − 1) ∈ Zt;P , Zt;R =
t∑

τ=1

aτ (oτ − 1) ∈ Zt;R. (10)

The profits (10) determine the observable (non-minimal) state st of the game

st = (Zt;P , Zt;R) ∈ S = (Zt;P ,Zt;R), t ∈ T. (11)

It has a finite amount of values and starts with zero profits s0 = (0, 0).
Altogether, UG rules directly specify sets of epochs T, actions A, and state

probabilities PS, cf. (2), in the 7-tuple delimiting MDP, see Definition 1. The
peculiarities of the use of adaptive MDP by the proposer thus reduce to those
connected with transition probabilities P, rewards R and with the curse of
dimensionality connected with the policy space Π. They are discussed below.

3.1 Transition Probabilities

Bayesian learning, Sect. 2.2, formally provides the needed transition probabili-
ties in P under acceptable assumption that the responder does not vary them
abruptly during the game course. The lack of learning data, consequence of the
dimensionality curse [3], is, however, serious obstacle. Indeed, the sufficient sta-
tistics Vt (8) has |o| × |Ψ| = |o| × |a| × |s| entries. In a typical case |o| = 2,
|a| = 9 and reduced |s| = 10, it needs 180 values to be populated by data, which
requires unrealistic hundreds’ game rounds. The ways out are as follows.

Reduction of the State Space: The size of V is determined by the richness of
the state space S. The UG rules imply that the two-dimensional st (11) stays in
(st−1, st−1+[at, q−at]), i.e. many transitions are impossible. The above example,
respecting this fact, indicates the need for additional countermeasures.

Use of Population Based Priors: It is possible to obtain a reliable description
of responders’ population and convert it into the prior occurrence array V0;s|ψ =
v0;ψΘ̂0;s|ψ, s ∈ S, ψ ∈ Ψ (9). V0 is modified by at most |t| data records specific
for the individual responder in the individual game. Thus, the choice of the prior
weight v0;ψ > 0 is critical. Due to data sparsity, a few observations of a specific
s, ψ within tens of rounds are expected. Thus, v0;ψ ≤ |t| is recommendable.

Assuming ψ-independent prior weight v0 = v0;ψ, its hierarchical Bayesian
learning [4] becomes feasible. Hypotheses h : proper v0 = v0;h = a value in (0,1),
h ∈ H = {1, 2, . . . , |h|} with a small |h| are formulated. For each h, the predic-
tor (9), becomes h dependent p(st = s|ψt = ψ, Vt−1;h) via h-dependent array
V0;h = v0;hΘ̂. Then, Bayes’ rule is directly applicable. The h-independent pre-
dictor (transition probability) becomes mixture of predictors within respective
hypotheses with weights being their posterior probabilities, see [4,16].

This Bayesian averaging is of a direct relevance for the motivating studies
of influence of emotions on decision making. It suffices to collect descriptions of
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sub-populations differing by observed or stimulated emotional states and com-
pare hypotheses about suitability of the transition probabilities learnt with prior
parameter probability densities reflecting these sub-populations.

Choice of the Model Structure: The above Bayesian treatment of the finite
amount of compound hypotheses can also serve for the desirable reduction of the
parametric-model structure. For instance, experimental evidence strongly indi-
cates, e.g. [9], that the proposer action decisively influences responder’s response.
Thus, the hypothesis that p(st|at, st−1) = p(st − st−1|at) can be and should be
compared to the general form of p(st|at, st−1). It fits to attempts to use more
parsimonious parametrisation like special mixtures in [11] are.

3.2 Rewards

The reward r(st, ψt) ∈ R, used in the design of the optimal policy (3) reflects
attitude of the proposer to inter-relation of its profit and responder’s profit. The
sole action values play no role unless they are connected with DM’s deliberation
effort as in [19]. Then, rewards studied in [9] from responder’s view-point, are
worth considering.

Economic Proposer: It is interested in its own profit only, paying no attention
to co-player. Its reward is r(st, ψt) = Zt;P − Zt−1;P . It is taken as economically
rational DM but almost nobody acts in the way optimal for this reward.

Self-interested Proposer: It partially maximises its profit but also watches the
responder’s profit not to let the responder to win too much. Such attitude was
modelled by r(st, ψt) = wZt;P − (1 − w)Zt;R, with the weight w ∈ [0, 1] control-
ling self-fairness level. This reward quite successfully models human responders
when the weight w is recursively personalised [9,14]. The weight is conjectured
to depend on the player’s personality and emotions. The preliminary results con-
firm this [2], but statistically convincing results are unavailable. The adaptive
proposer’s discussed here is expected to help in this respect.

Fair Responder: It jointly maximises profits of both players by using
r(st, ψt) = wZt;P − (1−w)abs(Zt;P −Zt;R), with the weight w ∈ [0, 1] balancing
own profit with the difference of both profits. No human responder’s policy has
indicated adoption of such a reward [9]. But the performed experiments limited
to greedy (one-stage-ahead) optimisation and the adoption of proposer’s view
point make us to inspect this variant.

3.3 Policy

The last item to be commented is the set of policies Π within which (approxi-
mate) optimum is searched. The described adaptive design extremely increases
the extent of the state space as the sufficient statistics Vt (8) is a part of the
(information) state. It is obvious as the value function in dynamic programming,
Proposition 1, depends on it. This reflects that the selected actions influence not
only rewards but also future statistics. The optimal policy is to properly balance
the dual – exploitation and exploration – features optimal actions [6]. At present,
we are giving it up and use certainty equivalent policies, which perform dynamic
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programming with the newest parameter estimate Θ̂ taken as known transition
probabilities. If need be, the known divergence danger [15] can be overcome by
randomising the proposed policy. Foreseen ways are out of our scope.

4 Illustrative Experiments

The limited extent of the paper prevents us to report properly on performed
experiments. The illustrative one split q = |a| + 1 = 10, in each of |t| = 10
rounds. The self-fair proposer used the reward 0.5Zt;P −0.5Zt;P and the respon-
der used a fixed randomised decision rule given by the probability p(ot = 2 =
accept|ψt) = p(ot = 2 = accept|at), at ∈ A = {1, . . . , 9}. The proposer assumed
the same structure but the values Θo=2|a, a ∈ A, were recursively estimated, see
Sect. 2.2, and used in designing certainty-equivalent strategy found by dynamic
programming, Theorem 1. Samples of experiments running with different weights
of the prior estimate v0 are in Fig. 1, where also the used responder’s description
is visible.
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Fig. 1. Final estimates of acceptance probability for possible offers (actions a ∈ A)
are displayed for several weights v = v0 of the prior occurrence array V0 = v0Θ̂0

and are marked by dots connected with violet dashed lines for distinguishing of each
game. The simulated values Θo=2|a, a ∈ A are marked by squares and the prior values

Θ̂o=2|a, a ∈ A are marked by circles. Both of them are connected with blue and red
line respectively. (Color figure online)

The results are just illustrative and correspond with the expected behaviour:
too high weight v0 makes a significant correction of the prior estimate by a few
available data impossible.

5 Conclusion

The paper contributes to a wider research oriented towards influence of per-
sonal characteristics, emotional states and available deliberation resources on
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decision making. Unreported experiments with the proposed optimising adap-
tive proposer indicate that it can serve to this purpose. On its own, it reveals
general problems related to curse of dimensionality and offers test-bed for a
further development of techniques fighting with it. Addressing of exploitation-
exploration dichotomy is the nearest foreseen problem. In this respect, different
types of proposers behaved differently: the economic and self-fair ones, unlike the
fair one, exhibited tendency to select a narrow range of actions and as such they
are more prone to divergence from optimum. The use of randomised strategies
resulting from fully probabilistic design of decision policies [13] seems to be the
proper direction.
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Abstract. Meanings of language expressions are constructed not only
from words grounded in real-world matters, but also from words such as
“not” that participate in the construction by working as logical opera-
tors. This study proposes a connectionist method for learning and inter-
nally representing functions that deal with both of these word groups,
and grounding sentences constructed from them in corresponding behav-
iors just by experiencing raw sequential data of an imposed task. In
the experiment, a robot implemented with a recurrent neural network
is required to ground imperative positive and negative sentences given
as a sequence of words in corresponding goal-oriented behavior. Analy-
sis of the internal representations reveals that the network fulfilled the
requirement by extracting XOR problems implicitly included in the tar-
get sequences and solving them by learning to represent the logical oper-
ations in its nonlinear dynamics in a self-organizing manner.

Keywords: Symbol grounding · Recurrent neural network ·
Human–robot interaction · Logical operation

1 Introduction

Previous studies have conducted experiments on integrative learning between
language expressions and robot behavior by means of feed-forward or recurrent
neural networks (RNN) [1–5] with the aim of understanding of symbol-grounding
structures [6] and robot applications. To appropriately respond to a human’s
instructions, robots must be able to link instructions to goal-oriented behav-
ior by integrating their meanings with environmental situations and the robot’s
current posture. In conventional experiments, tasks imposed on the robot are
designed so that each word in an imperative sentence corresponds to a matter in
the real or simulated world, such as a target object (noun) or a feature element
of motion (verb, adverb). Analyses have shown that various forms of internal
representations involved in different types of elements can be self-organized by
learning. In especial, Sugita and Tani [2] and Arie et al. [3] demonstrated that
representations corresponding to nouns and verbs are topologically embedded as
different components in the feature space binding language and robot behavior.
c© Springer International Publishing Switzerland 2016
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They interpreted this kind of self-organized structure as a possible representation
or appearance of “compositionality” in the connectionist scheme. Composition-
ality means that the whole meaning of a sentence is combinatorially constituted
by meanings of words as reusable parts.

Formal semantics based on the principle of compositionality (also referred to
as Frege’s principle) also models language as follows: the meaning of a phrase or a
sentence is given as a function of the meanings of its parts [7]. Here, in accordance
with such a formulation of formal semantics, even words that do not correspond
to matters in the world directly, but instead add to the meaning of a sentence
by working as a logical operator such as “not,” can be handled in a unified
way. For example, “close the door” and “do not open the door” can indicate
the same behavior. This type of words has not been dealt with in previous
studies of integrative learning between language and behavior by connectionist
models. It is beneficial if the robots can acquire functions that process both words
directly grounded on the world and those working as logical operators instead of
being grounded on the world, and link the constituted meanings to appropriate
goal-oriented behavior. This study shows that by implementing a hierarchical
RNN that stacks multiple context layers given different time constants [8], these
requirements can be realized by learning just from experiences of sequential data
of an imposed task. We also analyze the self-organized internal representations
of these functions in order to understand the grounding structure in detail.

2 Task Design

As a task that simply but clearly includes the aforementioned requirements, we
use the flag up/down game (hereinafter, the flag game), a popular children’s
game in Japan (Fig. 1). The following briefly describes the flag game:

1. The experimenter makes the robot grasp red and green flags, one in the left
hand and the other in the right, at random.

2. The experimenter gives the robot an imperative sentence. The sentence con-
sists of a combination of objective [“red”, “green”]–verb [“(lift) up”, “(lift)
down”]–truth value [“true”, “false”]. Thus, there are eight possible sentences.
Note that the words are given in this order because Japanese is an SOV lan-
guage. “True” and “false” respectively correspond to “do” and “don’t”, thus
work as logical operators.

3. The robot generates a goal-oriented behavior corresponding to the imperative.
As an example, consider the case where the robot grasps the red flag in its
left arm, and the green in its right. If the robot receives the sentence “red
up true,” it must choose the goal-oriented behavior LEFT-UP. In the case
of “green down false,” the robot must choose the behavior RIGHT-UP. In
this rule, there are four possible goal-oriented behaviors (LEFT-UP, LEFT-
DOWN, RIGHT-UP, RIGHT-DOWN). Furthermore, even when the same
goal-oriented behavior is required, the actual motion generated by the robot
varies according to its current posture (shown as arrows in Fig. 1; note that
there are cases where the robot should not move its arms).

4. Repeat the above many times over.
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Fig. 1. Overview of the flag game. Imperative sentences are given as three-word sen-
tences in the form objective [“red”, “green”]–verb [“(lift) up”, “(lift) down”]–truth
value [“true”, “false”]. The flags can be exchanged. The robot must choose and generate
one of four goal-oriented behaviors (LEFT-UP, LEFT-DOWN, RIGHT-UP, RIGHT-
DOWN). The actual movements that materialize goal-oriented behaviors from each
posture follow the arrows in this figure. (Color figure online)

The requirements imposed on the robot in this game are analyzed as follows:

Requirement 1–Integration with environmental information. Which of
the LEFT or RIGHT arm is indicated by the color words “red” or “green”
depends on with which arm the robot holds the flag.

Requirement 2–Integration with robot state. The actual motion to be
generated depends on the robot’s current posture, even in cases where the
robot is commanded to execute the same goal-oriented behavior.

Requirement 3–Logical operation. “Up true” and “down false” indicate the
same meaning UP. Similarly, “down true” and “up false” both mean DOWN.

Requirements 1 and 2 belong to categories dealt with in previous studies,
namely the learning of relations between goal-oriented behavior determined by
the target object or joint movements and sentences consisting of words directly
corresponding to those elements. The novelty of this study is its demonstration
that an RNN can fulfill these requirements, in particular Requirement 3, the
processing of logical operators. More precisely, the robot must solve an XOR
problem consisting of pairs of up/down and true/false, and choose either UP or
DOWN as appropriate behavior.

3 Proposed Method

3.1 Training Method

We train an RNN just to predict the subsequent state of the sequential data
that represent the actual temporal flow of the flag game (Fig. 2). By constructing
the target sequence not as separated sets of imperative sentence and respond-
ing behavior, but just as a continuous series of alternating instructions and
responses, the RNN self-organizes the internal dynamics that allow the robot
to interactively respond to human’s instructions just in the RNN’s unceasing
forward calculation without an external phase switching signal. This training
method was presented in our previous study [9]. An extension in method from [9]
to solve the aforementioned problems is described in Sect. 3.2.



342 T. Yamada et al.

Fig. 2. The training sequence representing the temporal flows of the flag-game task.
(1) The flag order is exchanged at random. (2) A human gives an imperative sentence.
(3) The robot responds to the instruction by generating appropriate behavior. (Color
figure online)

3.2 Hierarchical RNN

We employ hierarchical RNN stacking of two context layers given different activ-
ity speeds (Fig. 3). The internal state of the ith node in the context layer at
time-step t(ut,i) is calculated as

ut,i =
(

1 − 1
τi

)
ut−1,i +

1
τi

(
wT

i [x t; ct−1] + bi
)
, (1)

where x t, ct are the external input vector and the output vector of the context
layer at time step t, respectively, and w i, bi are the connection weight vectors
to the ith node and bias term of the node optimized in the learning process.
The activity speed of a neuron is determined by the time constant τi. A neuron
assigned the small time constant can change its state drastically. In contrast,
neurons assigned the larger time constant can retain longer short-term memory.
The context layer was hierarchically separated. The time constant of neurons
whose index is in the range 0 to 99 (bottom layer) is 2, and the neurons from
100 to 129 (the top layer) is 15. Here, the top layer is not directly connected with
the input and output layers. The information is exchanged only through the bot-
tom layer. It is expected that after learning, the top layer engages in maintaining
the robot’s current posture stably while the bottom layer flexibly receives posi-
tive and negative imperatives and integrates them with externally input visual
information. Eventually, the RNN integrates the information encoded in both
layers and generates appropriate goal-oriented behavior.

4 Experiment

4.1 Training Data

Target data representing the flag game were collected on a computer without a
real robot as a sequence of nine-dimensional vectors consisting of six elements for
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Fig. 3. A hierarchical RNN stacking of two context layers given different time con-
stants. In the learning phase, the RNN is trained to predict the subsequent external
states of multimodal sequential data. In the test phase, the RNN also predicts subse-
quent external states, and the outputs on joint nodes are fed into the next inputs.

words (“red”, “green”, “up”, “down”, “true”, “false”), an element for vision, and
two elements for the arm joints (Fig. 2). The learning was iteratively advanced
by a gradient method using back-propagation through time algorithm [10]. The
number of iteration was set to 30,000.

4.2 Task Performance

After learning, we evaluated the performance of executing the game. In the test
phase, instructions and visual information were given externally. In contrast,
the joint nodes of the input layer received previous output values of the output
layer (Fig. 3). Conducting forward calculation in this condition, we can interpret
the generated sequence of joints as the robot’s autonomous behavior. In this
condition, the robot actually performs the flag game online by generating correct
goal-oriented behaviors responding to human instructions. Every after motion
generation, the errors between the output value and correct one of both joint
nodes were within 0.006 (the correct values are UP: 0.6, DOWN: 0.0).

4.3 Internal Representations in the Bottom Layer

Next, we visualized the internal states of both context layers during a test by
principal component analysis (PCA) to investigate how the RNN internally rep-
resent the execution of the game. First, we visualized the internal states of
the bottom layer after giving each of eight imperative sentences to the robot
with both arms down (see Fig. 4(a), where both cases according to the flag
order are included). Different components representing pairs of “true”/“false”,
“up”/“down” and “red”/“green” can be seen in the PC1, 2, and 5 directions.
Here, the representation corresponding to “red”/“green” is reversed in accor-
dance with the flag order. In other words, PC5 represents the LEFT/RIGHT
pair that is achieved by integrating an objective (color word) with visual infor-
mation according to the flag order (Requirement 1).
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Subsequently, we again gave the RNN eight instructions to analyze how the
logical operation, our prime concern, was realized. Here, the flag order is fixed
as the red in left hand and the green in the right (Fig. 4(b)). In the direc-
tions of PC1–3, similarly, representations corresponding to the “true”/“false”,
“red”/“green”, and “up”/“down” pairs can be seen. Here, the RNN must solve
the XOR problem consisting of “up”/“down” and “true”/“false” to map to UP
or DOWN. Indeed, in the PC4 direction, the representation corresponding to
the UP/DOWN pair is achieved. This component seems to have been acquired
by nonlinearly transforming the input sequence of words, that is, “up”/“down”
followed by “true”/“false”. Thus, the RNN has extracted the XOR problem
implicitly included in the target sequential data, and learned to represent the
logical operation to ground the instructions on correct goal-oriented behavior in
its nonlinear dynamics of forward calculation (Requirement 3).

Fig. 4. Internal states after giving each of eight imperative sentences to the robot
with both arms down; (a) includes both flag orders, and (b) fixes the order as red in
the left hand and green in the right. (a) In the PC5 direction, the representation of
LEFT/RIGHT pair gained by integrating an objective with visual input can be seen
(Requirement 1). (b) In the PC4 direction, the activation corresponding to UP/DOWN
pair gained by solving the XOR problem consisting of “up”/“down” and “true”/“false”
pairs can be seen. (Color figure online)

4.4 Internal Representations in the Top Layer

Finally, we analyzed the internal representations in the top layer. Figure 5(a)
shows the internal states just after giving each of the eight instructions to the
robot waiting at four different postures. The plots are differently colored accord-
ing to the given instruction and shaped according to the robot’s current posture.
In contrast to the bottom layer, the arm posture is dominantly represented. Dif-
ferences of the activations corresponding to given instructions can hardly be
seen. Moreover, analyzing the whole time development of internal states in the
top layer during game execution revealed that the generation of goal-oriented
behavior was represented as transitions among self-organized fixed-point attrac-
tors corresponding to four postures (Fig. 5(b)).

Taken together, the RNN integrates the given words with visual information
and also flexibly processes logical operators in the bottom layer, which has faster
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response. At the same time, the robot stably maintains its posture by the slower
response of the top layer. Eventually, after receiving an instruction, it newly
integrates the information represented by both layers and generates the correct
motion to achieve the appropriate goal-oriented behavior by converging to one
of the fixed-point attractors (Requirement 2).

Fig. 5. (a) Internal states after giving each of eight imperative sentences to the robot
waiting at four different postures. (b) Time development of the internal state in the
top layer during the test. Indicated black dots are fixed-point attractor corresponding
to the four postures. In this case, the arm posture changed in the order of DOWN-
DOWN, DOWN-UP, UP-UP, UP-DOWN. When an instruction is input to the RNN,
the internal state is activated in the PC3 direction (each shaped plot means a time point
just after receiving an instruction), and immediately, the state converges to another
fixed-point while the correct motion is generated in the output layer. (Color figure
online)

5 Conclusion

This study realized integrative learning that grounds positive and negative sen-
tences in goal-oriented robot behavior by hierarchical RNN. The RNN integrated
the given words with visual information and also flexibly processed logical oper-
ators, thanks to the nonlinear forward dynamics of the bottom layer with fast
response, and stably maintained the robot’s posture through the slow response
of the top layer. By integrating the representations in both layers correctly, the
RNN generated the appropriate goal-oriented behavior. The analysis of the time
development revealed that the sustainable execution of the game was repre-
sented as the transitions among the fixed-point attractors. These functions and
representations were achieved just by learning from the sequential data of the
imposed task in a self-organizing manner. Future work will investigate whether
this framework can be applied to deal with tasks that requires more complicated
grounding and logical operations. Because in the current experiment, the RNN
experienced all the possible patterns in the learning phase, the generalization
ability should also be evaluated.
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Abstract. Models of neural systems often use idealized inputs and out-
puts, but there is also much to learn by forcing a neural model to inter-
act with a complex simulated or physical environment. Unfortunately,
sophisticated interactions require models of large neural systems, which
are difficult to run in real time. We have prototyped a system that can
simulate efficient surrogate models of a wide range of neural circuits in
real time, with a field programmable gate array (FPGA). The scale of
the simulations is increased by avoiding simulation of individual neu-
rons, and instead simulating approximations of the collective activity of
groups of neurons. The system can approximate roughly a million spiking
neurons in a wide range of configurations.

Keywords: FPGA · Neural Engineering Framework · Neuromorphic
engineering

1 Introduction

Large-scale neural models have recently become central to several large research
investments. For instance, the Human Brain Project (HBP) has a central goal of
developing a human-scale neural simulation in the next 10 years. Similarly, the
Brain Initiative in the US is making a heavy investment in both computational
and experimental neuroscience. Both projects have identified massive increases
in computational performance as a critical for achieving their goals.

One approach to large-scale neural simulations is to employ standard super-
computers. Another is to build specialized “neuromorphic” hardware [3,12].
Compared to supercomputer simulations, neuromorphic simulations generally
have less biological detail, but are faster and more power-efficient. However,
neither of these solutions are currently available to the majority of researchers.

We recently showed that the activity of a neural population model can often
be closely approximated by a much simpler surrogate model [14]. The surrogate
model consists of feedback dynamics in a space of latent variables that account
for correlated population activity, and a model of spike-related fluctuations in
synaptic current. Here, we employ this approach to roughly approximate large
neural systems with modest hardware.

We present a prototype implementation of this approach for field-
programmable gate arrays (FPGAs). We simulate compressed surrogate models
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 349–356, 2016.
DOI: 10.1007/978-3-319-44778-0 41
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of roughly a million neurons with arbitrary connectivity, in real time, on a sin-
gle off-the-shelf chip. We describe general considerations for implementing these
models on FPGAs, key design elements of the hardware prototype, and prelim-
inary simulation results from the hardware.

There have been other attempts to build neuromorphic systems on FPGAs
[2,11,15]. The present approach is distinct in simulating simplified models of
groups of neurons, rather than individual neurons, increasing scale at the expense
of fidelity. Large scale simulation is important because even the simplest behav-
iours in mammals involve many millions of neurons.

2 Methods

Our surrogate modelling approach builds on the Neural Engineering Framework
[5]. We briefly describe this framework below, and then describe the surrogate
modelling approach, with particular considerations for FPGA hardware.

2.1 The Neural Engineering Framework

The Neural Engineering Framework (NEF) is method for constructing biolog-
ically realistic neural models [5]. The NEF is a general-purpose approach to
implementing high-level algorithms using spiking neurons [6]. Importantly, the
high-level description is expressed in terms of vectors and functions on those vec-
tors (including differential equations). Several overviews of the NEF are available
[8]. Here we outline the NEF’s three main principles.

Principle 1 - Representation. Groups of neurons are taken to represent
vectors, and connections between groups of neurons compute functions on those
vectors. The first NEF principle shows how the activity of a group of neurons
can be said to represent a vector. The NEF identifies the preferred stimulus for
a neuron with a “preferred direction vector” associated with each neuron [9].
That vector determines the neuron’s tuning curve, which can be written for any
neuron i as:

δi(x) = Gi[αieix + Jbias
i ] (1)

where δi is the spiking output of the neuron, Gi is the neuron model, αi is
a randomly chosen gain term, x is the input space driving the neuron, ei is
the preferred direction vector, and Jbias

i is a randomly chosen fixed background
current.

Given an “encoding” of this type, we can define a decoding operation, to
characterize the information processing characteristics of the neural population.
A biologically plausible, continuous, and time-varying measure of the neuron’s
response is generated by the reception of a spike at a synapse, which can be
written:

ai(x) =
∑

j

hi(t) ∗ δi(t − tj(x))
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where hi(t) is the synaptic response (e.g., a decaying exponential with a time
constant, τPSC , whose temporal properties are determined by the neurotrans-
mitter type at the synapse), ‘∗’ is the convolution operator, and δi(t − tj(x)) is
the spike train produced by neuron i, with spike times indexed by j.

Having defined this continuous variable, we can specify a decoding operation
for estimating the input x:

x̂ =
N∑
i

ai(x)di (2)

where N is the number of neurons in the group, di are the linear decoders, and
x̂ is the estimate of the original x value that produced the neural activity (1).
We can use least-squares optimization to find these decoders:

arg min
di

∫
[x −

N∑
i

ai(x)di]2dx (3)

where the integral is over all x values.
Note that employing linear decoding allows us to directly compute connection

weights. For example, if a connection between neural groups is meant to compute
the identity function y = x, the connections between individual neurons are
given by

ωji = αjeT
j di (4)

where i indexes the neurons in group A and j indexes the neurons in B, and T
indicates the transpose.

Principle 2 - Transformation. Connections between groups of neurons can
also approximate arbitrary functions: y = f(x). In the NEF this is accom-
plished by finding decoders df

i that produce the approximation f̂(x) ≈ f(x).
This requires the same optimization as in (3), substituting df

i for di.
The connection weights can then be computed using (4). In general, the

neural connection weights needed to approximate the function y = Lf(x) are:

ωji = αjeT
j Ld

f
i (5)

Principle 3 - Dynamics. The first two principles can be used to build neural
implementations of any feedforward function of x. The NEF also provides a
method for computing functions of the form

dx
dt

=f(x,u) (6)

where u is the input from some other population.
The NEF exploits the fact that the post-synaptic current induced by a spike

is well-approximated by h(t) = u(t)e−t/τ , where u(t) is the step function and
τ is the time constant of the neurotransmitter used. This time constant varies
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throughout the brain, e.g., from 2–5 ms (AMPA; [10]) up to ∼100 ms (NMDA;
[13]). Explicitly identifying this aspect of the neural response demonstrates that
any connection actually computes y(t) = f(x(t)) ∗ h(t).

Given a neural population representing x, an input u(t), and a connection
from x back to itself computing g(x(t)), we can show

dx
dt

=
g(x(t)) − x(t)

τ
+

u(t)
τ

. (7)

Thus, if we desire the dynamics

dx
dt

=f(x(t)) + u(t), (8)

we introduce a feedback connection that uses the previous two NEF principles
to find connection weights that compute g(x(t)) = τf(x) + x and we scale the
input u(t) by τ .

Our exploitation of the inherent first-order low-pass filter found in synaptic
connections allows for the implementation of a very wide variety of systems,
including linear and nonlinear oscillators, integrators, and arbitrary attractor
networks [4]. In short, the NEF approach allows for the construction of neural
models that correspond to a very large family of functions, including those typi-
cally employed by modern control theory and dynamic systems theory. The NEF
was recently used to build the large-scale Spaun model [7].

2.2 Surrogate Population Models

As described in the previous section, the NEF allows construction of neural mod-
els that optimally approximate idealized dynamics (Eq. 8), within constraints
that are grounded in physiology (these include sensitivity to spike-related fluc-
tuations, saturation of spike rates, etc.). One implication of this approach is
that the idealized dynamics serve as a rough approximation of the neural model.
NEF simulators allow direct simulation of the idealized dynamics as an aid to
debugging. We call such simulations “direct mode” simulations, as opposed to
“default mode” spiking simulations.

Beginning with the idealized dynamic model (Eq. 8), we showed recently [14]
that the dynamics of the full spiking model can often be largely recovered via
efficient approximations of the difference f̂(x) − f(x). This difference consists
of static distortion components that can be approximated by interpolation, and
spike-related fluctuating components that can be approximated with an auto-
regressive moving average (ARMA). We refer to this new type of simulation as
“population mode” simulation, because it models population-level dynamics. In
practice, we actually model f̂(x) directly, rather than f̂(x) − f(x).

3 Surrogate Models on FPGAs

The ARMA components of the surrogate models are suitable for FPGA simula-
tion. However, interpolation of the static distortions is a performance bottleneck.



Large-Scale Models on FPGAs 353

The bottleneck arises due to a mismatch between processing capacity and on-chip
memory. The hardware can simulate a population much faster than real time,
so we multiplex simulation of many populations in the same hardware compo-
nent (a “population unit”). However, on-chip memory is insufficient to store the
model parameters of all these populations. For this reason, the population para-
meters must be stored in off-chip RAM and loaded for each population, each
simulation step. We therefore sought to approximate f̂(x) using as few unique
parameters per population as possible.

The functions that a population can approximate well belong to the space of
the first few principal components (PCs) of the population’s tuning curves ai(x)
[6]. For this reason, static population output can be approximated efficiently
by linear regression with these first few principal components. This requires
only as many coefficients as there are important principal components. The
advantage (vs. direct interpolation of outputs) is greatest with multidimensional
populations. Accuracy depends on regularization of the decoders (Eq. 2), in that
stronger regularization reduces contributions from minor PCs.

Parameter distributions are often shared by several populations. Moreover,
we find empirically (Fig. 1) that the principal components of populations with
quite diverse parameter distributions are often quite similar. Our approach is
therefore to group populations by clustering their principal components, and
use the cluster-averaged principal components as basis functions for regression
of each required f̂(x). With this approach, it is necessary to load only a small
number of unique regression parameters per population.
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Fig. 1. Tuning curves of four different example populations and their principal compo-
nents. Each column corresponds to a population of spiking LIF neurons with different
parameters. The top panels are 50 tuning curves drawn from populations of 1000 neu-
rons. The bottom panels are the first six principal components of each population.
Despite differences between the three leftmost populations, their principal components
are nearly the same. As a counter-example, the population on the right has very dif-
ferent principal components (due to a very distinct intercept distribution) so it should
go in a different cluster.
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3.1 Hardware Prototype

A block diagram of a prototype hardware platform is shown in Fig. 2. The design
connects fourteen population units, 7 for 1D populations, and 7 for 2D popula-
tions (D is the dimension of x; Eq. 1). Each population unit consists of a fixed
bank of principal components, an encoder unit, and a decoder unit. The encoder
and decoder units perform the encoding and decoding operations described in
Sect. 2.1. Both are implemented as circular buffers containing parameters for
each population. The encoder unit is also responsible for saving the states of
low-pass filters that model synaptic dynamics. The principal components are
implemented as interpolating lookup tables with a 12-bit fixed-point represen-
tation, and are the same across every population on the same population unit.
Both 1D and 2D principal component tables have been implemented with lin-
ear and bilinear interpolation. An additional decoder is used to scale pseudo-
random Gaussian noise. The interconnect is designed around an all-to-all shared
bus architecture that allows any encoder unit to read decoded values from any
population unit, or from any external input source. At the end of each timestep,
outputs from each population are written to RAM buffers and can be read by
encoders in the following timestep. The population units are otherwise indepen-
dent from each other and use internal RAM buffers to save and load the state
of each population as it is time-multiplexed on and off the hardware.

As the simulation time for one population is on the microsecond scale, we
time-multiplex 1024 populations on each population unit and run a maximum of
14× 1024 population models in real-time simulation, at a rate of 1000 updates
per second. In software simulations, 1D populations often have about 10 to 100
neurons, and 2D populations often have 100 to 1000 neurons, so we consider this
system to model an approximation of roughly 0.8 to 8 million neurons.

Fig. 2. Block diagram of the hardware design. Of note, concurrent access to the inter-
connect is coordinated via distinct fixed delays for each encoder unit.

We extended the Nengo neural simulator [1] with a custom backend that
translates neural models to FPGA configuration data. The backend determines
which PCs can be clustered onto the same population units with the smallest
absolute error. It transmits the model parameters to the hardware, and controls
the simulation in real time, transferring external input values to the board and
reading population outputs.
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Fig. 3. The left plot shows a software simulation of an NEF spiking recurrent network
that implements a van der Pol nonlinear oscillator. The two plotted values correspond
to the two state variables of the system, decoded from filtered spike trains. The centre
plot is a hardware simulation of the same recurrent network. The plotted values are
decoded from principal components of the population, with a model of spike noise. The
recurrent connection in hardware is also a function decoded from principal components,
with added noise. On the right are two additional examples: a product decoded from
a 2D population, and an integrator recurrent network.

4 Results

We ran simulations on a Xilinx VC707 development board. The design used a
large fraction of the device resources, including 44 % of its 37080 Kb of block
RAM and 61 % of its 2800 customizable DSP operator slices. The design was
estimated to use at most 5.675 W of power.

As a demonstration of the hardware, we simulated a neural model consisting
of 4096 recurrent networks that approximate van der Pol oscillators. Output from
an example population simulated in software (with spiking neurons) is shown in
Fig. 3 (left). Output from the same population simulated in our hardware is also
shown in Fig. 3 (centre). The oscillator requires a brief non-zero “startup” initial
input in order to begin oscillating. Once this input disappears, at 0.1 s, both
dimensions of the decoded output can be seen to oscillate.

5 Discussion

We have described the design and prototype of a new approach to large-scale,
real-time neural model simulation using off-the-shelf hardware. This approach
allows us to approximately simulate NEF networks of about a million neurons
in real time on a single chip. This approach appears promising for three kinds of
applications. First, it allows power-efficient real-time simulation of fairly large
neural systems. Second, it is well-suited for embedding sophisticated network
models in robots. Third, interconnection of multiple FPGAs would potentially
allow very large real-time simulations, although such a system would scale sub-
linearly, depending on the communication required between devices.

Although population mode does not simulate individual neurons, approxi-
mations of network dynamics are often quite close [14]. Some of the missing
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details are undoubtedly important. However scale is also important. As well, our
approach could be used as part of a multi-scale approach, with a small detailed
network embedded in an approximate simulation of a larger system.

A more specific limitation of our prototype is that we have only implemented
principal component lookup tables of one and two dimensions. The system can
simulate populations that encode higher-dimensional vectors, but only if the
decoded functions are either linear, or nonlinear only in groups of one or two
dimensions. More generally, we emphasize that our implementation is a proof of
concept, and that further development and validation is needed.

Acknowledgments. Funded by Discovery Grants (261453 and 296878) and a
USRA from NSERC, Canada. The VC707 was donated by RTDS Technologies.
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Abstract. Dynamic Neural Fields (DNF) is a well studied mean field
model introduced by Amari. It is commonly used for high level bio-
inspired cognitive architecture modeling or as a module for autonomous
bio-inspired robotics. In a previous work we studied the feasibility of
a purely cellular hardware implementation of this model in a digital
substratum. We introduced the randomly spiking dynamic neural fields
which successfully reproduced the DNF model’s behavior with local and
decentralized computations implemented on FPGA. The lateral synap-
tic weights are computed with a random propagation of binary infor-
mation generated with a cellular array of pseudo random number cel-
lular automata. More than half of the area utilization was dedicated to
the random numbers generation. In this paper we investigate two ways
of reducing the surface of random number generators while keeping a
cellular architecture.

1 Introduction

In the quest for more robust and reliable computing, cellular computing is
regarded as a promising candidate as it is based on massively parallel com-
putations [1]. In cellular computing, behavior emerges from the interactions of
simple cells. This emergence is an interesting property to study as it can be
robust to perturbations such as bad signal-to-noise ratio or hardware faults.

Dynamic neural fields (DNF) (also called continuous attractor neural net-
works [2]) is a simple model capturing the behavior of cortical neural populations
with the help of one single differential equation [3]. It is used by computational
neuroscientists for high level cortical modeling but it has many interesting prop-
erties which can be used in other computational approaches for memory [4],
tracking [5], selection [6], classification [7] and clustering [8]. It can also be com-
bined with more plastic neural models to allow a variety of learning mechanisms
and adaptation [9].

If we consider the discrete version of this differential equation, we can see that
all these powerful properties emerge from the interactions of simple computing
cells (we will call them neurons). DNFs have indeed the robustness of bio-inspired
emergent systems. For instance in [6] an emergent property is studied (visual
attention) and it is shown to be robust to noise or distracters in the visual field.

c© Springer International Publishing Switzerland 2016
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We are studying the digital hardware implementation of this model and tak-
ing advantage of its robustness to improve the scalability. In [10] we introduced
a spiking version of the DNF model, which diminishes the inter-neuron commu-
nication bandwidth requirements (and which happened to improve the tracking
ability and robustness with respect to the initial analog model). In [11] we intro-
duced a way to change the connectivity requirements from all-to-all connectivity
to local von Neumann connectivity using a random propagation of spikes with a
grid of cellular automata-based pseudo random number generators (CAPRNG).
We called this model RSDNF for randomly spiking dynamic neural fields.

Through these works, we reached the main goal of designing a purely cellular
and scalable implementation of a hardware compliant version of DNFs, while
maintaining (and sometimes improving) its well-known behavioral properties.
Nevertheless, the RSDNF model scalability is not competitive compared to a
more centralized approach in term of implementation area [12].

The goal of this paper is to propose a way to reduce the area dedicated to
the pseudo-random number generators in our cellular version of DNFs, so as to
simultaneously reach the goal of a decentralized and scalable implementation of
DNFs.

2 Spiking Dynamic Neural Fields

Dynamic neural fields is a model inspired from the neural population behavior
of cortical columns. Its simplicity comes from the fact that the neurons are
considered as a homogeneous continuum and that both excitatory and inhibitory
neural connections share a common function to compute the lateral synaptic
weights.

The DNF model can be described as follows:

τ
∂u

∂t
(x, t) = −u(x, t) +

∑
y

w(||x − y||)f(u(y, t)) + I(x, t) + h (1)

where f is an activation function (generally a sigmoid or a step function), I is
the afferent input and h is the resting potential. w(||x−y||) is the lateral weights
function. It is a difference of Gaussian (sometime called Mexican hat function)
which only depends on the distance d between x and y: w(d) = Ae exp[−d2

2σ2
e
] −

Ai exp[−d2

2σ2
i
].

We use a discretized version of this differential equation using a simple Euler
forward method for time and using a resolution R for space (if not stated the
space is two-dimensional with each dimension discretized in R = 49 points which
gives R2 = 2401 simulated neurons).

A spiking version of the DNFs has been proposed in [10], which helps reducing
the inter-neuron communication bandwidth requirements as only one bit can
represent the activity and the high state is less frequent in a spiking neuron
than in a rate-coded neuron with an step activation function. We will use this
version, that can be described in a time-discretized way as follows:
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u(x, t + dt) = u(x, t) +
dt

τ
(−u(x, t) + I(x, t) + h) + Isyn(x, t). (2)

The lateral influence is computed by instantaneously applying the synaptic
weight (w) to each received spike:

Isyn(x, t) =
∑

y

w(||x − y||)f(u(y, t)). (3)

Finally the neurons emit a spike when their potential reaches a threshold θ, viz.
f(x) = 1 if x ≥ θ else 0. If a spike is fired, the potential is reset: u(x, t) = h.
Thus neurons exchange simple binary information, instead of several bits to code
for neural potentials in the initial DNF model.

3 RSDNF: Cellular Hardware Implementation of DNFs

In his seminal paper [3], Amari gave general rules to choose a lateral weights
function. It has to be positive in the center (local cooperation) and then negative
(global competition). Consequently we proposed in [11] to replace the traditional
Mexican hat function by a difference of exponential which has the same global
properties but is much easier to reproduce with a cellular random diffusion.

To approximate the difference of exponential lateral weights function we sub-
divide each spike in N excitatory sub-spikes and N inhibitory sub-spikes. Thus
a sub-spike will be one bit of information, randomly transmitted from neuron
to neuron giving information on the lateral feeding. These sub-spikes are routed
on a network of routers on two separate layers (excitatory and inhibitory). The
transmission of each sub-spike by a router depends on a Bernoulli trial with a
probability pe for the excitatory layer and pi for the inhibitory layer. Conse-
quently the average number of sub-spikes received by a neuron at a distance
d from the emitting neuron will be pd

e excitatory sub-spikes and pd
i inhibitory

sub-spikes. We then compute the asymptotical lateral synaptic weights with

w(d) = Nkep
d
e − Nkip

d
i (4)

where ke and ki are constants of the model. In [11] we proved that despite the
difference between the asymptotical weights and the weights effectively induced
by the random transmission of N sub-spikes with N � 10, the behavior of this
RSDNF model is similar to the one of the spiking DNF model.

3.1 Spike Routing

The routing layers ensure a XY broadcast of every sub-spike so that every neuron
receives a propagated sub-spike at most once. It means that there are 4 direc-
tional routers per neuron on each layer. Two horizontal routers (east ans west)
propagate the sub-spikes in their direction while two vertical routers (north and
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south) propagate the sub-spikes in their direction and towards horizontal direc-
tions (see Fig. 1a). Overall there are 8 routers per neuron: 4 for the excitatory
layer routing and 4 for the inhibitory layer routing.

The sub-spike routing is performed during the spike diffusion period which
can last more or less iterations depending on N and the number of activated
neurons P . The horizontal routers have more inputs than outputs. Consequently
they need to store the exceeding sub-spikes in a local buffer. Because of these
buffers the worst case scenario (every sub-spike is transmitted according to an
always positive Bernoulli trial) for the diffusion period is td = NP + 2R.

3.2 Random Number Generation with CAPRNG

This design requires many random numbers (we need 8 random numbers by
neuron and by spike propagation iteration). Therefore we use a very compact
distributed pseudo random number generation method that follows a cellular
strategy as presented in [13]. High quality pseudo-random numbers are generated
on a 8-periodic synchronous heterogeneous cellular automaton. The update rule
is a combination of XOR and AND gates and is different for every cell. This
method is more advantageous than using linear-feed-back registers when the
quantity of needed pseudo random numbers (PRN) is important. Its compactness
results in the ability to produce one random bit per clock cycle per utilized LUT
in the FPGA.

In [11] it was shown that the minimum required precision to compute
Bernoulli trials is 8 bits for excitatory and inhibitory routers, which leads to
a total of 64R2 CAPRNG cells. Despite the compactness of the CAPRNGs, the
cost of the random number generation is almost half of the total implementation
area of the RSDNF model.

4 Random Numbers Generation Optimisation

We propose two ways to optimize the area cost of the random numbers genera-
tion.

(a) Random number sharing. Every router of the same neuron will share the
same 8 bits of a random number. We can thus divide the size of the CAPRNG by
8. Since the different routers of a single neuron are not involved in the propaga-
tion of a same sub-spike, the behavior of the model is expected to be maintained
despite the induced correlations.

(b) Random bit pre-computation and propagation. A random bit resulting
from one Bernoulli trial is precomputed and loaded on a dedicated flip-flop of
every router. Then the random bits are propagated at every step of the spike
diffusion along a shared flow throughout the map of neurons.

Random number sharing show good experimental results (see Sect. 5) and
are not developed more in this paper, since it is not the most area-optimizing
method. The random bit propagation is more challenging but the area gains are
more important than with the random number sharing as it does not require
any look-up-table for the hardware implementation.
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4.1 Bit Propagation Scheme

The main challenge for designing the bit transmission from router to router is to
minimize the random correlation during the spike propagation while maintaining
a von Neumann neighborhood (the architecture has to remain cellular).

We propose the propagation described in Fig. 1b. The motivations is to decor-
relate the random bits propagation from the spike propagation as much as pos-
sible with two means: (1) the propagation of the random bits is not on the same
axis as the propagation of spikes (2) the direction of propagation is inverted from
row to row and from column to column.

This propagation graph will then be connected differently on the border of
the cell array. We will distinguish two types of wrapping connection.

(1) Short propagation. The bits are propagated on a row (for instance) and
the last router is connected to the first one. The random bits will thus be prop-
agated in a cyclic way with a period of R (see Fig. 1c).

(2) Long propagation. Here the connection on the border is different as the
last router will be connected to the first one of a different row. Consequently the
random bits are propagated over every two rows. Even row to even row and odd
row to odd row. The period is R2/2 (see Fig. 1d).

As the periodicity of the random bit flows might be too small, we introduce
a “open” version of each wrapping method. An “open” version will have one
PRNG on every propagation path in order to introduce clean random numbers
and avoid long term bias. Thus we introduce 4R PRNG for the short propagation
and 8 PRNG for the long propagation.

Fig. 1. Connectivity between routers. Only one connection by router direction is shown
for clarity. (a) the XY broadcast for the sub-spikes. (b) connection graph of the random
bits. The connection is inverted from row to row and from column to column. (c) and
(d) short and long propagation of random bits over a full map of 4×4(R = 4) neurons.
The dashed arrow represent wrapped connections. A black circle represent the PRNG
emplacement in “open” version. Only one router is represented (north router) the other
routers connectivity is symmetric.

4.2 Random Diffusion Analysis

To analyze this propagation scheme, we first study the behavior of one diffusion
layer (the transmission probability on this layer is p = 0.93).
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On Fig. 2 the normalized root mean square error (NRMSE) at the end of one
propagation phase is displayed. The NRMSE is computed between the number of
received sub-spikes per neuron and the expected (asymptotical) number E(x, y)
computed as a convolution:

E(x, y) = N

R∑
x′=0

R∑
y′=0

A(x′, y′)p|x−x′|+|y−y′| (5)

where A(x, y) = 1 if there is an activation (neuron at position (x, y) emits N
sub-spikes). Note that the random bits are not reinitialized between propagation
phase.

Fig. 2. NRMSE for different random bit propagation. The propagation was computed
over an array of resolution R = 49 and repeated 100 times. A patch of 10 spikes
was set at the center of the grid, and the diffusion lasted for 10N + 2R to ensure
a full propagation even in the worst case scenario. The probability of each sub-spike
transmission is 0.93.

The variances being different we use the pairwise Welch t-test [14] to compare
the mean of each distribution. The short propagation is different from both the
control (initial RSDNF) and the other propagation methods The other propaga-
tion methods have the same mean as the control except when N = 20 where their
mean is slightly higher. As we generally try to use as few sub-spikes as possible
to reduce the execution time we can conclude that the proposed optimization
methods are good except for the short propagation.

5 Experimental Results

The validation of the different candidate methods is performed with a DNF
simulation on a control scenario. The scenario tests the ability of the neural
field activity to follow a rotating target in the input map (I). We then asses
the quality of the tracking by computing the mean of the error over 30 s of
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Fig. 3. Mean error distance for the control scenario with different number of sub-spike
and different random numbers generation. Mean of 50 repetitions.

simulation, with a discrete time step of 0.1 s. The error is computed at every
step as the distance between the barycentre of the neural activity and the center
of the rotating target. The simulation results are given on Fig. 3.

Tests show that from N = 3 to N = 20, every architecture behaves quite
differently from the control RSDNF, except for the shared method which results
in the same mean as the control when N = 20 (p-value of 0.5). The short propa-
gation is statistically worse than the other propagation methods when N reaches
10. This is because it is getting more and more biased with the number of com-
putations, hence when diffusion needs a lot of time the bias completely disturbs
the behavior. Adding one random number generator per cycle (“open” version)
is enough to fix the behavior. However the three other propagation methods are
equivalent thus supporting the results of the previous section. We will choose
the long propagation scheme as it is the less expensive for the implementation
area.

6 Conclusion

As expected the area reduction is significant with the precomputed random bits.
It uses a similar number of flip-flops as the shared CAPRNG version (9800
against 9984 with R = 35), but there is no look-up-table required when 7804
is required for the shared version. For comparison the original RSDNF ver-
sion needed 79872 FF and 62432 LUT. Once again the robustness of the DNF
emergent computation allows aggressive optimization of the area of the FPGA
implementation.

The model’s robustness to noise allows a noisy inter neuron communication
as long as the mean is similar to what is expected. We have shown that if the
mean of the inter-spike communication is too far from the expected one, the
model’s behavior becomes faulty as it is the case with the short random bit
propagation method.
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Note that it might be possible to improve the random bit diffusion graph to
have even less correlations with a more extensive research on all possible schemes
of connectivity, or by extending the neighborhood to 8 neighbors. It would maybe
slightly improve the behavior of the model when the spike sub-division N rises,
but the hardware area utilization would not change.
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Abstract. The implementation of a synfire chain (SFC) application
that performs synchronous alignment mapped on a hardware multi-
processor architecture (SNAVA) is reported. This demonstrates a flexi-
ble SNN modeling capability of the architecture. The neural algorithm is
executed by means of a digital Spiking Neural Network (SNN) emulator,
using single instruction multiple data (SIMD) processing. The flexibil-
ity and capability of SNAVA to solve complex nonlinear algorithm was
verified using time slot emulation on a customized neural topology. The
SFC application has been implemented on an FPGA Kintex 7 using a
network of 200 neurons with 7500 synaptic connections.

Keywords: SNN emulation · FPGA · AER · Time slot processing ·
Real time · Massive parallelism

1 Introduction

Over the last years, the interest to characterize and simulate in real-time struc-
tural and functional neural activities have increased with the ultimate goal of
imitating brain capabilities. A better comprehension of brain functionality yields
in new bio-inspired applications with intelligent behavior such as vision, speech
recognition, robotics, real-time neuromorphic chips, or signal processing.

Several research works are aimed at SNN (Spiking Neural Network) hardware
implementations using different approaches like mixed signal chips [1], ASIC with
standard processor [2], Graphic Processor Units, FPGAs [3], supercomputers,
and any other combinations.

Among SNN hardware simulators, we consider only the ones with emulation
capability, i.e. that allow real-time operation. Many emulators support a huge
number of neurons, however, this is at a price of fixed and simplified neural algo-
rithm, reduced number of synapses per neuron, and limited or lacking plasticity
or even with fixed synaptic weights.

Most of the emulators based on multiprocessors or GPUs, support neural and
synaptic algorithm programming. Their Processing Element (PE) is a general-
purpose complex processor, which lacks specialization on SNN emulation.
c© Springer International Publishing Switzerland 2016
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For instance, [2] uses a set of ARM processors along with other peripherals
obtaining high flexibility and programmability features with a significant power
consumption and resource overhead. In case of [4], it can implement up to 250,000
neurons, however, it is restricted to a single neuron model i.e. Izhikevich.

Our contribution is based on a multi-model SNN multiprocessor architecture
called SNAVA constituted by a 2D array of specialized processing elements (PE)
working with Single Instruction Multiple Data (SIMD) computing strategy [5].
SNAVA is a scalable and compact architecture that has been prototyped on
FPGAs. It is able to emulate any spiking neural algorithm programmed through
a customized set of instructions. Besides, it offers flexibility for specifying full
synaptic connectivity and allows configuration of neuronal and synaptic para-
meters.

These features allow emulation of complex neural algorithms, which will be
illustrated by means of a Synfire Chain (SFC) application example. In this appli-
cation, neurons execute an enhanced Leaky Integrate-and Fire (LIF) algorithm.
The synaptic topology is composed of interconnected layers of several neuronal
cells where synchronization within layers can be achieved by propagating pre-
synaptic inputs through the feed-forward network [7].

For the sake of completeness, in Sect. 2, the SNAVA architecture is briefly
introduced and the SFC application is presented in Sect. 3. In Sect. 4 the exper-
imental results are reported, follow by conclusion in Sect. 5.

2 SNAVA Multi-processor System

SNAVA is a multi-chip digital platform, scalable, reconfigurable, real-time, SNN
emulator, working with time-slot computational approach based on FPGA [5].
Such architecture allows the implementation of any particular spiking neu-
ron model applying parallel processing using Single Instruction Multiple Data
(SIMD) computing strategy. Besides, as clock driven method is used, neurons
are updated simultaneously at a fixed time rate.

Figure 1 shows the SNAVA general block diagram, which contains the main
modules of the architecture, namely:

Fig. 1. Symplified SNAVA block diagram.
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– Multi-processor Array: This array is composed off specialized neural Process-
ing Elements (PE) along with block RAM and other elements. They process
data to mimic the synaptic and neuronal biological dynamics. PEs process
neuron algorithms in parallel and synapses sequentially, being able to perform
arithmetic, boolean, logical and SNN-customized operations. The default res-
olution for synapse and neural parameters is 16-bit. Furthermore, each PE is
capable of emulating neural dynamics of more than one neuron using digital
multiplexing (virtualization) while exhibiting real time operation.

– User Access Module: Monitor buffers are implemented on each PE in order to
transmit the calculated neural parameters to a PC visual interface.

– Execution Module: It is responsible for the system control flow, which is per-
formed in two phases: Execution Phase and Distribution Phase. In the Exe-
cution Phase, the neural and synapse dynamics are processed and calculated.
The Distribution Phase carries out the spike distributions between neurons in
the neural network.

– AER Controller: The spike distributions between neurons are conducted by
a packet-based synchronous AER scheme. It is implemented with high-speed
point to point serial links in a ring topology pipeline fashion for multi-chip
SNN interconnection. The fast speed channel usage limits the time of spike
distributions to values that allow real-time operation [6].

3 The SynFire Chain (SFC) Application Example

Empirical studies of structural and functional brain architecture have demon-
strated a highly modular anatomical structure. These neural modules are formed
by interconnected layers of neuronal cells associated with cognitive process.
According to anatomical and physiological considerations, the synchronization
within layers of neurons can be achieved by propagating pre-synaptic inputs
through feed-forward excitatory layers of neurons [7]. This network known as
Synfire Chain (SFC), has been used for characterizing brain modules, and build-
ing low-level sensory systems, i.e. vision, olfactory or tactile sensors.

The basic configuration consists of a group of layers where all neurons in a
layer are connected unidirectionally to that of the successive tier. For a group
of random input spikes, a stable propagation is obtained, if synchronization
between spikes at each layer is enhanced as they pass down the network. Unstable
behavior results in low spike synchrony, which eventually vanishes.

3.1 Design Parameters of the SFC

The computation of the neural model in the SFC behaves according to the LIF
model reported in [7]. In this network, the neurons are evolve as a function of
three state variables in Eq. (1) with excitatory synapses only. The membrane
potential denoted by V (t) is calculated depending on the membrane recovery
variables x(t) and y(t). These state variables are involved in the activation of K+
ionic currents and inactivation of Na+ ionic currents. In addition, a stochastic
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term ζi is used to emulate background activity through a noise signal acting on
y(t).

τmem
dV

dt
= x(t) − (V (t) − Vrest).

τrft
dx

dt
= −x(t) + y(t).

τrft
dy

dt
= −y(t) + τrft · 25.27 mV + ζi.

(1)

When a pre-synaptic neuron fires a spike, the synaptic model performs equally
for all the synapses by adding the same synaptic weight (11 mV) to the synaptic
current y(t) after a spike. The neural parameter values used in this model are
presented in Table 1.

Table 1. Neural algorithm parameters.

Name Description Value

VTh Threshold potential −55 mV

Vrest Resting potential −70 mV

τmem Membrane time constant 10ms

τrft Relative refractoriness 15ms

Tref Absolute refractoriness 1ms

The SFC emulated network consists of 3 layers, each consisting of 50 neurons,
as shown in Fig. 2. The input layer is generated by 50 neurons which work as
Spike Generators (SG). This layer fires 50 spikes at Gaussian distributed times
centered at 14 ms with a standard deviation of 1.2 ms.

Fig. 2. SFC neural topology

The network size was set according to SNAVA architecture and verified
through BRIAN simulator 2.0 [8]. The software simulations were performed using
a time step of Δt = 0.1 ms. This value is taken into account for implementing
the neuronal algorithm into SNAVA.
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3.2 SFC Mapping and Programming Description

This section describe the procedure of mapping a SFC on SNAVA according
to the topological and dynamic neuron specifications simulated with BRIAN.
For this application, we use a single board with a 10× 10-PE array and two
virtualization levels, i.e. two neurons per PE. The SGs and the first neural layer
were configured in virtual level 1, and the layers 2 and 3 in level 2 (Fig. 2).

Each synaptic connection is defined by an 18-bit address that identifies the
presynaptic neuron connected to it. It consists of a 4-bit row and a 4-bit column
location into the SNAVA array, a 3-bit virtual level, and a 7-bit chip identifier
address.

In this case, 200 neurons and 7500 synaptic connections are employed to
define the SFC topology in SNAVA. These connections are mapped on a text
file assigning every neuron to a PE.

The neural algorithm is written with a simple assembler code using custom
instructions detailed in [5]. The code is processed concurrently for all neurons.
The main program structure (Fig. 3) employs two loops to execute the neural
algorithm. The SYNAPTIC LOOP reads the pre-synaptic spikes sequentially.
This subroutine compute the synaptic weights and sending these values to a
monitor buffer. In the NEURAL LOOP the following subroutines are processed:

– GENERATOR SPIKES: They carry out the task of generating the spike input
activity for the SG neurons.

– NEURAL ALGORITH: The logical and arithmetic computation is perform to
solve Eq. (1) using Euler approximation.

– SPIKE UPDATE: Once the membrane voltage value is obtained, if V (t) >
VTh, a spike is generated.

Besides, instruction STOREB is used to send the neural algorithm values to
a monitor buffer for external parameter display. STOREPS records the post-
synaptic spikes to be distributed throughout the neural network during execution
of SPKDIS.

3.3 SFC Implementation

With the defined network topology (topology.txt) and neural dynamic (algo-
rithm.asm) input files, a File Generator tool developed for SNAVA architecture
(Fig. 4), translates: the neural parameter initialization, network topology and
neural dynamic algorithm description to output files used for simulating and
implementing the SFC into SNAVA.

The synthesis of the SNAVA RTL source files, along with the SFC topol-
ogy (cfg synap.vhd) is performed using Vivado Design Suite Xilinx tool. Full
simulation has been tested in QuestaSim.

The USER INTERFACE utilizes a Ethernet link to send a binary file with
the SFC neural algorithm (cfg snn.bin) to the Kintex 7 FPGA board and, receive
the data from the SNAVA monitor buffer to be analysed and displayed.
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Fig. 3. SFC assembly main code
program

Fig. 4. SNAVA flow chart

4 Experimental Results

In this section, SNAVA accuracy is analyzed by comparison with the results of
the BRIAN simulator. In both cases, the synaptic noise was removed, and the
same spikes input activity were applied for having the same conditions. SNAVA
like BRIAN uses the time step of 0.1 ms for calculating the three differential
equations of Eq. (1). According to the variation of the state variables, different
binary scaling was applied to a range of (−32767 +32767) using fixed point
representation. The precision used for each variable corresponds to 4-bits for
x(t) and y(t), and 7-bit for v(t).

Fig. 5. Neural algorithm state variable in neuron 10
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In Fig. 5 are shown the matching between BRIAN and the SNAVA outputs
along with the corresponding dispersion diagram for characterizing the error. The
linear equations for the state variables v(t), x(t) and y(t) express the variation
between the hardware and the simulation data in each case. The obtained relative
error are V = 0.15 % x = 8.33 %, y = 8.76 %.

The main source of error are due to the quantification of data. Higher errors
presented in the variables x(y) and y(t) are derived from the smallest precision
used compared to that used in the variable v(t). Furthermore, these variations
do not affect the LIF algorithm behavior significantly and conversely, using fixed
point representation reduce the complexity and the number of operations needed
to complete the arithmetic calculations. As a result, a trade-off between opti-
mization and accuracy is obtained.

Fig. 6. Raster Plot - spiking activity for neuron 10

Figures 6(a) and (c) show the SFC Raster Plot response without noise in
order to compare the firing accuracy time in each layer from SNAVA and BRIAN.
SNAVA exhibits a time accuracy of t + 0.4 ms from BRIAN.

Figures 6(b) and (d) show the SFC response with synaptic noise ζi added
to the neural algorithm to emulate background activity in the brain. It can be
seen that incoming spikes are synchronized as they are transmitted through each
layer. This behavior represents a stable SFC operation. The differences between
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BRIAN and SNAVA raster plots are due to the noise function used in each case
is different and not deterministic.

As it can be seen, the SNAVA hardware implementation response follow
the same trend as simulated in BRIAN. Consequently, high similarity between
the hardware and software implementations of the analyzed three neural state
variables is observed. Finally, with these results, the functionality and operability
of SNAVA are demonstrated to solve complex differential equations and non-
linear functions.

5 Conclusions

In this work, we demonstrated that SNAVA architecture is capable of emulating
complex neural dynamics in real time. In order to accomplish this target, we pre-
sented the implementation of a SFC application, its characterization according to
the SNAVA resources, implementation steps, and test to verify the functionality
and accuracy of the hardware architecture.

As a result, SNAVA has proved to be flexible enough to be adapted to the
needs of multi model SNN emulation, being capable to reproduce in real-time
complex neural dynamics.

Finally, the SFC application demonstrates the ability of SNAVA to imple-
ment an enhanced LIF algorithm and solve non-linear functions by means of
approximations without incurring to computationally expensive operations in
exchange for resolution. As future work, the approximation errors can be over-
come by extending the precision of the required variables, which is supported
by the programmable SNAVA architecture, with some cost of execution time
trade-off.
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Abstract. Reservoir Computing is a bio-inspired computing paradigm
for processing time dependent signals. We have recently reported the first
opto-electronic reservoir computer trained online by an FPGA chip. This
setup makes it in principle possible to feed the output signal back into
the reservoir, which in turn allows to tackle complex prediction tasks in
hardware. In present work, we investigate numerically the performance
of an offline-trained opto-electronic reservoir computer with output feed-
back on four signal generation tasks. We report very good results and
show the potential of such setup to be used as a high-speed analog control
system.

Keywords: Reservoir Computing · FPGA · Pattern generation ·
Numerical results · Opto-electronic systems

1 Introduction

Reservoir Computing (RC) is a set of methods for designing and training artificial
recurrent neural networks [11,14]. A typical reservoir is a randomly connected
fixed network, with random coupling coefficients between the input signal and the
nodes. This reduces the training process to solving a system of linear equations
[7,13]. The RC algorithm has been successfully applied to channel equalisation
[6,16,20], phoneme recognition [18] and won an international competition on
prediction of future evolution of financial time series [1].

Reservoir Computing is very well suited for analog implementations: vari-
ous electronic [4,8], opto-electronic [12,15,16] and all-optical [5,6,19,20] imple-
mentations have been reported since 2012. We have recently reported the first
online-trained opto-electronic reservoir computer [2]. The key feature of this
implementation is the FPGA chip, programmed to generate the input sequence,
train the reservoir computer using the simple gradient descent algorithm, and
compute the reservoir output signal in real time.

This setup offers the possibility to tackle prediction tasks in hardware by
feeding the output signal back into the reservoir. We have shown numerically
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 374–381, 2016.
DOI: 10.1007/978-3-319-44778-0 44
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that such a system could perform well on pattern generation and Mackey-Glass
chaotic time series prediction tasks [3]. In this work we improve the experimental
setup and focus on the pattern generation task [9], with several additional tasks
that have been investigated in the RC community. We adapt the use of the
FPGA chip to train the neural network offline for higher precision and more
control of the process. The performance of the setup is tested in simulations on
four signal generation tasks: simple pattern generation [3], frequency generation,
multi-pattern generation [17] and tunable frequency generation [21]. These tasks
have various applications in motion generation, robot control and data storage
[17]. Solving them in hardware can allow opto-electronic reservoir computers to
be applied in fast control applications, for example high-speed robot control [9].
The promising results we report here thus pave the way towards experimental
investigations we are planning to carry out in the upcoming months.

2 Reservoir Computing

A general reservoir computer is described in [13]. In our implementation, depicted
in Fig. 1, we use a sine function f = sin(x) and a ring topology to simplify the
interconnection matrix, so that only the first neighbour nodes are connected
[12,16]. The evolution equations are given by

x0(n + 1) = sin (αxN (n − 1) + βM0u(n)) , (1a)
xi(n + 1) = sin (αxi−1(n) + βMiu(n)) , (1b)

where xi(n), i = 0, . . . , N − 1 are the internal variables, evolving in discrete
time n ∈ Z, α and β parameters are used to adjust the feedback and the input
signals, respectively, u(n) is a time multiplexed input signal, and Mi is the input
mask, drawn from a uniform distribution over the interval [−1,+1] [6,16]. The
reservoir computer produces an output signal

y(n) =
N∑
i=0

wixi(n), (2)

where xN = 1 is a constant neuron used to adjust the bias of the output signal
and wi are the readout weights, trained offline [4–6,12,15,16,19] in order to
minimise the Mean Square Error (MSE) between the output signal y(n) and the
target signal d(n).

During the training phase, the reservoir computer receives a periodic training
sequence as input u(n) and is trained to predict the next value of the sequence
from the current one. During the test phase, the reservoir input u(n) is switched
from the training sequence to the reservoir output signal y(n), and the system is
left running autonomously. In that case, the dynamics of the systems is described
by the following equations

x0(n + 1) = sin (αxN (n − 1) + βM0y(n)) , (3a)
xi(n + 1) = sin (αxi−1(n) + βMiy(n)) . (3b)
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Input layer Reservoir Output layer

Input u(n)

Output y(n)

OR

Output signal:

y(n) =
N−1

i=0

Wixi(n)

Fig. 1. Schematic representation of our reservoir computer with output feedback. The
recurrent neural network with N nodes denoted xi(n) in ring-like topology (in brown)
is driven by either a time multiplexed input signal u(n), or its own output signal y(n),
given by a linear combination of the readout weights wi with the reservoir states xi(n).
(Color figure online)

3 Signal Generation Tasks

Pattern Generation. A pattern is a short sequence of randomly chosen real
numbers (here within the interval [−0.5, 0.5]) that is repeated periodically to
form an infinite time series [3]. The aim is to obtain a stable pattern generator,
that reproduces precisely the pattern and doesn’t deviate to another periodic
behaviour. To evaluate the performance of the generator, we compute the MSE
between the reservoir output signal and the target pattern signal during the
training phase and the autonomous run.

Frequency Generation. The system is trained to generate a sine wave given by

u(n) = sin (νn) , (4)

where ν is a relative frequency and n is the discrete time. The physical frequency
f of the sine wave depends on the experimental roundtrip time T (see Sect. 4)
as follows

f =
ν

2πT
. (5)

This task allows to measure the bandwidth of the system and investigate different
timescales within the neural network.

Multi-pattern Generation. This tasks adds another dimension to the simple
pattern generation. The network is trained to generate several different patterns
and a second input signal u2(n) is introduced to select the pattern to generate.
Equations (3) thus become

x0(n + 1) = sin (αxN (n − 1) + βM0y(n) + β2M
′
0u2(n)) , (6a)

xi(n + 1) = sin (αxi−1(n) + βMiy(n) + β2M
′
iu2(n)) , (6b)

where β2 is a second input gain and M ′
i is a second input mask. Both input masks

are generated randomly, and both input gains are optimised independently.
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During the autonomous run, the second input signal u2(n) is regularly
changed in order to test the performance of the system on all patterns.

Tunable Frequency Generation. Here the frequency generator is upgraded
with a second input signal to tune its frequency. The network is trained to
generate several sine waves with different frequencies, given by

u(n) = sin (ν̄(n)n) , (7)

where ν̄(n) is a time-dependent user-defined frequency, that is fed into the system
through the second input u2(n) = ν̄(n). The physical output frequency f can
be computed using Eq. (5). Testing of the performance is similar to the multi-
pattern generation task.

4 Numerical Simulations

Figure 2 depicts the experimental setup [2], which is the basis for numerical
simulations presented here. The opto-electronic reservoir, a replica of previously
reported works [2,16], is driven by a Xilinx ML605 evaluation board, powered
by a Virtex 6 FPGA chip and paired with a 4DSP FMC-151 daughter card, used
for signal acquisition and generation. The FPGA is programmed to record the
reservoir states xi(n) and send them to the personal computer, running Matlab,
through an Ethernet connection. The readout weights wi are uploaded on the
chip for real-time computation of the reservoir output signal y(n) during the
autonomous run.

Opto-electronic reservoir Input & Readout

SLED

MZ
90/10

Att

Amp Comb

Pf

9
.6

k
m

Pr

ML605FMC151

DAC

ADC

In

Mask

Res Out

MatlabClock

u(n)

Mi

y(n)

Mi × [u(n) OR y(n)]

xi(n)

wi

Mi

u(n)

xi(n)

Fig. 2. (a) Schematic representation of the simulated setup, based on the experimental
system [2,16]. Optical and electronic components of the opto-electronic reservoir are
shown in red and green, respectively. It contains an incoherent light source (SLED), a
Mach-Zehnder intensity modulator (MZ), a 90/10 beam splitter, an optical attenuator
(Att), a 9.6 km fibre spool, two photodiodes (Pr and Pf), a resistive combiner (Comb)
and an amplifier (Amp). The FPGA board acquires the reservoir states xi(n) and gen-
erates analog input and output signals to the reservoir. A personal computer, running
Matlab, computes the readout weights wi. (Color figure online)

The experiment roundtrip time is defined by the length of the delay loop.
We are planning to use 9.6 km of fiber in order to obtain a delay of T = 32µs.
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This would allow sampling the entire loop 8000 times at 250 MS/s (maximum
sampling frequency of the FMC-151 Analog-to-Digital Converter) and thus fit
up to 1000 neurons into the reservoir, with at least 8 samples per neuron.

All numerical experiments were performed in Matlab, on a standard personal
computer. The simulations account for major aspects of the experimental setup
and allow to scan the most influential parameters, such as input gains β and β2,
feedback gain α and reservoir size N .

5 Results

Pattern Generation. As we have shown previously [3], this task works well
with online learning even on small reservoirs: a 51-neuron network is capable
of generating patterns up to 51-element long, where 51 is expected to be a
fundamental limit because it is the upper bound on the linear memory of the
network [10]. We obtained the same results with offline training here, and found
optimal gain parameters. The system works best with a very low input gain β =
0.001 and high feedback gain α = 0.9. The system was trained over 5k inputs and
then left running autonomously for 50k timesteps. We obtained training errors
ranging from 10−25 (for short patterns with L = 10) to 10−12 (for long patterns,
L = 51), and autonomous errors ranging from 10−22 to 10−8, respectively.

Frequency Generation. Frequency generation requires a different method
for computing the error during the autonomous run, that would focus on the
frequency of the generated signal. For this reason we used the Fast Fourier
Transform (FFT) algorithm to compute the frequency of the reservoir output
signal and compare it to the frequency of the target signal.

We used a slightly larger reservoir with N = 100 and trained it over 1k
input samples. We tried increasing the reservoir size up to N = 1000 and the
training length up to 10k samples without noticeable improvements. The output
frequency was measured after an autonomous run of 20k timesteps.

With optimal gain parameters α = 0.9 and β = 0.1, we were able to generate
relative frequencies within ν ∈ [0.06, 3.14] with MSE of order of 10−7 and Full
Width at Half Maximum (FWHM) of the FFT of about 10−3. The upper limit is
given by half of the sampling rate of the system and corresponds to the Nyquist
frequency. As for the lower limit, we couldn’t obtain stable output signal with
frequency lower than 0.06 for most random input mask. The roundtrip time
T = 32µs of the experimental setup gives a sampling frequency of 31.2 kHz.
Using Eq. (5), this sets the bandwidth of the generator to 300 Hz–15.6 kHz.

Multi-pattern Generation. This task is significantly more complex than the
simple pattern generation, as the network needs to learn to switch between
several different patterns. Good performance thus requires a large reservoir and a
carefully chosen training sequence which contains all possible transitions between
the patterns. We also noted that results depend on the shape of the input mask.
Figure 3 shows an example of simulation with 3 different patterns.



Towards Adjustable Signal Generation with Photonic Reservoir Computers 379

−0.5

0

0.5

50 100 150 200 250 300

Training Autonomous run

Discrete time n

Fig. 3. Example of simulation result for the multi-pattern generation task. The reser-
voir output signal (blue dots) is almost identical to the target signal (green curve). The
second input signal u2(n), shown in red, switches between 3 values, as the system is
trained to generate three short patterns. The training sequence contains all transitions
between different patterns. The autonomous run continues beyond the scope of the
figure. (Color figure online)

For this task the reservoir size was increased to N = 800 neurons. We were
able to generate up to 4 different patterns of length 10, with training error of
2×10−7, and 4×10−4 for the autonomous run. The system was trained over 850
inputs and then ran autonomously for 4250 timesteps. All transitions occured
synchronously, that is, from the last element of a pattern to the first element of
another. We also tried generating shorter patterns and could store 8 patterns of
length 5, with training and autonomous run errors of 2 × 10−6 and 4 × 10−4,
respectively. This required much longer simulations, with 5.6k inputs for the
training and 28k timesteps for the autonomous run.

Tunable Frequency Generation. Similar to multi-pattern generation, this
task requires a large reservoir capable of containing many smaller clusters oscil-
lating at different frequencies (see [21] for a more in-depth overview). The reser-
voir computer was trained to generate different sine waves given by Eq. (7), FFT
algorithm was used to evaluate the performance.

We used a large reservoir with N = 1000 neurons and the following parame-
ters: α = 0.7, β = 0.03 and β2 = 0.9. The network was trained over 6.6k samples
and was taught to generate 40 frequencies equally spaced between 0.1 and 1.1.
Each frequency was learned for 10 periods, to ensure smooth transitions. For
the autonomous run, we investigated different scenarios. At first, we decreased
the frequency back to 0.1 and then increased it to 1.1 again. This was done
by large steps of 0.05 every 5k timesteps to test the stability of the generator.
The system produces very good results, with frequency MSE of 1.5 × 10−6. As
another test case, the second input signal u2(n) was first decreased to 0.6, and
then followed a random walk. The reservoir computer generated the desired fre-
quencies very well, with frequency MSE of 1.4 × 10−6. The FWHM of the FFT
for these two cases is about 0.005. Faster control modulation, with u2(n) chang-
ing every 200 timesteps, results in higher frequency MSE (1.2× 10−3, with FFT
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Fig. 4. Example of autonomous run for the tunable frequency generation task. The
control signal, shown in red, is decreased down to 0.6 every 50 timesteps, and then
follows a random walk, that continues beyond the scope of the figure. Although u2

switches asynchronously, the RC shifts smoothly from one frequency to another. (Color
figure online)

FWHM of order of 0.1), but still the RC follows the desired frequency reasonably
well. Figure 4 shows an example of simulation with fast modulation (every 50
timesteps).

6 Conclusion

We investigated numerically how an opto-electronic reservoir computer with out-
put feedback performs on various signal generation tasks. We evaluated optimal
gain parameters, reservoir sizes and elaborated specific training sequencies for
each tasks. We obtained very good results, showing that the upcoming exper-
imental setup could in principle be employed as a fast analog control system.
Coupled with the recently implemented online learning [2] this system could
possibly be used as an analog “brain” for high-speed self-learning robots.
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14. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14, 2531–2560 (2002)

15. Martinenghi, R., Rybalko, S., Jacquot, M., Chembo, Y.K., Larger, L.: Photonic
nonlinear transient computing with multiple-delay wavelength dynamics. Phys.
Rev. Let. 108, 244101 (2012)

16. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M.,
Massar, S.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)

17. Sussillo, D., Abbott, L.: Generating coherent patterns of activity from chaotic
neural networks. Neuron 63(4), 544–557 (2009)

18. Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.P.: Phoneme recognition
with large hierarchical reservoirs. Adv. Neural Inf. Process. Syst. 23, 2307–2315
(2010)

19. Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Ver-
straeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstra-
tion of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541
(2014)

20. Vinckier, Q., Duport, F., Smerieri, A., Vandoorne, K., Bienstman, P.,
Haelterman, M., Massar, S.: High-performance photonic reservoir computer based
on a coherently driven passive cavity. Optica 2(5), 438–446 (2015)

21. Wyffels, F., Li, J., Waegeman, T., Schrauwen, B., Jaeger, H.: Frequency modula-
tion of large oscillatory neural networks. Biol. Cybern. 108(2), 145–157 (2014)



Hierarchical Networks-on-Chip Interconnect
for Astrocyte-Neuron Network Hardware

Junxiu Liu(✉), Jim Harkin, Liam McDaid, and George Martin

School of Computing and Intelligent Systems,
University of Ulster, Magee Campus,

Derry BT48 7JL, Northern Ireland, UK
{j.liu1,jg.harkin,lj.mcdaid,martin-g11}@ulster.ac.uk

Abstract. Scalable hardware interconnect is a significant research challenge for
neuromorphic systems in particular, this becomes more pronounced when we seek
to realise the integration of neurons with astrocytes cells. This paper presents a
novel interactive architecture for the astrocyte-neuron network (ANN) hardware
systems, and the novel Hierarchical Astrocyte Network Architecture (HANA)
using networks-on-chip (NoC) for the efficient information exchange between
astrocyte cells. The proposed HANA incorporates a two-level NoC packet trans‐
mission mechanism to increase the information exchange rate between astrocyte
cells and to provide a NoC traffic balance for local and global astrocyte networks.
Experimental results demonstrate that the proposed HANA approach can provide
efficient information exchange rates for the ANN, while the hardware synthesis
results using 90 nm CMOS technology show that it has a low area overhead which
maintains scalability.

Keywords: Astrocyte-neuron network · Networks-on-chip · Interconnect · Self-
repair · FPGAs

1 Introduction

Recent publications have highlighted that astrocytes (a sub-type of glial cells in the
central nervous system) continually exchange information with multiple synapses and
consequently play a crucial role in brain re-wiring by regulating synaptic formation/
elimination, synaptic morphology and structural plasticity [1, 2]. The authors have
developed a computational model in software [3] and hardware [4] which captures this
behaviour and have demonstrated how astrocytes cells merged within spiking neurons
in an astrocyte-neuron network can perform distributed and fine grained self-repair
under the presence of faults. In the ANN, there are large volumes of interconnected
neurons and astrocytes and they have different communication patterns, e.g. high speed
temporal spike event for the neuron network, low speed numerical inositol trisphosphate
( ) information exchange for astrocyte network. The ANN can be viewed as a two-
tiered network comprised of a neuron and astrocyte network. Therefore for large ANN
hardware implementations, the traditional hardware architectures and topologies are not
suitable for the interconnections, and a new interconnection strategy should be explored
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which exploits this network hierarchy. This paper presents a novel interactive architec‐
ture for ANN and a hierarchical astrocyte network architecture (HANA) for the infor‐
mation exchange between the astrocyte cells, which addresses the interconnection chal‐
lenge in ANN hardware. Section 2 introduces the ANN briefly and Sect. 3 presents the
proposed ANN hardware interactive architecture. Section 4 reports on experimental
results and scalability performance analysis, while Sect. 5 provides a summary.

2 Spiking Astrocyte-Neuron Networks

Recent research showed that synapses exchange signals between neurons and astrocytes,
namely the tripartite synapse [5]. In a tripartite synapse, when an action potential axon
arrives, the glutamate is released across the cleft and binds to receptors on the post-
synaptic dendrite. This causes a depolarization of the post-synaptic neurons and allows
the influx of calcium ( ) into the dendrite causing endocannabinoids to be synthesized
and subsequently released from the dendrite. The 2-arachidonyl glycerol (2-AG), a type
of endocannabinoid, binds directly to type 1 Cannabinoid Receptors (CB1Rs) on the
pre-synaptic terminal. This results in a decrease in transmission probability (PR). In the
meantime, the 2-AG binds to CB1Rs on an astrocyte which enwraps the synapse
increasing  levels and triggering the intracellular release of . This results in the
astrocytic release of glutamate which binds to pre-synaptic group I metabotropic Gluta‐
mate Receptors. Such signalling results in an increase of synaptic transmission PR. This
process describes the signal exchange between a single astrocyte cell and synapses.
Additionally, astrocyte cells are also connected together and exchange information
between each other, which facilitate a global self-repairing capability in the astrocyte-
neuron networks [3]. In this approach, the boundary conditions in the approach of [6]
are used for linking the astrocyte cells. Each astrocyte cell is connected to the nearest
neighbour using molecular gap junctions which facilitate astrocyte to astrocyte commu‐
nications over long distances using calcium waves. The propagating calcium pulses are
elicited following the gap-junction transfer of inositol trisphosphate ( ) second
messenger molecules [6]. A linear diffusion gap junction model, , is
considered to describe the exchange of  between any two astrocyte [6], where

, and the coupling strength (or permeability)  depends
on the number of gap junction channels and their unitary permeability. For further details
on the astrocyte cell and neuron, synapse models please refer to our previous work [3].

3 Hierarchical Astrocyte Network Architecture

This section presents the proposed hierarchical astrocyte network architecture. The
interactive architecture for the ANN is described first; then the information exchange
and communication strategies for the astrocyte networks are presented in detail.

(1) Spiking astrocyte-neuron interactive architecture. In our previous work [7], a
hierarchical NoC architecture (H-NoC) was designed for the spiking neural networks
(SNN) hardware implementations. The H-NoC implemented the connections for

Hierarchical Networks-on-Chip Interconnect for ANN Hardware 383



clusters of neurons and synapses using NoC strategies. It has three hierarchical levels,
namely neuron, tile and cluster facilities. The neuron facility is at the bottom level, which
connects a number of neuron together (e.g. 10 in [7]). The neuron facilities are connected
to a tile facility (second layer) via tile router. Several tile facilities are connected by a
cluster router which compose a cluster facility (i.e. top layer). However, the H-NoC
strategy only focused on addressing interconnection for spiking neurons in an SNN. As
discussed in previous sections, the astrocytes communicate with synapses/neurons, and
more importantly with other astrocytes as well. Therefore, this paper extends our
previous research [7], and focuses on the interactive architecture for the ANN, especially
the interconnection requirements for the astrocyte networks.

Figure 1 illustrates HANA for the astrocyte networks and its connection to the H-NoC.
In order to establish the interconnection between the neuron cells and the astrocyte cell, a
dedicated connection is created, e.g. the astrocyte cell A1 communicates with neuron cells
via the node router of H-NoC in the bottom right of Fig. 1. Using this connection, the astro‐
cyte cell can communicate with a group of neurons via the H-NoC (10 neurons in this
approach as in biology it varies between 6–8 per astrocyte cell). In addition to the connec‐
tion with neurons, HANA creates the interconnections for the astrocyte networks. It has two
layers – astrocyte cells and astrocyte tile facilities. This HANA approach exploits locality
between astrocyte cells, by allocating a group of m astrocyte cells (e.g. 10 in this approach)
together, which is located at the bottom of the hierarchy. In each astrocyte cell group, the
astrocyte cells are connected to an astrocyte cell router using the NoC star topology. This
topology is employed for the hardware interconnection between the local astrocyte cells as
cells communicate with one another. The astrocyte cell router is then connected to a higher
level router (i.e. the astrocyte tile router) to comprise an astrocyte tile facility. The astro‐
cyte tile facilities are connected by a two dimensional mesh topology which provides the
communication for the astrocyte cells in different astrocyte cell groups. Therefore, HANA
is a two-layer interconnection topology, i.e. the astrocyte cell group for the local astrocyte
connectivity, and the astrocyte tile facility for global astrocyte connectivity. As a result, one
astrocyte tile facility includes 10 astrocyte cells, and each astrocyte cell communicates with
10 neuron cells; therefore one astrocyte tile facility can accommodate 10 astrocyte cells and
100 neuron cells. If more astrocyte tile facilities are required, the astrocyte tile facilities can
be easily replicated by forming a grid of astrocyte tiles using the regular mesh topology
layout.

(2) HANA for the astrocyte networks. HANA uses a uniform NoC packet layout for
both local and global communications. The packet layout is defined in Table 1 where a
packet consists of four fields, i.e. header, astrocyte tile router address, astrocyte cell
address, and payload. The header field defines the packet communication pattern, e.g.
for the local or global astrocytes, as defined in the bottom half of Table 1. The tile router/
astrocyte cell address fields provide the address information of the astrocyte tile router
and astrocyte cell respectively. The payload of the packet contains the astrocyte
exchange information (e.g. ) between the astrocyte cells. According to the astrocyte
cell model and parameters, the range of  is from 0 to ~2 microMolar [3], therefore
an unsigned fixed-point data type with a total 16-bit (2-bit integer length and 14-bit
fraction length) is used to represent the  value.
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Table 1. Packet layout definition

Packet layout
Header Tile router address Astrocyte cell

address
Payload

X Y
4-bit 4-bit 4-bit 4-bit 16-bit
Header definition
Header 0001 Communication inside the astrocyte tile facility (intra-

facility)
0010 Communication between the astrocyte tile facilities

(inter-facility)
…. Reserved

Figure 1 illustrates that the two key components for interconnectivity are the astro‐
cyte cell router and astrocyte tile router, i.e. the former provides the local connections
for the astrocyte cells inside a tile facility, and the latter creates the global communica‐
tions between the tile facilities. Figure 2 details the astrocyte cell router and includes
the input/output ports (from/to the astrocyte cells and tile router) and a controller
(m = 10). The controller consists of an arbiter, a routing module, and a scheduler. The
arbiter controls the data reading from multiple input ports. A round-robin arbitration

Astrocyte Tile Router #1 Astrocyte Tile Router #2

Astrocyte Tile Router #3 Astrocyte Tile Router #4

Node 
router

NC #8

NC #4

NC #3NC #2NC #1

NC #10 NC #9

One neuron facility in H-NoC

A group of 
astrocyte cells

Astrocyte cells

Astrocyte cell 
router

Fig. 1. HANA: Hardware interconnectivity for astrocyte networks and its interface with H-NoC.
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policy [8] is employed to give a fair access to the astrocyte cells and tile router. The
routing module makes the routing decisions based on the traffic statuses from the local
astrocyte cells and tile router. The scheduler forwards the received packets to the desti‐
nation ports based on the routing decision from the routing module.

Controller
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Data
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Fig. 2. Astrocyte cell router

The working flow of the astrocyte cell router is given by Fig. 3. After reset, the
astrocyte cell router is in state S1, i.e. checks the data request from the first input channel.
If there is no data request, it checks the next input port (state S6). If there is a data request
in S1, it changes to S2 i.e. saves the packet and makes the routing. For the local trans‐
mission, the cell router checks the traffic statuses of local cells (S3). If they can receive
the packet, the cell router forwards the received packet to the local cells (S5). If the
packet is for the global transmission in S2, the traffic status of the tile router is checked
(S4). The packet is forwarded to the tile router (S5) if the traffic status of tile router is
not congested. After, it forwards the received packet in S5 and the cell router checks the
next input port (S6 and S1) and repeats the same process. This working flow allows the
prompt packet transmissions for the astrocyte cell routers, and also achieves a low hard‐
ware area overhead which is given in next section.

S1. Check the 
data request of 
first input port

S2. Read packet 
and save

Yes Local
S3. Check the 
traffic statuses 
of local cells

S4. Check the 
traffic status of 

tile router

S5. Forward the 
received packet

Not full
S6. Change to 
next input port

N
o

Fig. 3. Working flow of the astrocyte cell router.
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The top layer in HANA is the astrocyte tile router which connects the astrocyte tile
facilities together. The adaptive NoC routing strategy from our previous work [7] is
utilised in the astrocyte tile router. This router has four ports to facilitate north, east,
south and west inter-tile router connectivity, and a fifth network interface (NI) port. The
NI port provides the connections between the astrocyte tile router and local astrocyte
cell router. The astrocyte tile router employs an adaptive arbitration policy module
combing the fairness of the round-robin and the priority schedule scheme of first-come-
first-server approach [7]. This improves the router throughput according to the traffic
behaviour presented across the astrocyte network.

4 Experimental Results

This section presents the test bench setup and the  exchange rate analysis for the local and
global astrocyte cells in the proposed HANA. The astrocyte tile facilities were implemented
on a Xilinx Virtex-7 XC7VX485T-2FFG1761C FPGA device running at 200 MHz, and
real-time performances were verified. The output signals from the hardware astrocyte cells
in [4] were used as stimulus for evaluating HANA. A single astrocyte facility is also synthe‐
sized using Synopsys Design Compiler based on a SAED 90-nm CMOS technology in
order to analyse the area utilization.

Fig. 4. Maximum packet transmission waiting time  (bars) and minimum  exchange rate 
(line) inside an astrocyte tile facility.

Inside an astrocyte tile facility, the maximum packet transmission waiting time
( ) and minimum  exchange rate ( ) express a measure of how rapid the astrocyte
cells can exchange information with each other, e.g. communication throughput. As the
astrocyte tile facility employs a star topology for interconnection and all the astrocyte
cells share a single astrocyte cell router, each cell has to wait for permission to transmit
(exchange) data if multiple astrocyte cells have packet transmission requests.  denotes
the maximum packet transmission waiting time in a tile, and the  denotes the
minimum  exchange rate. Figure 4 presents performance data based on these two
metrics for a single astrocyte tile facility. In this work  which matches our
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previous computational model of the astrocyte network [3]. Figure 4 shows that when
the number of astrocyte cell ( ) increase,  increases from 10 ns (i.e. 2 clock cycles
latency when ) to 90 ns ( ) as expected, i.e.  scales linearly with  which
maintains the system scalability. In the meantime,  decreases from 100 MHz to
11 MHz. In biological astrocyte cells typically exchange information at a frequency of
10 Hz [6]. Therefore, from a hardware point of view, if a higher  exchange rate can
be achieved, the platform can be used as an accelerator for astrocyte network models.
Alternatively, the number of astrocyte cells ( ) that can be accommodated within an
astrocyte tile facility can be further increased, and the information exchange on the
biological-scale can also be met.

Fig. 5. Maximum packet delay  (bars) and minimum  exchange rate  (line) for different
array sizes of astrocyte tile facilities.

To demonstrate that HANA is scalable, four different large scale systems based on
the astrocyte tile facilities were evaluated including 2-D mesh sizes of 20 × 20, 30 × 30,
40 × 40 and 50 × 50, respectively. In this experiment,  is ten, thus they can accom‐
modate 4 K, 9 K, 16 K, 25 K astrocyte cells, and communicate with 40 K, 9 K, 160 K,
250 K neurons. Figure 5 shows the maximum packet delay ( ) and minimum 
exchange rate ( ) under different array sizes. As the array size increases, the maximum
packet delay increases from 580 ns (20 × 20) to 1,180 ns (50 × 50) and the minimum

 exchange rate decreases from 1.7 MHz to 0.8 MHz. The proposed HANA achieves
a high  exchange rate, which is significantly greater (4 orders of magnitude faster)
than the biological exchange rate (i.e. ~10 Hz). The speedup of this exchange rate is
critical for large scale implementations and therefore demonstrates the key performance
benefit of using NoCs as proposed in HANA.

The hardware resource of the HANA compared with other existing approaches is
shown in Table 2. Note that the same node degree of mesh and star topologies (i.e.
degree = 4) is used Table 2 to give a fair comparison of the hardware area utilizations.
It shows that for the 2D mesh topology, the astrocyte tile router achieves a relatively
low area utilization (only 0.156 mm2) using Synopsys Design Compiler based on a
SAED 90 nm CMOS in comparison with other approaches (e.g. 0.182 mm2 [9],
0.267 mm2 [10]). The approach of [8] has a lower area as the packet size is much smaller
however the HANA astrocyte cell router has a very low area utilization, ~50 % of the
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NoC router in [8], ~10 % of the CG/FG routers [10]. Table 2 highlights that compared
to other approaches, the HANA interconnection NoC strategy has a relatively low area
utilization which maintains the scalability of astrocyte networks in hardware.

Table 2. Hardware area utilizations of different approaches

The approach Topology Area overhead (mm2)
Router Device

technology
[8] 2D Mesh 0.056 90 nm CMOS
[9] 2D Mesh 0.182 SAED 90 nm
CG router [10] 2D Mesh 0.237 SAED 90 nm
FG router [10] 2D Mesh 0.267 SAED 90 nm
HANA Astrocyte cell

router
Star 0.024 SAED 90 nm

Astrocyte tile
router

2D Mesh 0.156 SAED 90 nm

5 Conclusion

An interactive architecture for hardware ANN was proposed in this paper. It employs
the H-NoC [7] for the spiking neuron connections and uses the proposed HANA NoC
interconnection strategy for the astrocyte network communication. The presented
HANA is a hierarchical architecture using a two-level network of NoC routers that
enables scalable communications in hardware between tiles of astrocyte cells. The
experimental results demonstrate that HANA offers a high speed  exchange rate, and
achieves a low area overhead which maintains system scalability.
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Abstract. Restricted Boltzmann machines (RBMs) have actively been
studied in the field of deep neural networks. RBMs are stochastic arti-
ficial neural networks that can learn a probability distribution of input
datasets. However, they require considerable computational resources,
long processing times and high power consumption due to huge number
of random number generation to obtain stochastic behavior. Therefore,
dedicated hardware implementation of RBMs is desired for consumer
applications with low-power devices. To realize hardware implementation
of RBMs in a massively parallel manner, each unit must include random
number generators (RNGs), which occupy huge hardware resources. In
this paper, we propose a hardware-oriented RBM algorithm that does
not require RNGs. In the proposed method, as a random number, we
employ underflow bits obtained from the calculation process of the firing
probability. We have developed a software implementation of fixed-point
RBMs to evaluate the proposed method. Experimental results show that
a 16-bit fixed-point RBM can be trained by the proposed method, and
the underflow bits can be used as random numbers in RBM training.

Keywords: Restricted Boltzmann machines · Deep learning · Random
number generators · Digital hardware · FPGA

1 Introduction

Deep learning (DL) [4] has actively been studied in the field of neural networks.
It is learning methods for multilayer neural networks to obtain high-level features
of input datasets [7,8]. A lot of architectures of deep neural networks (DNNs)
have been proposed to realize DL, and restricted Boltzmann machines (RBMs)
are one of DNNs [2]. This model operates stochastically and can learn a prob-
ability distribution of input datasets. However, training an RBM on software
systems using CPU and GPU requires considerable computational resources, a
long processing time and high power consumption.

Recently, hardware implementations of RBMs, which improve the processing
speed and power efficiency, have been reported [5,6,9–11]. These architectures
c© Springer International Publishing Switzerland 2016
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introduce random number generators (RNGs) to determine an unit state based
on a firing probability. To realize hardware implementation of an RBM in a
massively parallel manner, each unit should have an RNG which occupies con-
siderable hardware resources.

This paper proposes a new hardware-oriented RBM algorithm for an efficient
field programmable gate array (FPGA) implementation. The proposed algo-
rithm can be implemented without RNGs. In the proposed method, we employ
underflow bits obtained from the calculation process of the firing probability in
each unit as a random number. Using the proposed method, we can implement
an RBM on an FPGA with small hardware resources because RNGs can be
replaced by the underflow bits. In order to evaluate the proposed method, we
have developed a software implementation of fixed-point RBMs and clarified the
relationship between the bit width and learning results of the RBM. Experimen-
tal results show that the fixed-point RBM with 8-bit integer and 8-bit fractional
parts can be trained by the proposed method and the underflow bits can be used
as random numbers in the training phase of the RBM.

2 Restricted Boltzmann Machines

The structure of an RBM is shown in Fig. 1. It consists of a visible and a hidden
layer, which have N and M units, respectively (v1, v2 . . . vN and h1 . . . hM ). This
network operates stochastically, and each unit state is determined by the firing
probability, which is calculated from the states of units in the other layer.

Fig. 1. Structure of an RBM.

2.1 Learning Algorithm of RBMs

In RBMs, each unit has the firing probability:

p(hj = 1|v,θ) = σ

(
bj +

∑
i

wijp(vi)

)
, (1)

p(vi = 1|h,θ) = σ

⎛
⎝ai +

∑
j

wijhj

⎞
⎠ , (2)
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where vi and hj represent the states of visible and hidden units, respectively, wij

is the weight between the i- and j−th units, ai and bj are the biases of visible
and hidden units, respectively, θ is a set of network parameters, and σ is the
sigmoidal function.

A processing flow of the learning phase of an RBM is as follows.

1. Set training data to the visible units, and give the distribution probability of
the data, p(vi).

2. Calculate p(hj = 1|v,θ) by Eq. (1).
3. Update the hidden unit states (if p(hj = 1|v,θ) > r, then hj = 1, where r is

a random number).
4. Calculate p(vi = 1|h,θ) by Eq. (2).
5. Update the parameters.

This flow is called CD-1 learning. In CD-k learning, steps 2 to 4 are repeated k
times. The detailed algorithm is shown in [3].

In step 3, random numbers are required to determine the hidden unit state hj .
To implement RBMs on an FPGA, we need RNGs to obtain random numbers.

3 Hardware-Oriented RBM

In this section, we propose an RBM implementation method that can save the
hardware resources and evaluate the learning accuracy of RBMs in a fixed-point
binary number environment.

3.1 Fixed-Point RBM

We have developed a software RBM using fixed-point binary numbers to validate
the proposed method. Generally, software implementations use floating-point
numbers. On the other hand, digital hardware implementations use fixed-point
binary numbers. Although digital hardware can obviously process floating-point
numbers, this requires large hardware resources, and therefore it is a disadvan-
tage of the implementation of large-scaled RBMs.

3.2 Fixed-Point RBM Using Underflow Bits as Random Numbers

We propose a new method to generate random numbers for hardware RBMs.
Hardware RBMs require RNGs to determine the state of each unit from the
firing probability. Generally, we use Linear Feedback Shift Registers (LFSRs)
to generate random numbers in digital hardware, but they require large hard-
ware resources. In contrast, the proposed method does not use RNGs but uses
underflow bits obtained from the RBM learning process as random numbers.

We use a 16-bit fixed-point number for a firing probability and a weight,
as shown in Fig. 2. We assume that the visible layer consists of 1,024 visible
units. In the calculation process of the firing probability of hidden units based
on Eq. (1), the bit width is changed as follows:
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Fig. 2. Proposed method: (a) result of multiplication, (b) result of summation,
(c) overflow bits, and (d) underflow bits.

1. Multiply wij and the firing probability p(vi). The result has a 16-bit integer
and a 16-bit fractional parts, as shown in Fig. 2(a).

2. Sum up all values of wijp(vi). As a result of summation, the number of carry
bits is equal to log2 1, 024. Therefore, the result of summing operation has a
26-bit integer part, as shown in Fig. 2(b).

3. Cut off the resultant value in the integer and fractional parts to hold the initial
bit width. In this operation, 18 overflow bits in the integer and 8 underflow
bits in the fractional part are generated, as shown in Figs. 2(c) and (d). We
employ these underflow bits instead of random numbers generated by LFSRs.

4 Experimental Results

In the experiments to validate our proposed method, we converted from floating-
point variables to fixed-point variables in a software implementation of RBMs,
and evaluated learning results by observing cross-entropy errors calculated as
follows:

CE = v ln {σ (h ·w + b)} + (1− v) ln {1− σ (h ·w + b)}, (3)

where v and h represent the states of visible and hidden units, respectively, w
is the weights, b is the hidden unit bias, and σ is the sigmoid function.

In the experiments, we used three images extracted from Standard Image
Data BAse (SIDBA) [1] for training the RBM, as shown in Fig. 3. The image
size was 32 × 32 pixels. The parameters of the RBM network were set as follows;
the number of visible units was 1024, the number of hidden units was 16, the
initial learning rate was 0.01, the initial temperature was 10. The number of
epoch executed for training was 800.

4.1 Bit Width of Fixed-Point RBM

We evaluated the relationship between the bit width and the learning results of
the fixed-point RBM by changing the bit width of fixed-point numbers expressing
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Fig. 3. Training images extracted from SIDBA.

Fig. 4. Cross-entropy error in each bit width.

firing probabilities, biases, weights and all temporary values. Figure 4 shows the
results of cross-entropy errors in each bit width. In this experiment, we used
4- to 12-bit fractional parts. The integer part was fixed at an 8-bit width, and a
sign bit was added.

From the experiments, better learning results were obtained as the longer
fractional part bit width was used. However, the results in 12 bits were slightly
worse than those for 10 bits. In addition, the maximum cross-entropy error was
−65.82 when we performed the same experiment with floating-point variables.
Therefore, it is concluded that the bit width of the fractional part required for
successful learning is 10 bits, and even an 8-bit width is often sufficient. In other
words, if we use a more than 8-bit width, fixed-point RBMs can have nearly the
same performance as RBMs using floating-point variables.

4.2 Evaluation of Randomness of Data of Underflow Bits

We evaluated randomness of the overflow and underflow bits. Since the overflow
bits showed no randomness, we evaluated randomness of the underflow bits.

Figure 5 shows a histogram of underflow bits in the fractional part. It shows
that the underflow bits appear in the entire range of values like the white noise,
which suggests that the underflow bits in the fractional part meet one of the
requirements for random numbers, and they could be used as random number
generators instead of LFSRs.
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Fig. 5. Histogram of underow bits in
the learning process.

Fig. 6. Fractional part structure.

4.3 Learning in RBMs Without RNGs

We measured cross-entropy errors for learning in the fixed-point RBM using
underflow bits. In this experiment, we used CD-5 learning. In the first phase
of CD-5, the underflow bits are not generated at step 2 described in Sect. 2.1
because the input images (training data) are binary images. In other words, the
firing probability of visible units, p(v), is set to 0 or 1 in the binary images at
the first step of CD-5, and thus, the multiplication of w and p(v) generates no
underflow bits. However, in the second to fifth phases of CD-5, underflow bits are
generated as mentioned in Sect. 3. Thus, we trained the RBM in the following
four cases to evaluate the proposed method.

Method 1. Use random numbers generated by a software function in all learn-
ing phases.

Method 2. Use random numbers generated by a software function only in the
first phase of CD-5.

Method 3. Use the upper 4 bits and middle 4 bits (Fig. 6) in the fraction part
in the first phase.

Method 4. Use the middle 4 bits (Fig. 6) in the fraction part in the first phase.

It is noted that, in Methods 2 to 4, each RBM used the underflow bits (lower
8 bits) in the second to fifth phases of CD-5. Experimental results are shown
in Fig. 7, and Table 1 shows maximum cross-entropy errors. In Method 3, the
maximum cross-entropy error was close to that in Method 1. From these results,
the fixed-point RBM can be trained by the proposed method, and the underflow
bits can be used as random numbers in the training phase of the RBM.

4.4 Experimental Result with 12 Images

The previous experimental results show that the Method 3 is the best in the
proposed method. Therefore, to assess feasibility of the proposed method, we
measured cross-entropy errors of Methods 1 and 3 using 12 images from SIDBA.
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Table 1. Maximum cross-entropy error in each method.

Method no. Cross-entropy error

Method 1 (Using software RNGs) −193.66

Method 2 (Using software RNGs & underflow bits) −282.73

Method 3 (Using upper and middle 4 bits & underflow bits) −149.05

Method 4 (Using middle 4 bits & underflow bits) −253.07

Fig. 7. Cross-entropy error in each method.

(a) Software RNG (Method 1). (b) Proposed RNG (Method 3).

Fig. 8. Cross-entropy error with 12 images.

In this experiment, parameters of a fixed-point RBM were set as follows; the
number of hidden units was 64, the learning rate was 0.1, the number of epochs
were 668 and other parameters were identical with previous experiments.

Figure 8(a) and (b) show learning results of Methods 1 and 3, respectively.
From these results, we confirmed that the underflow bits can be used as random
numbers to train the fixed-point RBM.

5 Conclusion

In this paper, we proposed a hardware-oriented RBM without RNGs for efficient
digital hardware implementation. In proposed method, underflow bits obtained
from the calculation process of the RBM are used as random numbers. By using
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the proposed method, hardware resources for RNGs can be saved when RBMs
are implemented on an FPGA, which leads to reduce the hardware size and
power consumption.

In the future, we will implement the proposed method on an FPGA and
evaluate hardware properties such as hardware size and power consumption.
We will then develop a hardware DNNs and evaluate the effectiveness of the
proposed method.
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Abstract. A spike decoding scheme for Address Event Representation
(AER)-based transmission in Spiking Neural Network (SNN) emulators
is introduced. The proposed scheme is a modified associative memory
based on an efficient use of BRAM, supporting connectivity upgrade in
real-time for hardware implementations of evolutionary networks. After
analysing the different options and selecting the most efficient one, a
prototype example based on FPGA is provided together with a novel
hashing technique to demonstrate a compact on-chip solution for imple-
menting inter-chip connectivity in SNN.

Keywords: Associative memory · SNN · AER · Digital neuromorphic
systems · Evolvable connections

1 Introduction

Brain-inspired computing has drawn enormous interest as a computer paradigm
to yield applications that demand intelligent behavior. However, neuron inter-
connectivity involves a massive wiring problem due to high fan in/out in the
neural cells [1]. Interconnectivity modelling is a bottleneck in terms of through-
put and resource consuming for hardware emulation of the brain. Neuron have
been mapped using content address memory (CAM), where data is matched
to the content. However, CAM is highly resource consuming and, alternatives
like hash coding (exact match association) can also be used for implementing
this association using search functions. For large-scale networks, the number of
connections that can be modelled is limited by routing resources.

SNN architectures based on FPGAs like Vogelstein [2] and Cassidy [3] employ
off-chip SDRAM for mapping presynaptic and postsynaptic neuron address,
increasing the size and density of their routing tables and the memory traffic.
SpiNNaker [4] implements synaptic connectivity, applying multiplexing tech-
niques and 1024× 32 CAM along with lookup RAM for routing purposes. These
approaches are costly in area and power consumption. Furthermore, NoC based

c© Springer International Publishing Switzerland 2016
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architectures require a large amount of distributed memory on chip for hold-
ing synaptic connectivity trading higher flexibility against energy efficiency. It
means a resource-demanding problem for compact embedded applications.

Our contribution to SNN emulation (real time operation hardware) is based
on a Multi-Chip SNN architecture (MCS) (Fig. 1) in a ring topology. In our app-
roach, we propose to use distributed Associative Memories (AM) implemented
with on-chip block RAMs (BRAMs), along with a novel hashing technique for
routing sparse connections. Thus, each AM just needs to infer the associated
post-synaptic neuron synapse from the incoming pre-synaptic spiking neuron
address generated in a different cluster or chip. Distributed BRAMs of modern
FPGAs can be advantageously used to operate as local AMs as well. Further-
more, using BRAM allows for real-time connection modification, enabling evolv-
able networks. Besides, AM matches an input value to predefined data with low
latency.

The proposed Distributed AM with a specific hierarchical configuration to
reduce area overhead deduced from Sect. 3 along with a novel hashing technique
with a numeric mapping example is presented in Sect. 4. In Sect. 5 conclusions
are reported.

Fig. 1. Generic SIMD multiprocessor architecture

2 Multichip SNN Architecture

The MCS based on Xilinx Kintex 7 XC7K325T, is a general purpose computing
platform for SNN, capable of implementing any neural algorithm according to
user needs with programmable synapses connectivity. Each chip contains a 2D
array of specific-purpose Processing Elements (PEs) with Single-Instruction Mul-
tiple Data parallel processing. Each PE is in charge of emulating several neurons
and manage the local and global neural connectivity. In [5], the operability of
this system it has been proven experimentally with the implementation of Leaky
Integrate and Fire, Izhikevich [6] and Iglesias y Villa [7] neural algorithms.

Spike communication between neurons in the same chip and across the chips
is through a custom packet-based AER protocol [8]. AER reduces interconnects
by time multiplexing the spikes, taking into account the low rate of biological
SNNs and simplifies spike transmission by encoding the pre-synaptic neuron
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address; however, spike decoding at reception becomes challenging due to the
long source neuron address.

3 Associative Memory Implementation

In our MCS prototype, it is possible to map up to 131 synapse connections/PE.
In order to emulate a hierarchical neural topology, 100 local and 31 global con-
nections were defined. Local ones are on-chip locally distributed, so there is no
need for AER transmission. Global ones receive spikes from long-distance inter-
connects and take advantage of the AER bus. These are the ones that need to
be decoded by means of the AM.

From now on, we concentrate only on global synapses. Currently, we consider
as input data to the AER controller the pre-synaptic neuron address of 18-bit
length, composed of ID, row and column. ID (i) corresponds to the chip where
the pre-synaptic spike is generated, while rows (r) and columns (c), indicate the
pre-synaptic neuron position on the chip array using 4-bit wide each.

A 31-bit synapse register (Sj) stores the AM output data. It contains the
synaptic match positions corresponding to the specific neuron. For the spike
decoding purpose, the AM does not have to output the matching register address
but the matching bit itself. AM can be implemented using register banks, com-
binational logic or standard RAM/ROM memory.

3.1 Register-Based (RB) Associative Memory Scheme

At first approximation, the network topology can be stored in a register bank,
where the pre-synaptic neuron address has to be compared with all registers to
detect any match, that is further stored into the post-synaptic register Sj .

Despite in general associative memories multi-match is necessary, for our
distributed spike decoding application single match detection is enough. This
is because normally single connection between a given pre-synaptic neuron and
the post-synaptic neuron is needed. Furthermore, if parallel connections were
needed, this issue can be normally circumvented by multiplying the synapse
strength of the single connection by a factor. The required bits for this single
match approach are:

#bitRB = (i + r + c) · s. (1)

where i, r, c are the chip ID, row, column of the pre-synaptic neuron address
and s corresponds to post-synaptic register number of bits. This approach is
compact in bit number, but registers draw important resources from an FPGA
and bit area is much less compact than RAM bits.

3.2 Combinational Logic Implementation (CLI)

Assuming the associative memory register contents are constant, synthesis to
combinational logic can be committed. Depending on the specific connectivity,
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this may lead to a compact approach, so it has been used in previous implemen-
tations; however, its main drawback is that, once synthesized, the interconnect
pattern remains fixed, and any change implies resynthesizing and reprogramming
the device. This is, in the best case, a tedious and inconvenient task. Further-
more, the area occupancy is data-dependent, which is highly inconvenient for
the floor-plan definition.

3.3 Memory-Based Direct Implementation (DI)

This is the most straightforward method for AM implementation using FPGA
BRAMs. The source neuron address (i + r + c), is fully decoded by connecting
it to the BRAM address input. The BRAM output data is one-hot encoded, so
it directly contains the information that is transferred to the spike register Sj .
The memory required for this implementation is:

#bitDI = 2i+r+c · s. (2)

This address decoding produces inefficient memory usage from the bit number
point of view, compared to the optimal RB implementation (1), as the exponen-
tial factor of 2 indicates in (2). In particular, for an s-bit synapse register, the
memory efficiency η1 is:

η1 =
#bitRB

#bitDI
=

i + r + c

2i+r+c
. (3)

Even for a small number of addresses, most of the memory rows will be
unused, so efficiency is very low.

3.4 Output Data Encoding (ODE) Memory Implementation

From the previous consideration, one obvious way to compact the memory is
to binary encode in log2s bits the one-hot s output data bits. This reduces the
memory size to:

#bitsODE = 2i+r+c · log2s. (4)

A limitation of ODE is that a pre-synaptic neuron can excite only a single
synapse of the post-synaptic neuron. As discussed before, this is not an issue in
our case. A side effect is the reduction of one count in the number of synaptic bits,
because unmatched input data need to be encoded somewhat. We arbitrarily
assign to that data the 0 code. Row occupancy is almost the same but efficiency
improves as the data field is reduced; however, the exponential factor remains
unchanged, so it is still quite low. The ODE requires also an output data decoder.

η2 =
(i + r + c)(s − 1)

2i+r+c · log2s . (5)
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3.5 Input and Output Data Encoding (IODE) Memory Scheme

Taking into account that only a few registers contain association data, we can
compress the input data information by means of translation memories. This
encoding technique can also be considered as a kind of hashing [9]. Since at
most s chip ID numbers will produce spike, we can encode those chips with
log2s bits. The sum of rows and columns (r + c) can be recorded in a similar
way.
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In Fig. 2 the diagram for this approach is shown. Two BRAMs perform the
input data encoding, compressing the i+ r + c bits in 2 · log2s bits. The required
RAM number of bits becomes:

#bitsIODE = (2i + 2r+c + s2) · log2s. (6)

The exponential factor of (4) has been significantly reduced, being divided
into three terms, two of them exponential but with reduced exponents in practice.
We assign the 0 code arbitrarily to unmatched i and r+c. Thus, as in ODE one
code is lost, and the number of possible synapses is reduced to s − 1. Efficiency
is clearly improved:

η3 =
(i + r + c)(s − 1)

(2i + 2r+c + s2) · log2s . (7)

3.6 Input Data Encoding, Output Data ANDed (IDE-ODA)
Memory Scheme

Additional improvement from the previous encoding can be obtained by split-
ting the output BRAM2 from IODE, in ID BRAM2 and RC BRAM2, which
detect matches separately for chip ID and row+column (Fig. 3). In this case, it
is not possible to keep the output data encoded, because multi-hit may happen
for both chip ID and/or row+column. The reason is because a given chip may
contain more than one pre-synaptic neurons connected to a post-synaptic neu-
ron. Analogously, several neurons from different chips located at the same r+c
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position may be connected to the same post-synaptic neuron. Thus, the out-
puts from both BRAM2s need to be ANDed to obtain the valid data. Therefore,
expanding the output data back to one-hot becomes necessary. The number of
bits required in this architecture becomes:

#bitsIDE ODA = (2i + 2r+c) · log2s + 2s · (s − 1). (8)

If the dominant terms in (8) are the exponential ones, no significant improve-
ment is produced, but when the terms are comparable, efficiency is improved.
Furthermore, there is no need of output decoder.

η4 =
(i + r + c)(s − 1)

(2i + 2r+c) · log2s + 2s · (s − 1)
. (9)

4 Application Example and Results

In this section, a numerical example and an application based on our MCS is
presented. For the defined approaches, numerical results for our implementation
(i = 7, r = c = 4, s = 32) are shown in Table 1.

Table 1. Comparison of analyzed schemes

AM implementation η (%) LUT6s FF/RAM (bits) Total consumed BRAM

RB 1 384 576 -

Combin. Logic - a - -

DI 0.006 - 8192k 8352k

ODE 0.04 31 1280k 1440k

IODE 4.84 31 11.25k 54k

IDE-ODA 6.65 31b 8.19k 54k
aData dependent
bLUT4

In the MCS FPGA mapping, LUTs are the limiting resource because PEs
demand mostly these. On the other hand, almost fully availability of BRAMs
is possible in SIMD multiprocessing applications such as ours. So, even if the
register implementation could eventually be more compact, from the FPGA
resource balance point of view, it is much more convenient to map the AM into
BRAMs.

Thus, discarding the Register-Based, and the Combinational Logic solutions,
that does not allow dynamic connections, the best scheme is the IDE-ODA,
closely followed by IODE. IDE-ODA scheme only requires 8.19 kbit per PE, and
its efficiency is 1000 times better than DI and slightly better than IODE scheme.
When mapped on the FPGA the number of BRAMs is the same for IODE and
IDE-ODA because of quantization.
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Table 2. Spike encoding

ID (10-bit) r+c (8-bit) Synaptic position

48h 93h 15

48h 47h 5

1ch 52h 7

1ch 79h 20

1ch 80h 1

33h 43h 2

33h 51h 4

5fh 52h 3

5fh 72h 9

5fh 80h 10

A

ID: 33h

ID: 48h

ID: 1ch

ID: 5fh

Global 
neurons

Local
synapses.. .

Fig. 4. Global synaptic connec-
tions for neuron A

It may seem that 6.65 % efficiency is a low number; however, a BRAM bit is
much more compact than a register bit. Also, notice the improvement compared
to DI and ODE. Furthermore, as mentioned before, in the multiprocessing array
registers are much scarcer than BRAMs, so using BRAMs balances the resource
usage of the architecture. Finally, 54 kbit per PE is totally achievable in modern
FPGAs, which would not be the case for ODE scheme, for instance.

An example of the mapping technique used in the IDE-ODE configuration for
implementing global spiking connectivity is now discussed. As shown in Fig. 4, a
post-synaptic neuron A is connected to 10 global neurons located in 4 different
chips. Table 2 shows the codes of ID, r+c and synapse, highlighting in bold the
numeric example that follows. The 4 keys rules to detect the pairwise synaptic
connection between the pre and postsynaptic neurons are the following:

Fig. 5. IDE-ODA simulated waveforms. (Color figure online)

ID BRAM1 : Same index for the neurons that share same ID. RC BRAM1 :
Same index for the neuron that share same r+c independently of ID value.
ID BRAM2 : Bit set in the corresponding synaptic position that share same ID
index. RC BRAM2 : Bit set in the respective synaptic position that share same
r+c index.
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The AND operation between the two 32-bit output vectors from ID BRAM2
and RC BRAM2, generate a one-hot register Sj which represents the presynaptic
spike received by the neuron A. The encoding used in this example is shown in
the simulated waveform of Fig. 5. Notice that BRAMs output are one clock
cycle delay in each case. The red mark points to the case of the neuron address
0x1c52, where the obtained Sj register (00000080h) indicates that a spike has
been received on the seventh synaptic connection.

5 Conclusions

Six different implementations of AMs for spike decoding have been analysed.
Resource analysis has been performed and IDE-ODA memory scheme along
with a hashing technique to reduce memory occupancy. It has been found as the
most compact solution in terms of area for a reasonably efficient implementation
of sparse connectivity. Correct operation has been demonstrated with a mapping
simulation example. The IDE-ODA presented in this work allows a flexible and
dynamic synaptic connectivity employing an effective use of resource in advanced
FPGAs by balancing memory (BRAM) and logic resources, without incurring to
off-chip additional RAM memory and controllers. Furthermore, the number of
cycles used to search data is always constant; it does not depend on the BRAM
size or the number of stored synaptic addresses obtaining an effective and fast
retrieval data.

However, this alternative is limited by the encoding post-synaptic address
length which determines the BRAMs size. Furthermore, the consuming resources
in BRAMs implementation on FPGA depends on its primitives. In a BRAM,
increasing width word is more logic costly rather than increasing length address.
As a consequence the MSC scalability is imposed by number of bits used for
encoding spike events and the available resources.

Finally, the applicability on multi-chip architectures like ours, can be found
as a convenient solution for building structural brain networks that go from
inter-neuronal to inter-regional connectivity. Hardware emulation of genetic algo-
rithms for supervised learning and evolutionary neural applications are possible
with dynamic connectivity. Inter-chip fault tolerance communication can be eas-
ily carried out, providing the advantage of complete availability to the network.
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Abstract. We present a novel dynamic neural field model consisting of
two coupled fields of Amari-type which supports the existence of local-
ized activity patterns or “bumps” with a continuum of amplitudes. Bump
solutions have been used in the past to model spatial working memory.
We apply the model to explain input-specific persistent activity that
increases monotonically with the time integral of the input (paramet-
ric working memory). In numerical simulations of a multi-item memory
task, we show that the model robustly memorizes the strength and/or
duration of inputs. Moreover, and important for adaptive behavior in
dynamic environments, the memory strength can be changed at any time
by new behaviorally relevant information. A direct comparison of model
behaviors shows that the 2-field model does not suffer the problems of
the classical Amari model when the inputs are presented sequentially as
opposed to simultaneously.

1 Introduction

A hallmark of higher brain function is the capacity to bridge gaps between sen-
sation and action by maintaining goal-relevant information that is needed to
perform a given task. Persistent neural activity which is commonly observed in
prefrontal and association cortices is thought to represent a neural substrate
for the accumulation and storage of information across time [11]. Neurophysi-
ological studies of persistent activity have frequently used a delayed response
task in which the animal is required to remember a transient sensory stimulus
(e.g., spatial location or frequency) across a short period to guide a rewarded
response [15]. To serve a working memory function, the internally sustained
activity must be stimulus-selective so that the content of the memory can be
decoded by downstream neural circuits. Neural discharge that varies according
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to the value of continuous sensory or motor variables can be broadly classified
in two distinct but not mutually exclusive coding schemes. Summation coding
reflects the idea that parameter values are represented by a monotonic variation
in neural firing rate [12]. Place coding assumes a smooth bell-shaped tuning curve
of individual neurons with a peak at a preferred value. At the population level,
a specific parameter value is represented by a localized activity pattern in para-
metric space [5]. Depending on the specific coding scheme, stimulus-dependent
persistent activity of neural populations has been classified as parametric or spa-
tial working memory, respectively [15]. While theoretical and experimental work
has focused mainly on distinguishing both coding schemes based on optimality
principles (e.g., accuracy of memorized sensory information), a more behavior-
oriented perspective suggests that combining both types of memory represen-
tations might be advantageous for motor functions [13]. Imagine for instance
a delayed response task in which the subject has to memorize the location of
several stimuli, which, however, may differ in luminance contrast or the level of
spatial attention directed to them. The memory strength of each item should
reflect this additional information to bias, for instance, saccadic eye movements
towards more salient stimulus locations.

In this paper, we present a novel dynamic field model that allows one to
represent and memorize the integral of previous inputs in a robust manner.
The framework of dynamic neural fields has been widely used in the past to
model spatial working memory of continuous variables like position [2,7,10,14].
The memory mechanism is based on the idea that a localized pattern of excita-
tion (or “bump”), which is initially triggered by a brief input, can be sustained
through strong recurrent excitatory and inhibitory connections within a neural
population tuned to the continuous dimension. Since their level of abstraction
favors analytical treatment [4], dynamic field models are also utilized for the
development of new technical solutions inspired by neural processing principles
[6]. The two specific challenges we address in the present study are motivated by
applications of a multi-item working memory [16]. The first question is concerned
with the impact on the memory representation when multiple sensory events are
presented sequentially as opposed to simultaneously. Since any existing bump
in the field changes the initial condition for subsequent stimuli, it is not clear
whether a stable multi-bump solution evolves in response to a series of sensory
events even if the solution exists when the stimuli are presented simultaneously.
The second question is more directly related to the suggested advantage of a
combined spatial and parametric memory representation. Does the field dynam-
ics support a simple monotonic relationship between the bump amplitude and
the strength and/or duration of external stimuli [3]. In a similar vein, given
a changing visual environment, can the internal representation be updated in
the face of new input directed to a specific memory item (“retro-cuing” [8]). To
answer these questions, we directly compare in numerical simulations the behav-
ior of the classical Amari model [1] with the behavior of a new model consisting
of two reciprocally coupled fields.
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2 Model Details

The dynamics of the field model proposed and analyzed by Amari is governed
by the following nonlinear integro-differential equation on a one-dimensional,
spatially extended domain:

∂u(x, t)
∂t

= −u(x, t) +
∫ ∞

−∞
w(|x − y|)f(u(y, t) − h)dy + S(x, t), (1)

where u(x, t) represents the activity at time t of a neuron at field position x.
In spatial working memory applications, neuron x is assumed to be tuned to a
continuous parameter (e.g., target direction). The function w(|x − y|) denotes
the distance-dependent strength of connections to neighboring neurons y. S(x, t)
represents a time-dependent localized input centered at site x, and f(u − h)
defines a firing rate function with threshold h > 0 [1].

To simplify the analysis of pattern formation in his field model, Amari
assumed f(u) to be the Heaviside step function. In the present study, we use a
smooth sigmoidal function with steepness parameter β, which approximates the
Heaviside function for β → ∞:

f(x) =
1

1 + e−β(x−h)
. (2)

Our novel model consists of two coupled fields, u(x, t) and v(x, t), governed
by the two integro-differential equations

∂u(x, t)
∂t

= −u(x, t) + v(x, t) +
∫ ∞

−∞
w(|x − y|)f(u(y, t) − h)dy + S(x, t), (3a)

∂v(x, t)
∂t

= −v(x, t) + u(x, t) −
∫ ∞

−∞
w(|x − y|)f(u(y, t) − h)dy. (3b)

Note that the neurons in field v are driven by the summed activity from neu-
rons in field u, but project their activity back locally only. For the coupling
function w(x), we follow Amari’s original work and chose a Mexican-hat connec-
tivity given by the difference of two Gaussian functions with a constant global
inhibition:

w(x) = Aexe(−x2/2σ2
ex) − Aine(−x2/2σ2

in) − gin, (4)

where Aex > Ain > 0 and σin > σex > 0 and gin > 0.
Since the same coupling function is applied to the field v with a negative

sign, the shape of the synaptic strengths represents an inverted Mexican-hat,
that is, inhibition dominates at shorter and excitation at longer distances.

To numerically approximate solutions of the continuum field models, we
apply a forward Euler method with a sufficiently fine discretization mesh to
Eqs. (1) and (3). We assume a finite domain Ω of length L = 120, which we
discretize by dividing it into N equal intervals of size Δx = 0.005. The chosen
time interval T = 60 is divided into M equal steps of size Δt = 0.01.
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To compute the spatial convolution, we used the convolution theorem, stating
that convolution in one domain equals point-wise multiplication in the other
domain. The Fourier transform and the inverse Fourier transform were performed
using MATLAB’s in-built functions fft and ifft, respectively.

3 Results

In the following numerical examples, we consider an input distribution given by
the sum of three equally spaced Gaussian functions

Snb(x) =
n∑

j=1

Ssj
e(−(x−xcj

)2/2σ2
s) − Si, (5)

centered at positions xcj ∈ {−40, 0, 40}. The parameter Si > 0 has been intro-
duced to define a finite width of the positive input range. We use the same set of
parameter values for both models to allow a direct comparison of results. These
values are σs = 1.5 and Si = 1 for the input, Aex = 10, Ain = 3, σex = 2,
σin = 3.5 and gin = 1 for the coupling function given by (4), and β = 1000 for
the firing rate function given by (2). The strength Ssj

and duration dsj
of the

inputs are adjusted in the different examples as indicated in the figure captions.
Figure 1 shows the evolution of a 3-bump solution in response to the three

inputs applied simultaneously at time t = 1. The steady states of the field activity
after cessation of the inputs indicate that both models support, in principle, the
existence of multiple bumps, and thus, a multi-item working memory. However,
the models behave quite differently when the same inputs are presented sequen-
tially. As shown in the Fig. 2, the Amari model evolves a single bump whereas
the 2-field model again converges to the 3-bump solution. In the Amari case, the
steady state excitation pattern in response to the first input (which occupies the
permitted total excitation length explained by the theory [1]) creates additional
surround inhibition, which ultimately suppresses the initial excitation caused
by the subsequent inputs. This is not the case for the 2-field model since the
increased lateral inhibition in the u-field is compensated by positive feedback
from the neurons in the v-field.

The results depicted in Fig. 3 demonstrate that in the Amari model, the
relative timing of the inputs and their relative strength play a crucial role in
a multi-item memory formation. If the temporal delay between inputs is suffi-
ciently short so that excitation patterns triggered by previous inputs have not
yet fully evolved, a multi-bump pattern may emerge (first row). Also, increas-
ingly stronger inputs may compensate for the additional inhibition caused by
existing bumps (second row). Importantly, since the bump shape is completely
determined by the recurrent interactions, the input strength is not reflected in
the bump amplitude. The 2-field model, on the other hand, shows a monotonic
relationship as required by a parametric working memory that encodes analog
parameters like for instance stimulus contrast in the firing rate (Fig. 4, left).
The dependency of bump amplitude on input strength is nearly linear for a
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Fig. 1. Left: snapshot of the evolution of a 3-bump solutions at a time when the input
distribution S3b(x) (dashed line) is still present. Right: steady state solutions at time
t = 60. Top: activity u(x) (solid line) of the Amari model. Bottom: activities u(x)
(solid line) and v(x) (dashed-dotted line) of the 2-field model. Input parameters are
Ssj = 5 and dsj = 1.

Fig. 2. Simulation of the field models with a sequence of three transient inputs S1b(x)
(dashed line). Top: activity u(x) of the Amari model with inputs given by (5) with
Ssj = 25 and dsj = 1. Bottom: activity u(x) of the 2-field model with inputs given by
(5) with Ssj = 11 and dsj = 1. The inputs were applied at times t1 = 1 (first column),
t2 = 17 (second column) and t3 = 33 (third column). The forth column shows the
steady state solutions at time t = 60.

very steep firing rate function, and becomes progressively more nonlinear with
decreasing β (right). The variation in the steepness of f(u) over a relatively
large parameter range shows that the encoding mechanism does not crucially
depend on the fine tuning of parameters affecting the recurrent interactions.
For a neural integrator to work properly, not only stimulus strength but also
stimulus duration should matter. In the simulation presented in the Fig. 5, we
study the influence of stimulus duration on the pattern formation. For the Amari
model, as well as an increase of input strength also a prolonged input duration
may overcome the additional inhibition caused by an already existing bump (left
panel, compare with the simulation in Fig. 2). The 2-field model shows the same
monotonic dependency of bump amplitude on duration (right panel) as for input
strength (Fig. 4). In line with continuously changing task demands in dynamic
environments, converging experimental evidence indicate that top-down signals
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Fig. 3. Simulation of the Amari model with a sequence of three transient inputs S1b(x)
(dashed line). In the first row, the inputs were applied at times t1 = 1 (first column),
t2 = 2 (second column) and t3 = 3 (third column). In the second row, the inputs
were applied at times t1 = 1 (first column), t2 = 17 (second column) and t3 = 33
(third column). Input parameters are Ssj ∈ {5, 16, 30} (first row) and Ssj ∈ {5, 30, 45}
(second row) and stimulus duration dsj = 1. The fourth column shows the steady state
solutions at time t = 60.

Fig. 4. Left: Steady state solution of the 2-field model with a firing rate function
given by (2) with steepness parameter β = 1000. A sequence of three inputs with
different strengths Ssj ∈ {5, 10, 15} and equal duration dsj = 1 was applied. Right:
bump amplitude as a function of the input strength for two steepness parameter values,
β = 1000 and β = 0.5.

Fig. 5. Steady state solutions of the Amari model (left) and the 2-field model (right)
triggered by a sequence of three inputs of different durations dsj ∈ {2.5, 1, 3}. The
inputs are given by (5) with Ssj = 25 (left) and Ssj = 11 (right), applied at times
tj ∈ {1, 17, 33}.

can prioritize items in working memory even after encoding [8]. For the working
memory model this means that the bump amplitude should adapt to changing
evidence at any time during the maintenance phase. Figure 6 shows this abil-
ity in a model simulation in which a steady state activity pattern consisting of
three bumps of equal strength (left) is updated by new inputs arriving at later
times (right).
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Fig. 6. Left: steady state solution of the 2-field model in response to a sequence of
three inputs of equal strength Ssj = 10 presented at times tj ∈ {1, 2, 3}. Right: steady
state solution of the 2-field model after the presentation of additional inputs at position
xc4 = −40 (with strength Ss4 = 10) and at position xc5 = 40 (with strength Ss5 =
5). The inputs were applied for a duration dsj = 1 at times t4 = 20 and t5 = 22,
respectively.

4 Discussion

In this paper we have incorporated a second population into Amari’s one-
population neural field model of lateral inhibition type. The second population
integrates the activity from the first population with an inverted Mexican-hat
connectivity function and projects it’s activity back locally. We have shown in
numerical simulations that the novel field model is able to explain input-selective
persistent activity that increases monotonically with the time integral of the
input. Since the sustained activity is spatially localized, the model combines the
defining features of spatial and parametric working memory [15]. Moreover, the
model supports a robust temporal integration of behaviorally relevant informa-
tion over longer timescales.

Carroll and colleagues [3] have recently proposed a field model that also
supports a continuum of possible bump amplitudes. Their model consists of sep-
arate excitatory and inhibitory populations that are intra- and interconnected
with distance-dependent connectivity functions. However, the parameters of the
network and the firing rate function (necessarily of piecewise linear shape) must
be tuned precisely (see also [9]). In particular, the recurrent excitation must
be inversely proportional to the slope of the nonlinearity to show a monotonic
dependency of the bump amplitude on input strength. In contrast, the evidence
of the present numerical study strongly suggests that the 2-field model is struc-
turally stable to changes in model parameters. The lateral inhibition-type cou-
pling function of the Amari model is known to support stable bumps over a
whole range of parameter values [1,4], and significant changes in the shape of
the firing rate function do not disturb parametric working memory (Fig. 4).

Motivated by specific challenges in modeling multi-item memory with
dynamic fields, we have also directly compared the behavior of the full 2-field
model with the behavior of the u-population alone (Amari model). The results
show that the feedback from the second population is necessary to ensure a
robust formation of a multi-bump solution independent of whether the inputs
are presented simultaneously or sequentially.
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In future work, we plan to complement the numerical analysis of the novel
field model with a more rigorous analysis of bump stability and the dependence
of bump amplitude on the integral of the input.
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Abstract. C4.5 and naive Bayes (NB) are two of the top 10 data mining
algorithms thanks to their simplicity, effectiveness, and efficiency. It is
well known that NB performs very well on some domains, and poorly on
others that involve correlated features. C4.5, on the other hand, typically
works better than NB on such domains. To integrate their advantages
and avoid their disadvantages, many approaches, such as model insertion
and model combination, are proposed. The model insertion approach
such as NBTree inserts NB into each leaf of the built decision tree. The
model combination approach such as C4.5-NB builds C4.5 and NB on a
training dataset independently and then combines their prediction results
for an unseen instance. In this paper, we focus on a new view and propose
a discriminative model selection approach. For detail, at the training
time, C4.5 and NB are built on a training dataset independently, and
the most reliable one is recorded for each training instance. At the test
time, for each test instance, we firstly find its nearest neighbor and then
choose the most reliable model for its nearest neighbor to predict its class
label. We simply denote the proposed algorithm as C4.5‖NB. C4.5‖NB
retains the interpretability of C4.5 and NB, but significantly outperforms
C4.5, NB, NBTree, and C4.5-NB.

Keywords: Model selection · C4.5 · naive Bayes · The nearest neighbor

1 Introduction and Related Work

Classification is one of the fundamental problems in data mining, in which a
learner attempts to construct a classifier from a given set of training instances
with class labels. Given an unseen instance x, represented by an attribute vector
< a1, a2, · · · , am >, the constructed probability-based classifier classifies x into
the class ĉ(x) with the maximum class membership probability P̂ (c|x):

ĉ(x) = arg max
c∈C

P̂ (c|x) (1)

where C is a set of all possible values of class c, P̂ (c|x) is the estimated class
membership probability of x, and ĉ(x) is the estimated class value of x.
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 419–426, 2016.
DOI: 10.1007/978-3-319-44778-0 49
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Naive Bayes (NB) is a typical probability-based classifier, which uses Eq. 2
to estimate its class membership probabilities.

P̂ (c|x) =
P̂ (c)

∏m
j=1 P̂ (aj |c)∑

c P̂ (c)
∏m

j=1 P̂ (aj |c)
, (2)

where the prior probability P̂ (c) with Laplace smoothing is defined using Eq. 3,
and the conditional probability P̂ (aj |c) with Laplace smoothing is defined using
Eq. 4.

P̂ (c) =
∑n

i=1 δ(ci, c) + 1
n + nc

, (3)

P̂ (aj |c) =
∑n

i=1 δ(aij , aj)δ(ci, c) + 1∑n
i=1 δ(ci, c) + nj

, (4)

where n is the number of training instances, nc is the number of classes, ci is
the class label of the ith training instance, nj is the number of values of the j th
attribute, aij is the j th attribute value of the ith training instance, aj is the j th
attribute value of the test instance, and δ(•) is a binary function, which is one
if its two parameters are identical and zero otherwise.

Because of its easiness to construct and interpret, along with its good per-
formance, it is widely used to address classification problems and has been one
of the top 10 algorithms in data mining [1]. However, it is well known that NB
performs poorly on the domains that involve correlated features [2] and its clas-
sification performance does not scale up as well as decision trees in some large
databases [3].

C4.5 [4] is another top 10 algorithm in data mining [1] due to its simplic-
ity, effectiveness, efficiency, and interpretability. However, the splitting process
of C4.5 easily suffers from the fragmentation problem. That is, when the par-
titioning process continues, there is no enough instances on a leaf node, which
has been proved to produce poor performance of class probability estimation.
In order to alleviate this problem, Eq. 5 with Laplace smoothing [5] is used to
estimate its class membership probabilities.

P̂ (c|x) =
∑k

i=1 δ(ci, c) + 1
k + nc

(5)

where k is the number of training instances in the leaf node that x falls into.
It can be seen that NB performs very well on some domains, and poorly on

others that involve correlated features. C4.5, on the other hand, typically works
better than NB on such domains. To integrate their advantages and avoid their
disadvantages, many approaches, such as model insertion and model combina-
tion, are proposed. The model insertion approach such as NBTree [3] inserts NB
into each leaf of the built decision tree. The model combination approach such
as C4.5-NB [6] builds C4.5 and NB on a training dataset independently and then
combines their prediction results for an unseen instance.
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In this paper, we focus on a new view and propose a discriminative model
selection approach. For detail, at the training time, C4.5 and NB are built on
a training dataset independently, and the most reliable one is recorded for each
training instance. At the test time, for each test instance, we firstly find its near-
est neighbor and then choose the most reliable model for its nearest neighbor to
predict its class label. We simply denote the proposed algorithm as C4.5‖NB.
C4.5‖NB retains the interpretability of C4.5 and NB, but significantly outper-
forms C4.5, NB, NBTree, and C4.5-NB.

The rest of this paper is organized as follows. In Sect. 2, we propose a discrim-
inative model selection approach. In Sect. 3, we describe experimental method-
ology and results in detail. Finally, we draw conclusions and outline the main
directions for our future work.

2 A Discriminative Model Selection Approach

In this section, we focus on a new view and propose a discriminative model
selection approach. Now, let us introduce our proposed approach. At the training
time, we build multiple classification models and compare their reliability for
each training instance. For example, we build two classification models M1 and
M2, e.g., C4.5 and NB, on a training dataset. For each training instance x,
P̂1(c|x) and P̂2(c|x) are the class membership probabilities that the instance x
belongs to each possible class c estimated by M1 and M2, respectively. Then
Eqs. 6 and 7 are used to predict the class of the instance x respectively, here
ĉ1(x) and ĉ2(x) denote the class value of the instance x predicted by M1 and
M2, respectively.

ĉ1(x) = arg max
c∈C

P̂1(c|x) (6)

ĉ2(x) = arg max
c∈C

P̂2(c|x) (7)

Then, for each training instance x, how to compare the reliability of two
models? Let c(x) be the true class label of x and flags(x) be a mark variable
which indicates which model is more reliable for x. When flags(x) = 1, it means
that the first model M1 is more reliable than M2. When flags(x) = 2, it means
that the second model M2 is more reliable than M1. We decide the reliability
of two models by comparing c(x) with ĉ1(x) and ĉ2(x). There are four possible
cases: the first one is that ĉ1(x) = c(x) and ĉ2(x) �= c(x). Obviously, in this case,
the first model is more reliable for the instance x and thus flags(x) = 1. The
second one is that ĉ2(x) = c(x) and ĉ1(x) �= c(x). In this case, the second model
is more reliable for the instance x and thus flags(x) = 2. The third one is that
both ĉ1(x) and ĉ2(x) are equal or not equal to c(x), but P̂1(c(x)|x) ≥ P̂2(c(x)|x).
In this case, we think that the first model is more reliable for the instance x and
thus flags(x) = 1. The fourth one is that both ĉ1(x) and ĉ2(x) are equal or
not equal to c(x), but P̂1(c(x)|x) < P̂2(c(x)|x). In this case, we think that the
second model is more reliable for the instance x and thus flags(x) = 2.

After above training stage, two classification models have been built, and
the mark array flags that records the more reliable model for each training
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instance has been learned. At the test time, how to predict the class value of a
test instance? We borrow the idea from the k−Nearest Neighbor (kNN) algo-
rithm, which is also one of the top 10 data mining algorithms [1]. The kNN
algorithm firstly finds k nearest neighbors of a test instance from the whole
training instances and then classifies the test instance as the majority class of
its k nearest neighbors. The kNN algorithm is in fact a local learning algorithm,
and it builds different local target functions for different test instances. When
the target function is very complex, the local learning technique always shows
good performance. When k = 1, the resulting algorithm is called the 1−Nearest
Neighbor (1NN) algorithm. Motivated by the 1NN algorithm, we firstly find the
nearest neighbor of a test instance from the whole training instances and then
choose the more reliable model of its nearest neighbor to predict its class label.
That is to say, if the mark variable of its nearest neighbor is equal to 1, we use
the first model to predict its class label. Otherwise, we use the second model to
predict its class label.

Based on above process, our proposed approach can be divided into a training
algorithm and a testing algorithm, which are described as Algorithms 1 and 2,
respectively.

Algorithm 1. Discriminative Model Selection-Training (TD)
Input: TD-a training dataset
Output: M1-the first built model; M2-the second built model; flags-the learnt mark array that

records the more reliable model for each training instance
1: Build M1 using TD
2: Build M2 using TD
3: for each training instance x do
4: Use M1 to estimate P̂1(c(x)|x)
5: Use M2 to estimate P̂2(c(x)|x)
6: Use M1 to predict ĉ1(x)
7: Use M2 to predict ĉ2(x)
8: //Tackle the following four cases discriminatively:
9: if ĉ1(x) = c(x) and ĉ2(x) �= c(x) then
10: flags(x) = 1
11: else if ĉ2(x) = c(x) and ĉ1(x) �= c(x) then
12: flags(x) = 2

13: else if P̂1(c(x)|x) ≥ P̂2(c(x)|x) then
14: flags(x) = 1
15: else
16: flags(x) = 2
17: end if
18: end for
19: Return M1, M2, and flags

It can be seen that our proposed approach is a meta learning approach. When
we choose different base classifiers, we will get different classifiers. In this paper,
we choose C4.5 and NB as two base classifiers, respectively. We simply denote the
resulting algorithm as C4.5‖NB. In real-world applications, we can choose any
two classifiers that can output class membership probabilities to construct a dis-
criminative model selection algorithm in the manner above. Traditional machine
learning algorithms usually train a single model to predict the class labels of all
test instances. Different from those algorithms, our proposed approach chooses
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Algorithm 2. Discriminative Model Selection-Testing (M1, M2, flags, TD, y)
Input: M1-the first built model; M2-the second built model; flags-the learnt mark array; TD-a

training dataset; y-a test instance
Output: ĉ(y)-the predicted class label of y
1: Find the nearest neighbor x of y from TD
2: //Tackle the following two cases discriminatively:
3: if flags(x)=1 then
4: Use M1 to predict ĉ1(y)
5: ĉ(y) = ĉ1(y)
6: else
7: Use M2 to predict ĉ2(y)
8: ĉ(y) = ĉ2(y)
9: end if
10: Return ĉ(y)

different learning models to predict the class labels for different test instances,
and the selected model is the more reliable one for a specific test instance. This
is the reason why our proposed approach can always improve the classification
performance compared to its competitors. The detailed experimental results in
Sect. 3 validate the effectiveness of our proposed approach.

3 Experiments and Results

In this section, we design a group of experiments to validate the classification
performance of our proposed algorithm C4.5‖NB. We compare it to its competi-
tors including C4.5, NB, 1NN, NBTree, and C4.5-NB in terms of classification
accuracy. We apply the existing implementations of NB, C4.5, 1NN and NBTree
in the WEKA platform [7] and implement our proposed algorithm C4.5‖NB
and its competitor C4.5-NB in the WEKA platform. Note that, we use Laplace
smoothing [5] in C4.5 to estimate its class membership probabilities.

We ran our experiments on 36 UCI data sets [8] published on the main web
site of the WEKA platform [7], which represent a wide range of domains and data
characteristics. In our experiments, the classification accuracy of each algorithm
on each dataset is obtained via 10 runs of 10-fold cross-validation. Runs with the
various algorithms are carried out on the same training sets and evaluated on
the same test sets. In particular, the cross-validation folds are the same for all
experiments on each dataset. Table 1 shows the detailed classification accuracy of
each algorithm on each dataset. Besides, averages are summarized at the bottom
of the table. The average (arithmetic mean) across all datasets provides a gross
indication of relative performance in addition to other statistics.

Then, we take advantage of KEEL Data-Mining Software Tool [9] to complete
the Wilcoxon signed-ranks test [10] for comparing each pair of algorithms. The
Wilcoxon signed-ranks test is a non-parametric statistical test, which ranks the
differences in performances of two classifiers for each dataset, ignoring the signs,
and compares the ranks for positive and negative differences. Table 2 shows the
detailed ranks computed by the Wilcoxon test. In Table 2, each number below
the diagonal is the sum of ranks for these datasets on which the algorithm in the
row outperforms the algorithm in the corresponding column (the sum of ranks
for positive differences, denoted by R+), and each number above the diagonal
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Table 1. The detailed comparison results in terms of classification accuracy (%).

Dataset NB C4.5 1NN NBTree C4.5-NB C4.5‖NB

Anneal 86.59 ± 3.31 98.57 ± 1.04 99.13 ± 1.06 98.50 ± 1.30 98.78 ± 0.99 98.81 ± 1.03

Anneal.ORIG 75.03 ± 4.45 92.35 ± 2.53 95.45 ± 2.21 97.13 ± 2.10 94.00 ± 2.95 95.10 ± 2.00

Audiology 72.64 ± 6.10 77.26 ± 7.47 75.29 ± 7.44 76.82 ± 7.38 76.32 ± 6.49 78.56 ± 6.56

Autos 57.41 ± 10.77 81.77 ± 8.78 74.55 ± 9.40 77.82 ± 9.63 81.56 ± 8.78 79.29 ± 8.38

Balance-scale 90.53 ± 1.67 77.82 ± 3.42 78.16 ± 4.98 75.96 ± 5.16 78.41 ± 3.19 81.44 ± 3.56

Breast-cancer 72.70 ± 7.74 74.28 ± 6.05 68.58 ± 7.52 70.99 ± 7.94 71.66 ± 6.73 73.57 ± 6.81

Breast-cancer 96.07 ± 2.18 95.01 ± 2.73 95.45 ± 2.52 96.37 ± 2.15 95.77 ± 2.28 96.37 ± 2.16

Colic 78.70 ± 6.20 85.16 ± 5.91 79.11 ± 6.51 81.11 ± 6.50 83.35 ± 5.41 81.96 ± 5.79

Colic.ORIG 66.18 ± 7.93 66.31 ± 1.23 65.18 ± 7.93 68.94 ± 8.00 66.08 ± 6.91 72.19 ± 7.93

Credit-rating 77.86 ± 4.18 85.57 ± 3.96 81.57 ± 4.57 85.42 ± 4.06 84.12 ± 4.28 82.57 ± 4.75

German-credit 75.16 ± 3.48 71.25 ± 3.17 71.88 ± 3.68 74.64 ± 3.89 72.44 ± 3.47 73.18 ± 3.52

Pima-diabetes 75.75 ± 5.32 74.49 ± 5.27 70.62 ± 4.67 74.96 ± 5.09 75.79 ± 5.12 75.10 ± 4.92

Glass 49.45 ± 9.50 67.63 ± 9.31 69.95 ± 8.43 69.84 ± 9.81 68.61 ± 9.26 68.55 ± 9.66

Heart-c 83.34 ± 7.20 76.94 ± 6.59 76.06 ± 6.84 80.03 ± 6.92 80.11 ± 7.00 82.09 ± 7.27

Heart-h 83.95 ± 6.27 80.22 ± 7.95 78.33 ± 7.54 81.50 ± 6.53 84.06 ± 6.65 83.38 ± 6.95

Heart-statlog 83.59 ± 5.98 78.15 ± 7.42 76.15 ± 8.46 80.93 ± 7.19 80.26 ± 7.14 81.78 ± 6.84

Hepatitis 83.81 ± 9.70 79.22 ± 9.57 81.40 ± 8.55 81.30 ± 9.20 80.98 ± 10.74 80.15 ± 9.80

Hypothyroid 95.30 ± 0.73 99.54 ± 0.36 91.52 ± 1.16 99.59 ± 0.36 99.52 ± 0.38 99.02 ± 0.49

Ionosphere 82.17 ± 6.14 89.74 ± 4.38 87.10 ± 5.12 90.03 ± 4.72 90.63 ± 4.17 93.05 ± 3.76

Iris 95.53 ± 5.02 94.73 ± 5.30 95.40 ± 4.80 93.47 ± 5.19 95.53 ± 5.02 95.33 ± 4.69

kr-vs-kp 87.79 ± 1.91 99.44 ± 0.37 90.61 ± 1.65 97.81 ± 2.05 99.44 ± 0.37 99.05 ± 0.50

Labor 93.57 ± 10.27 78.60 ± 16.58 84.30 ± 16.24 91.63 ± 13.03 89.30 ± 12.70 91.77 ± 11.21

Letter 64.07 ± 0.91 88.03 ± 0.71 95.99 ± 0.41 86.77 ± 0.77 88.31 ± 0.71 88.16 ± 0.65

Lymphography 83.13 ± 8.89 75.84 ± 11.05 81.54 ± 8.48 81.90 ± 9.78 78.46 ± 9.70 82.31 ± 8.37

Mushroom 95.76 ± 0.73 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.02

Primary-tumor 49.71 ± 6.46 41.39 ± 6.94 34.64 ± 7.07 47.50 ± 6.49 45.49 ± 6.71 48.30 ± 6.67

Segment 80.17 ± 2.12 96.79 ± 1.29 97.15 ± 1.11 95.23 ± 1.43 96.36 ± 1.29 96.15 ± 1.28

Sick 92.75 ± 1.36 98.72 ± 0.55 96.10 ± 0.92 97.88 ± 0.71 98.45 ± 0.62 98.49 ± 0.68

Sonar 67.71 ± 8.66 73.61 ± 9.34 86.17 ± 8.45 77.11 ± 0.33 74.49 ± 9.52 78.91 ± 9.20

Soybean 92.94 ± 2.92 91.78 ± 3.19 90.17 ± 3.29 92.87 ± 3.07 93.54 ± 2.70 93.16 ± 2.95

Splice 95.41 ± 1.18 94.03 ± 1.30 75.97 ± 2.07 95.40 ± 1.18 95.83 ± 1.00 95.76 ± 1.11

Vehicle 44.68 ± 4.59 72.28 ± 4.32 69.59 ± 3.77 70.98 ± 4.72 72.41 ± 4.49 72.73 ± 4.06

Vote 90.02 ± 3.91 96.57 ± 2.56 92.23 ± 3.95 95.03 ± 3.29 96.32 ± 2.72 93.17 ± 3.56

Vowel 62.90 ± 4.38 80.20 ± 4.36 99.05 ± 1.04 92.35 ± 3.02 80.78 ± 4.39 85.14 ± 3.85

Waveform 80.01 ± 1.45 75.25 ± 1.90 73.41 ± 1.82 79.84 ± 2.18 76.44 ± 1.79 79.79 ± 1.67

Zoo 94.97 ± 5.86 92.61 ± 7.33 96.55 ± 5.34 94.73 ± 6.72 95.48 ± 6.11 96.93 ± 4.61

Average 79.37 83.37 82.62 84.79 84.42 85.31

is the sum of ranks for these datasets on which the algorithm in the column
is worse than the algorithm in the corresponding row (the sum of ranks for
negative differences, denoted by R−). According to the table of exact critical
values for the Wilcoxon test, for a confidence level of α = 0.05 and N = 36 data
sets, we speak of two classifiers as being “significantly different” if the smaller
of R+ and R− is equal or less than 208 and thus we reject the null-hypothesis.
Table 3 summarizes the comparison results of the Wilcoxon test. In Table 3,
• indicates that the algorithm in the row significantly outperforms the algorithm
in the corresponding column.
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Table 2. Ranks computed by the Wilcoxon test.

Algorithm NB C4.5 1NN NBTree C4.5-NB C4.5‖NB

NB - 214.0 287.0 165.0 162.0 128.5

C4.5 452.0 - 412.5 210.5 144.5 124.5

1NN 379.0 253.5 - 157.5 173.5 139.0

NBTree 501.0 455.5 508.5 - 343.5 190.0

C4.5-NB 504.0 521.5 492.5 322.5 - 207.5

C4.5‖NB 537.5 541.5 527.0 476.0 458.5 -

Table 3. Summary of the Wilcoxon test.

Algorithm NB C4.5 1NN NBTree C4.5-NB C4.5‖NB

NB -

C4.5 -

1NN -

NBTree • • -

C4.5-NB • • • -

C4.5‖NB • • • • • -

From these experimental results, we can see that our discriminative model
selection algorithm C4.5‖NB significantly outperforms its competitors: C4.5, NB,
1NN, NBTree, and C4.5-NB. Now, we summarize some highlights briefly as
follows:

1. Our C4.5‖NB significantly outperforms three single models. C4.5‖NB out-
performs NB with R+ = 537.5 and R− = 128.5, C4.5 with R+ = 541.5 and
R− = 124.5, and 1NN with R+ = 527.0 and R− = 139.0. The smallers of
each pair of R+ and R− are all much less than 208, and thus the differences
between C4.5‖NB and NB, C4.5, and 1NN are all significant. Additionally,
the averaged classification accuracy of C4.5‖NB (85.31 %) is also much higher
than those of NB (79.37 %), C4.5 (83.37 %), and 1NN (82.62 %).

2. Our C4.5‖NB is markedly better than other two hybrid models. C4.5‖NB
outperforms NBTree with R+ = 476.0 and R− = 190.0, and C4.5-NB with
R+ = 458.5 and R− = 207.5. The smallers of each pair of R+ and R− are
all less than 208, and thus the differences between C4.5‖NB and NBTree and
C4.5-NB are all significant. Additionally, the averaged classification accuracy
of C4.5‖NB (85.31 %) is also higher than those of NBTree (84.79 %) and
C4.5-NB (84.42 %).

3. Seen from above comparison results, our C4.5‖NB is overall the best one
among all these algorithms used to compare. That is to say, our proposed
discriminative model selection approach is effective, and is even better than
the existing model insertion and model combination approaches.
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4 Conclusions and Future Work

C4.5 and naive Bayes (NB) are two of the top 10 data mining algorithms thanks
to their simplicity, effectiveness, and efficiency. To integrate their advantages
and avoid their disadvantages, many approaches, such as model insertion and
model combination, are proposed. However, all these approaches always try to
train a single model to predict all test instances’ class labels. In this paper, we
focus on a new view and propose a discriminative model selection approach.
Our proposed approach discriminatively chooses different single models (C4.5
or NB) for different test instances. We simply denote the proposed algorithm as
C4.5‖NB. C4.5‖NB retains the interpretability of C4.5 and NB, but significantly
outperforms its competitors: C4.5, NB, 1NN, NBTree, and C4.5-NB.

Future work has two primary points. The first point is that, our current ver-
sion only builds two models (C4.5 and NB) using a training dataset. In fact, our
approach can be extended to build more models at the training time. This is
a main research direction for our future work. In addition, our current version
requires that the selected base classifiers can output class membership proba-
bilities, and thus how to adapt it to decision bound-based classifiers is another
research direction for our future work.
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Herrera, F.: Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft
Comput. 17(2–3), 255–287 (2011)

10. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)



Adaptive Natural Gradient Learning Algorithms
for Unnormalized Statistical Models

Ryo Karakida1(B), Masato Okada1,2, and Shun-ichi Amari2

1 The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
karakida@mns.k.u-tokyo.ac.jp, okada@k.u-tokyo.ac.jp

2 RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
amari@brain.riken.jp

Abstract. The natural gradient is a powerful method to improve the
transient dynamics of learning by utilizing the geometric structure of the
parameter space. Many natural gradient methods have been developed
for maximum likelihood learning, which is based on Kullback-Leibler
(KL) divergence and its Fisher metric. However, they require the com-
putation of the normalization constant and are not applicable to statis-
tical models with an analytically intractable normalization constant. In
this study, we extend the natural gradient framework to divergences for
the unnormalized statistical models: score matching and ratio matching.
In addition, we derive novel adaptive natural gradient algorithms that
do not require computationally demanding inversion of the metric and
show their effectiveness in some numerical experiments. In particular,
experimental results in a multi-layer neural network model demonstrate
that the proposed method can escape from the plateau phenomena much
faster than the conventional stochastic gradient descent method.

Keywords: Natural gradient · Score matching · Ratio matching ·
Unnormalized statistical model · Multi-layer neural network

1 Introduction

The natural gradient method was invented to accelerate the steepest gradient
descent learning by using underlying Riemannian parameter space [1,2]. Many
natural gradient methods have been developed with regards to Kullback-Leibler
(KL) divergence and its Riemannian metric, Fisher information matrix, and suc-
ceeded in practical applications. In particular, for training multi-layer percep-
trons, the natural gradient has been superior to other methods such as second-
order optimization because it can avoid or alleviate the plateau phenomena [3,4].
However, the natural gradient methods based on KL divergence are hard to apply
to models with an analytically intractable normalization constant. The compu-
tation of the normalization constant requires some approximation of the object
function or computationally demanding sampling approaches such as Markov
chain Monte Carlo method.

c© Springer International Publishing Switzerland 2016
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To avoid computing the normalization constant, alternative divergences have
been developed such as score matching [5] and ratio matching [6]. For training
unnormalized models with continuous random variables, score matching has been
successfully applied to various practical applications such as signal processing [5]
and representation learning for visual and acoustic data [7]. We can also train
single-layer neural network models [8,9] or two-layer ones including the ana-
lytically intractable normalization constants [7]. For training those with binary
random variables, ratio matching was also invented as an extension of the score
matching [6]. The object functions of score matching and ratio matching are
usually optimized by the conventional steepest gradient decent algorithm. If we
can extend the natural gradient framework to score matching or ratio matching
divergences, it will improve the transient dynamics of the learning.

In this study, we first derive the Riemannian metric of score matching and
propose its natural gradient learning. In particular, we propose adaptive natural
gradient algorithms that do not require computationally demanding inversion
of the metric. Moreover, we also derive the metric and adaptive algorithms
for the ratio matching. In numerical experiments, we show that the proposed
adaptive algorithms can converge faster than the conventional steepest gradi-
ent descent. In particular, experimental results in a multi-layer neural network
model demonstrated that it can escape from the plateau region much faster than
the conventional one.

2 Score Matching and Its Natural Gradient

The score matching measures a difference between two probability distributions
q(x) and p(x) by the squared distance between derivatives of the log-density,

DSM [q : p] =
∫

dxq(x)
∑

i

|∂i log q(x) − ∂i log p(x)|2, (1)

where we denote the derivative with respect to the i-th random variable as a
partial derivative symbol ∂i = ∂

∂xi
. This derivative makes it possible to avoid

computing the normalization constant. In this paper, we refer to this objective
function (1) as score matching (SM) divergence. Its Riemannian metric and
natural gradient are derived as below.

2.1 Riemannian Metric of Score Matching

As is known in information geometry, we can derive the Riemannian structure
from any divergence [2,10]. Let us consider a parametric probability distribu-
tion p(x; ξ). When we estimate the parameter ξ with a divergence D[q : p], its
parameter space has the Riemannian metric matrix G defined by D[p(x; ξ) :
p(x; ξ + dξ)] =

∑
i,j Gijdξidξj . The metric matrix G can be obtained by the

second derivative, i.e., Gij = ∂2

∂ξ′
i∂ξ′

j
D[p(x; ξ) : p(x; ξ′)]

∣∣
ξ′=ξ

.
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When we consider the SM divergence, we can derive its metric as the following
positive semi-definite matrix,

G =
∑

i

< ∇∂i log p(x; ξ)∇∂i log p(x; ξ)T >p(x;ξ), (2)

where we denote the derivative with regard to a parameter vector ξ as ∇ = ∂
∂ξ

and the average over a probability distribution p as < · >p. Note that, when
we consider KL divergence, DKL[q : p] =

∫
dxq(x) log q(x)

p(x) , its metric becomes
the Fisher information matrix, i.e., G =< ∇ log p(x; ξ)∇ log p(x; ξ)T >p(x;ξ). In
contrast to the Fisher metric, which is composed of the derivatives of the log
likelihood, the score matching metric is composed of those differentiated with
respect to ∂i.

2.2 Adaptive Natural Gradient of Score Matching

Taking the Riemannian structure of an objective function into consideration, one
can find the steepest direction of parameter space by natural gradient learning
[1,2]. The natural gradient update is written as

ξt+1 = ξt − ηtG
−1
t ∇Lt, (3)

where ξt is the parameter at time step t and ηt is a learning rate that may
depend on t. In the case of score matching, the objective function Lt is defined
by Lt = DSM [q(x) : p(x; ξt)], where we denote an input data distribution as q(x)
and a model distribution with learning parameter ξ as p(x; ξ). After straight-
forward calculation, this objective function can be transformed into Lt =<
l(x; ξt) >q(x) + const. with l(x; ξ) =

∑
i

{
1
2 (∂i log p(x; ξ))2 + ∂2

i log p(x; ξ)
}

[5]. In this study, we compute the natural gradient in the form of online learning
algorithm where Lt = l(xt; ξt), and where each data sample xt is independently
generated from q(x).

The inversion of metric (2) at time step t defined by G−1
t is approximately

obtained as below. In general, the exact analytical calculation of metric (2) may
be intractable, because it requires the average over the unnormalized statistical
model, i.e., < · >p(x;ξt)

. Here, let us approximate the average over p(x; ξt) by
empirical expectation,

G ∼
∑

i

< ∇fi(x; ξ)∇fi(x; ξ)T >q(x), (4)

where we define a score function by fi(x; ξ) = ∂i log p(x; ξ). If the input data is
generated by a true model distribution q(x) = p(x; ξ∗) and the learning para-
meter ξt converges to the true value ξ∗, the approximated metric over the input
data is asymptotically equivalent to the exact metric.
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In addition, we introduce an adaptive method to calculate the inversion of
empirical metric (4), because the inversion of the matrix demands much com-
putational time in practice. Similar to the derivation of the adaptive natural
gradient on KL divergence [3], we consider the online update of the metric,

Gt+1 = (1 − εt)Gt + εt

∑
i

∇fi(xt; ξt)∇fi(xt; ξt)
T . (5)

When a learning rate εt is small enough, we may approximate the inversion G−1
t+1

by using an approximation formula (A+ εB)−1 ∼ A−1 − εA−1BA−1 and obtain
the adaptive update rule of the inverted metric,

G−1
t+1 = (1 + εt)G−1

t − εt G−1
t

∑
i

∇fi(xt; ξt)∇fi(xt; ξt)
T G−1

t . (6)

Note that, when there are N input dimensions xj (j = 1, ..., N) and K parameter
dimensions ξj (j = 1, ...,K), the computational complexity at every update step
becomes O(NK2).

In this paper, we also propose another adaptive algorithm with less compu-
tational complexity than (6). The ordinary online update of the metric (5) is
composed from the summation over all the score functions fi (i = 1, ..., N). In
contrast, we may asynchronously update the contribution of each score function
as follows:

Gt+1 = (1 − εt)Gt + εt∇fi(t)(xt; ξt)∇fi(t)(xt; ξt)
T , (7)

where the index number i(t) is randomly chosen from {1, 2, ..., N} at every time
step t. The inversion of (7) leads to

G−1
t+1 = (1 + εt)G−1

t − εt G−1
t ∇fi(t)(xt; ξt)∇fi(t)(xt; ξt)

T G−1
t . (8)

Let us refer to update rule (6) as an adaptive natural gradient (ANG) learn-
ing algorithm and (8) as an asynchronous adaptive natural gradient (A-ANG)
learning algorithm. The computational complexity O(NK2) in ANG learning is
reduced to O(K2) in A-ANG learning. Numerical experiments in Sect. 4 demon-
strate that A-ANG learning can converge faster than ANG learning.

3 Ratio Matching and Its Natural Gradient

Our framework to derive the adaptive natural gradient learning algorithms for
score matching in Sect. 2 is also applicable to the case of ratio matching. In ratio
matching, the score function is changed from the derivative of the log-density
to a nonlinear function of the density ratio [6]. The objective function of ratio
matching is given by

DRM [q : p] =
∑
x

q(x)
∑

i

|g (q(x)/q(x̄i)) − g (p(x)/p(x̄i))|2 . (9)
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We define the nonlinear function g(x) = 1/(1 + x) that represents a vector in
which the i-th element of x has been flipped as x̄i. Numerical experiments in
neural network models such as Boltzmann machine [6] and restricted Boltzmann
machine [11] have demonstrated that ratio matching can perform comparably
to or better than maximum likelihood estimation.

In a process similar to that in the score matching, we can derive the following
Riemannian metric of the ratio matching:

G =
∑

i

〈
∇g

(
p(x; ξ)
p(x̄i; ξ)

)
∇g

(
p(x; ξ)
p(x̄i; ξ)

)T
〉

p(x;ξ)

. (10)

For update rule (3), the objective function of ratio matching is given Lt =
DRM [q(x) : p(x; ξt)]. After straightforward calculation, one can transform this
object function into Lt =< l(x; ξt) >q(x) + const. with l(x; ξ) =

∑
i g2(p(x)/

p(x̄i)) [6]. For the inversion of the metric in ratio matching, we can use ANG
algorithm (6) and A-ANG algorithm (8) by substituting the score function
fi(x; ξ) = g(p(x; ξ)/p(x̄i; ξ)).

4 Numerical Experiments

4.1 Restricted Boltzmann Machine

To confirm the performance of the proposed methods, we first conducted numer-
ical experiments in the restricted Boltzmann machine (RBM) [11]. The model
distribution of RBM is defined by log p(x;W,b, c) =

∑
i log(1+exp(

∑
j Wijxj +

ci))+bTx−log Z with binary visible variable x = {0, 1}N and model parameters
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Fig. 1. Transient dynamics of ratio matching learning in RBM model: the conventional
stochastic gradient descent (SGD) method, the proposed adaptive natural gradients
(ANG and A-ANG), and natural gradient with exact metric (NG) are shown. Test
error means the object function on test data samples.
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W ∈ R
N×N , b ∈ R

N and c ∈ R
N . The normalization constant Z is analytically

intractable and requires the summation over 2N states. We artificially gener-
ated 5,000 input data samples from a RBM with fixed parameters and trained
another RBM by using ratio matching.

Figure 1 shows the averaged transient dynamics over 10 randomly chosen
initial conditions. We set N = 8 and learning rates ηt = 0.001 and εt = 0.5/t. The
proposed methods converged faster than the conventional stochastic gradient
descent (SGD) algorithm. The update rule of SGD was given by ξt+1 = ξt −
ηt∇Lt. In the sense of the number of steps, the A-ANG learning (red line)
converged much faster than ANG learning (blue line) and as fast as the exact
natural gradient learning (dashed line). Note that the metric of the exact natural
gradient learning,

∑
i < ∇fi∇fT

i >p, requires the summation over 2N states at
every time step. In the sense of CPU processing time, the exact natural gradient
learning and A-ANG learning took the longest and shortest times to converge,
respectively, among the four learning algorithms shown in Fig. 1. Therefore, we
can conclude that A-ANG learning is the most efficient way to train the RBM.

We also conducted similar experiments in the score matching learning of
Gaussian-Bernoulli RBM [8] by using the proposed adaptive natural gradient
methods. In this case, we also confirmed that the A-ANG learning converges
much faster than SGD learning.

4.2 Multi-layer Neural Network Model

Next, we trained the energy-based model of a two-layer neural network for nat-
ural stimuli proposed by Köster and Hyvärinen [7]. This model is defined by
log p(x;W,V ) =

∑
h F (vT

h G(Wx))−log Z(W,V ), where the nonlinear activation
functions are given by F (u) = −√

u + 1 and element-wise square G(u) = u2. We
denote an N -dimensional random variable as x ∈ R

N , an N × N weight matrix
between the input and the first hidden layers as W , an N × N non-negative

102 103 104 105

−30

−20

−10

0

Number of steps

Te
st

 e
rro

r

SGD
ANG
A−ANG

Fig. 2. Transient dynamics of score matching learning in a two-layer neural network
model: Test error means the object function on test data samples.
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Table 1. Averaged performance of each learning algorithm over 10 randomly chosen
initial conditions.

SGD ANG A-ANG

Test error (ave. ± std) −33.21± 2.25 −32.14± 3.58 −33.84± 2.50

The number of steps for test error < −28 2.16× 105 1.93× 104 1.09× 104

Processing time (relative to SGD) 1.0 0.34 0.18

weight matrix between the first and second hidden layers as V , and the rows
of V as vT

h . This model trained with score matching learns responses similarly
to simple cells and complex cells in the sensory cortex [7]. Note that since the
normalization constant Z(W,V ) is given by an intractable integral, this model is
difficult to train by maximum likelihood learning and its natural gradient with
a Fisher metric.

In this study, we set N = 8 and trained the model in an unsupervised
manner with 5,000 samples of eight-dimensional data artificially generated by
the Independent Subspace Analysis (ISA) model [7]. We set the data vector
x to be composed from four subspace vectors si ∈ R

2 (i = 1, 2, 3, 4), that is,
x = A[s1 s2 s3 s4]T , where each si is independently generated by a product
between a uniform random variable and a two-dimensional random Gaussian
variable, and A is a random mixing matrix. The learning rates were set to
ηt = 5 × 10−5 and εt = 0.5/t. To preserve non-negativity constraint Vij ≥ 0
and make the learning trajectory more stable, we transformed the variables Vij

to Vij = U2
ij (Uij ∈ R) without loss of generality.

As shown in Fig. 2, we found that the proposed methods converge much faster
than the SGD learning. Similar to the experiments in RBMs, A-ANG learning
converged faster than ANG learning. More interestingly, we revealed that ANG
and A-ANG avoid the plateau caused by the singularity of the parameter space,
where the transient dynamics of SGD learning become very slow. The similar
superiority of the natural gradient methods to SGD has also been reported in
training multi-layer perceptrons based on KL divergence and Fisher metric [4].

Table 1 lists the averaged performances of learning algorithms over ten runs
with different initial values of W and V . ANG and A-ANG learning achieved the
test error comparable to that of SGD learning. Until the test error became small
enough, A-ANG was about 20 times faster than SGD in terms of the number of
steps and more than five times faster in terms of processing time.

5 Conclusion

We have proposed novel adaptive natural gradient algorithms for score match-
ing and ratio matching and demonstrated in numerical experiments that they
accelerate the convergence of learning. In particular, we showed that they can
escape from the plateau in the training of the multi-layer model. In general,
nonlinear activation in multi-layer models or nonlinear transformation in hier-
archical models causes the intractable normalization constant. In such models,
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our natural gradient methods are expected to be helpful to avoid the plateau
and accelerate the convergence of learning.

In this study, we confirmed the effectiveness of our adaptive natural gradi-
ent methods in the models with a relatively small number of parameters. Deep
networks with many more parameters have recently been developed, and even
our adaptive method may require much computational time and memory space.
Fortunately, we expect that implementations suited to large scale problems [12]
such as the block diagonal approximation of the Fisher metric [13], metric-free
optimization with conjugate gradients [14], or the method exploiting the struc-
ture of the metric on exponential family models [15] will also be applicable to
the natural gradient with the score matching metric and ratio matching metric.
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Călin-Adrian Popa(B)

Department of Computer and Software Engineering,
Polytechnic University Timişoara, Blvd. V. Pârvan, No. 2,
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Abstract. Neural networks with values in multidimensional domains
have been intensively studied over the last few years. This paper intro-
duces octonion-valued neural networks, for which the inputs, outputs,
weights and biases are all octonions. They represent a generalization of
the complex- and quaternion-valued neural networks, that do not fall into
the category of Clifford-valued neural networks, because, unlike Clifford
algebras, the octonion algebra is not associative. The full deduction of
the gradient descent algorithm for training octonion-valued feedforward
neural networks is presented. Testing of the proposed network is done
using two synthetic function approximation problems and a time series
prediction application.

Keywords: Complex-valued neural networks · Gradient descent ·
Octonion-valued neural networks

1 Introduction

In the last few years, there has been an increasing interest in the study of neural
networks with values in multidimensional domains. The most popular form of
multidimensional neural networks are complex-valued neural networks, which
were first introduced in the 1970’s (see, for example, [19]), but have received
more attention in the 1990’s and in the past decade, because of their numerous
applications, starting from those in complex-valued signal processing and con-
tinuing with applications in telecommunications and image processing (see, for
example, [7,9]).

Neural networks defined on the 4-dimensional quaternion algebra gained
more interest in the last few years. Quaternion-valued neural networks were
also first introduced in the 1990’s, in the beginning as a generalization of the
complex-valued neural networks, see [1,2,10]. Later, quaternion-valued neural
networks were applied to chaotic time series prediction, the 4-bit parity prob-
lem, and, recently, to quaternion-valued signal processing. Another emerging
application field for these networks is 3-dimensional and color image process-
ing, because three dimensional objects and color pixels can be represented using
quaternions.

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 435–443, 2016.
DOI: 10.1007/978-3-319-44778-0 51



436 C.-A. Popa

The complex and quaternion algebras are all special cases of Clifford algebras,
which have dimension 2n, n ≥ 1. Also called geometric algebras, they have
numerous applications in physics and engineering, which made them appealing
for use in the field of neural networks, also. Clifford-valued neural networks were
defined in [12,13], and later discussed, for example, in [3].

A generalization of the complex and quaternion numbers, the 8-dimensional
octonions are not a type of Clifford algebra, because Clifford algebras are associa-
tive, whereas the octonion algebra is not. Octonions have numerous applications
in physics and geometry (see [4,11]), and they have been successfully used in sig-
nal processing over the last few years (see [17]). These considerations in mind,
we considered a promising idea to define neural networks with octonion values.

Octonion-valued neural networks might have interesting applications in signal
processing and all other areas related to higher-dimensional objects, but they
might also perform better on some n-dimensional problems than the solutions
available at this time, where n ≤ 8.

The remainder of this paper is organized as follows: Sect. 2 gives the full
deduction of the gradient descent algorithm for training an octonion-valued
neural network. The experimental results of three applications of the proposed
algorithm are shown and discussed in Sect. 3. Section 4 is dedicated to presenting
the conclusions of the study.

2 Octonion-Valued Neural Networks

An octonion is a number defined by 8 real numbers and 8 octonion units: x =∑7
a=0[x]aea, where [x]a represent the real numbers, and ea represent the octonion

units, 0 ≤ a ≤ 7. The addition of octonions is defined by: x + y =
∑7

a=0([x]a +
[y]a)ea, and the multiplication is given by the multiplication of the unit octonions
given in the following table:

× e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Octonions form a non-associative real algebra denoted by O. The conjugate of
an octonion x is defined by x = [x]0e0 − ∑7

a=1[x]aea. The norm of an octonion

can be defined as |x| =
√

xx =
√∑7

a=0[x]2a, and the inverse of an octonion
as x−1 = x

|x|2 . Thus, the octonions are a normed division algebra, unlike the
8-dimensional Clifford algebras, which are associative algebras, but not division
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algebras. In fact, the complex, quaternion, and octonion algebras are the only
three division algebras that can be defined over the reals.

In what follows, we will define feedforward neural networks for which the
inputs, outputs, weights, and biases are all from O, which means that they are
octonions. Let’s assume we have a fully connected feedforward neural network
with values from O, with L layers, where 1 is the input layer, L is the output
layer, and the layers denoted by {2, . . . , L − 1} are hidden layers. The error
function E : ON → R for such a network is

E(w) =
1
2

c∑
i=1

(yL
i − ti)(yL

i − ti), (1)

where y is the conjugate of the octonion y. yL = (yL
i )1≤i≤c ∈ O

c represents the
vector of outputs of the network, t = (ti)1≤i≤c ∈ O

c represents the vector of
targets of the network, and w ∈ O

N represents the vector of the N weights and
biases of the network, all being vectors whose components are octonions.

If we denote by wl
jk ∈ O the weight connecting neuron j from layer l with

neuron k from layer l − 1, for all l ∈ {2, . . . , L}, we can define the update step
of weight wl

jk in epoch t as being Δwl
jk(t) = wl

jk(t + 1) − wl
jk(t). With this

notation, the gradient descent method has the following update rule for the
weight wl

jk ∈ O: Δwl
jk(t) = −ε

(∑7
a=0

∂E
∂[wl

jk]a
(t)ea

)
, where ε is a real number

representing the learning rate, and we denoted by ∂E
∂[wl

jk]a
(t) the partial derivative

of the error function E with respect to each element [wl
jk]a of the octonion

wl
jk ∈ O, where 0 ≤ a ≤ 7. Thus, we need to compute the partial derivatives
∂E

∂[wl
jk]a

(t). For this, we will make the following notations

sl
j =

∑
k

wl
jkxl−1

k , (2)

yl
j = Gl(sl

j), (3)

where Eq. (2) shows that the multiplication from the real-valued case is replaced
by the octonion multiplication, Gl represents the activation function for the layer
l ∈ {2, . . . , L}, x1 = (x1

k)1≤k≤d ∈ O
d is the vector of inputs of the network, and

we have that xl
k := yl

k, ∀l ∈ {2, . . . , L − 1}, ∀k, because x1
k are the inputs, yL

k

are the outputs, and yl
k = xl

k are the outputs of layer l, which are also inputs to
layer l +1. The activation function is considered to be defined element-wise. For
instance, for the octonion x =

∑7
a=0[x]aea, an example of activation function

is the element-wise hyperbolic tangent function defined by G
(∑7

a=0[x]aea

)
=

∑7
a=0 (tanh[x]a) ea.
We will first compute the update rule for the weights between layer L − 1

and output layer L, i.e. ΔwL
jk(t) = −ε

(∑7
a=0

∂E
∂[wL

jk]a
ea

)
. Using the chain rule,

we can write ∀0 ≤ a ≤ 7:



438 C.-A. Popa

∂E

∂[wL
jk]a

=
7∑

b=0

∂E

∂[sL
j ]b

∂[sL
j ]b

∂[wL
jk]a

. (4)

To compute ∂[sL
j ]b

∂[wL
jk]a

, we need an explicit formula for [sL
j ]b, which can be easily

deduced from (2): [sL
j ]b =

[∑
k wL

jkxL−1
k

]
b
, ∀0 ≤ b ≤ 7. Now, we can easily see

that

∂[sL
j ]b

∂[wL
jk]a

=
∂

[∑
k wL

jkxL−1
k

]
b

∂[wL
jk]a

=
∂[wL

jkxL−1
k ]b

∂[wL
jk]a

. (5)

Using the fact that wL
jkxL−1

k =
∑

0≤c,d≤7[w
L
jk]c[xL−1

k ]deced, Eq. (5) can be writ-
ten as

∂[sL
j ]b

∂[wL
jk]a

=
∂
[∑

0≤c,d≤7[w
L
jk]c[x

L−1
k ]deced

]
b

∂[wL
jk]a

=

∂

(∑
0≤c,d≤7

κc,deced=eb

κc,d[w
L
jk]c[x

L−1
k ]d

)

∂[wL
jk]a

= κa,d[x
L−1
k ]d, κa,deaed = eb, κa,d ∈ {±1}.

So, relation (4) can be written in the form

∂E

∂[wL
jk]a

=
∑

0≤b≤7
κa,deaed=eb

∂E

∂[sL
j ]b

κa,d[xL−1
k ]d. (6)

Next, by denoting δL
j := ∂E

∂sL
j
, we have from the chain rule that [δL

j ]b = ∂E
∂[sL

j ]b
=

∑
0≤e≤7

∂E
∂[yL

j ]e

∂[yL
j ]e

∂[sL
j ]b

, ∀0 ≤ b ≤ 7. Taking into account notation (3), and the

expression of the error function given in (1), we have that

[δL
j ]b =

∑
0≤e≤7

([yL
j ]e − [tj ]e)

∂[GL(sL
j )]e

∂[sL
j ]b

= ([yL
j ]b − [tj ]b)

∂[GL(sL
j )]b

∂[sL
j ]b

,

∀0 ≤ b ≤ 7, because [GL(sL
j )]e depends upon [sL

j ]b only for e = b, which means

that ∂[GL(sL
j )]e

∂[sL
j ]b

= 0, ∀e �= b. If we denote by 	 the element-wise multiplication
of two octonions, the above relation gives

δL
j = (yL

j − tj) 	 ∂GL(sL
j )

∂sL
j

, (7)

where ∂GL(sL
j )

∂sL
j

represents the octonion of element-wise derivatives of the acti-

vation function GL. For instance, if x =
∑7

a=0[x]aea ∈ O, then ∂G(x)
∂x =∑7

a=0

(
sech2[x]a

)
ea, with the function G defined as in the above example.
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Finally, from (6), we get the expression for the desired update rule in the
form: ΔwL

jk(t) = −εδL
j xL−1

k , where the octonion δL
j ∈ O is given by relation (7).

Now, we will compute the update rule for an arbitrary weight wl
jk, where

l ∈ {2, . . . , L − 1}. First, we can write that Δwl
jk(t) = −ε

(∑7
a=0

∂E
∂[wl

jk]a
ea

)
,

and then, from the chain rule, we have that

∂E

∂[wl
jk]a

=
∑

0≤b≤7

∂E

∂[sl
j ]b

∂[sl
j ]b

∂[wl
jk]a

. (8)

∀0 ≤ a ≤ 7. Applying the chain rule again, we obtain that

∂E

∂[sl
j ]b

=
∑

r

∑
0≤c≤7

∂E

∂[sl+1
r ]c

∂[sl+1
r ]c

∂[sl
j ]b

, (9)

∀0 ≤ b ≤ 7, where the sum is taken over all neurons r in layer l + 1 to which
neuron j from layer l sends connections. Next, we can write that ∂[sl+1

r ]c
∂[sl

j ]b
=

∑
0≤d≤7

∂[sl+1
r ]c

∂[yl
j ]d

∂[yl
j ]d

∂[sl
j ]b

, ∀0 ≤ b, c ≤ 7. Again from (2), we can compute

∂[sl+1
r ]c

∂[yl
j ]d

=
∂

[∑
j wl+1

rj yl
j

]
c

∂[yl
j ]d

=
∂[wl+1

rj yl
j ]c

∂[yl
j ]d

. (10)

From wl+1
rj yl

j =
∑

0≤e,f≤7[w
l+1
rj ]e[yl

j ]feeef , Eq. (10) can be written as

∂[sl+1
r ]c

∂[yl
j ]d

=
∂

[∑
0≤e,f≤7[w

l+1
rj ]e[yl

j ]feeef

]
c

∂[yl
j ]d

=
∂(

∑
0≤e,f≤7

κe,feeef=ec

κe,f [wl+1
rj ]e[yl

j ]f )

∂[yl
j ]d

= κe,d[wl+1
rj ]e, κe,deeed = ec, κe,d ∈ {±1},

and then

∂[sl+1
r ]c

∂[sl
j ]b

=
∑

0≤d≤7

κe,d[wl+1
rj ]e

∂[Gl(sl
j)]d

∂[sl
j ]b

= κe,b[wl+1
rj ]e

∂[Gl(sl
j)]b

∂[sl
j ]b

, κe,beeeb = ec,

∀0 ≤ b, c ≤ 7, where again we took into account the fact that ∂[Gl(sl
j)]d

∂[sl
j ]b

= 0,

∀d �= b. Now, returning to Eq. (9), and putting it all together, we have that

∂E

∂[sl
j ]b

=
∑

r

∑
0≤c≤7

κe,beeeb=ec

∂E

∂[sl+1
r ]c

κe,b[wl+1
rj ]e

∂[Gl(sl
j)]b

∂[sl
j ]b

=
∑

r

⎛
⎜⎝

∑
0≤c≤7

κe,beeeb=ec

∂E

∂[sl+1
r ]c

· κe,b[wl+1
rj ]e

∂[Gl(sl
j)]b

∂[sl
j ]b

)
=

∑
r

[wl+1
rj δl+1

r ]b
∂[Gl(sl

j)]b
∂[sl

j ]b
,
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∀0 ≤ b ≤ 7. By denoting δl
j := ∂E

∂sl
j

, we can write the above relation in the form

δl
j =

(∑
r

wl+1
rj δl+1

r

)
	 ∂Gl(sl

j)
∂sl

j

. (11)

Finally, taking into account the fact that ∂[sl
j ]b

∂[wl
jk]a

= κa,d[xl−1
k ]d, κa,deaed =

eb, relation (8) becomes ∂E
∂[wl

jk]a
=

∑
0≤b≤7

κa,deaed=eb

∂E
∂[sl

j ]b
κa,d[xl−1

k ]d = [δl
jx

l−1
k ]a,

∀0 ≤ a ≤ 7. Thus, the update rule for the weight wl
jk can be written in octonion

form in the following way: Δwl
jk(t) = −εδl

jx
l−1
k , which is similar to the formula

we obtained for the layer L.
To summarize, we have the following formula for the update rule of the weight

wl
jk:

Δwl
jk(t) = −εδl

jx
l−1
k , ∀l ∈ {2, . . . , L},

where

δl
j =

⎧⎨
⎩

(∑
r wl+1

rj δl+1
r

)
	 ∂Gl(sl

j)

∂sl
j

, l ≤ L − 1

(yl
j − tj) 	 ∂Gl(sl

j)

∂sl
j

, l = L
.

3 Experimental Results

3.1 Synthetic Function Approximation Problem I

The first function we will test the proposed algorithm on is the simple quadratic
function f1(o1, o2) = 1

6 (o21+o22). This function was used to test the performance of
different complex-valued neural network architectures and learning algorithms,
for example in [14,16,18], and so we decided to test the octonion-valued algo-
rithms on it, also.

For training of the octonion-valued neural network, we generated 1500 octo-
nion training samples with random elements between 0 and 1. The testing set
contained 500 samples generated in the same way. The network had 15 neu-
rons on a single hidden layer. The activation function for the hidden layer
was the element-wise hyperbolic tangent function given by G2

(∑7
a=0[x]aea

)
=

∑7
a=0 (tanh[x]a) ea, and for the output layer, the activation function was the

identity function: G3(S) = S.
The experiment showed that the neural network converges, and the mean

squared error (MSE) for the training set was 0.000733 and for the test set was
0.000651. Training was done for 5000 epochs. Although the result is not spec-
tacular, we must take into account the fact that each octonion is formed of 8
real numbers.
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3.2 Synthetic Function Approximation Problem II

A more complicated example, which involves four input variables and the recip-
rocal of one of the variables, is given by the following function: f2(o1,o2, o3, o4) =
1
1.5

(
o3 + 10o1o4 + o2

2
o1

)
, which was used as a benchmark in [15,16] for complex-

valued neural networks, so we used it for octonion-valued neural networks, also.
The training and testing sets were randomly generated octonions with elements
between 0 and 1, 1500 for the training set, and 500 for the test set. The activa-
tion functions were the same as the ones above. The architecture had 15 neurons
on a single hidden layer, and the network was trained for 5000 epochs.

In this experiment, the training and testing MSE had similar values, and
equal approximately with 0.0071. The performance is worse than the one
obtained in the previous experiment, but in this case, the function was more
complicated. These results give reasons for hope that in the future these networks
can be optimized to perform better on octonion-valued function approximation
problems.

3.3 Linear Time Series Prediction

A possible application of octonion-valued neural networks is in signal processing.
A known benchmark proposed in [8], and used in [5,6,20] for complex-valued
neural networks, is the prediction of the white noise n(k), passed through the
stable autoregressive filter given by y(k) = 1.79y(k−1)−1.85y(k−2)+1.27y(k−
3)−0.41y(k−4)+n(k). In the octonion setting, the octonion-valued white noise
n(k) is given by n(k) =

∑7
a=0[n(k)]aea, where [n(k)]a ∼ N (0, 1), ∀0 ≤ a ≤ 7.

The tap input of the filter was 4, so the networks had 4 inputs, 4 hidden
neurons on a single hidden layer, and one output. The activation function for
the hidden layer was the element-wise hyperbolic tangent function and for the
output layer was the identity. Training was done for 5000 epochs with 2500
training samples.

We use a measure of performance called prediction gain, defined by Rp =
10 log10

σ2
x

σ2
e
, where σ2

x represents the variance of the input signal and σ2
e represents

the variance of the prediction error. The prediction gain is given in dB. It is
obvious that, because of the way it is defined, a bigger prediction gain means
better performance. The network obtained a prediction gain of 0.485.

4 Conclusions

The full deduction of the gradient descent algorithm for training octonion-valued
feedforward neural networks was presented. Octonion-valued neural networks are
a generalization of the complex- and quaternion-valued neural networks, that
do not fall under the category of Clifford-valued neural networks. Because the
octonions are not a Clifford algebra, but are a division algebra, we considered a
promising subject to study neural networks with values in this algebra, also.
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Two synthetic function approximation problems, and a linear time series
prediction application were used to test the octonion-valued gradient descent
algorithm. The performance of the networks in terms of training and testing
mean squared error and prediction gain, although not spectacular, was promis-
ing, leaving place for future developments in the topic of octonion-valued neural
networks.

The present work represents another step done towards a more general frame-
work for neural networks, which could benefit not only from increasing the num-
ber of hidden layers and making the architecture ever more complicated, but
also from increasing the dimensionality of the data that is being handled by the
network.
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Abstract. In this paper, a Normalized Gaussian Network (NGnet) is
introduced for online sequential learning that uses unit manipulation
mechanisms to build the network model self-constructively. Several unit
manipulation mechanisms have been proposed for online learning of an
NGnet. However, unit redundancy still exists in the network model. We
propose a merge mechanism for such redundant units, and change its
overlap calculation in order to improve the identification accuracy of
redundant units. The effectiveness of the proposed approach is demon-
strated in a function approximation task with balanced and imbalanced
data distributions. It succeeded in reducing the model complexity around
11% on average while keeping or even improving learning performance.

Keywords: Normalized Gaussian Networks · Self-constructive model
adaptation · Redundancy reduction

1 Introduction

In applications where data samples are received sequentially, incremental learn-
ing schemes have to be applied to train neural networks. In truly sequential
learning schemes [10], only one data sample is observed at any time and directly
discarded after learning. So, no prior knowledge is available on the number of
training data or the data distribution. Furthermore, training data is often not
independent and identically distributed (i.i.d.) in real world applications. This
can be a problem since neural network models are generally changed in favor of
newly arriving training data. If the data distribution is not i.i.d., then networks
are prone to forget already learned information. When this phenomenon is not
wanted, it is called negative or in severe cases catastrophic interference.

Normalized Gaussian networks (NGnet) are feed-forward three layer neural
networks that are related to Radial Basis Function (RBF) networks. They have
localized learning behavior by partitioning the input space with local units.
c© Springer International Publishing Switzerland 2016
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Then, only a few units are updated for a newly received data sample. Local
model networks are often applied to sequential learning schemes, because their
model structure eases the effects of negative interference. NGnets differ from
RBF networks in the normalization of the Gaussian activation function. The
normalization switches the traditional roles of weights and activities in the hid-
den layer, and NGnets therefore exhibit better generalization properties [1].

An online learning approach has been proposed for the NGnet’s parame-
ter estimation by Celaya and Agostini [2] that provides robust learning per-
formance even for non i.i.d. data. While this learning approach considers only
network parameter estimation, network model selection is yet another problem.
One solution is self-constructive model adaptation that builds a network model
from scratch during learning. This avoids the selection of an initial model com-
plexity. For the NGnet, unit manipulation mechanisms have been proposed [9],
including unit production, deletion and splitting. We can adapt these mecha-
nisms and apply it self-constructively to the used method. However, none of
these mechanisms considers unit redundancy. Redundancy refers to two local
units approximating a similar partition of the input-output-space. In this paper,
we propose a merge manipulation mechanism in order to reduce redundancies
by merging similar units. In addition, we revise the overlap calculation for the
output space to improve the identification accuracy of redundant units. The
effectiveness of the proposed method is demonstrated in a function approxima-
tion task with balanced and imbalanced data distributions. The newly added
merge mechanism reduces the model complexity around 11 % on average while
keeping or even improving learning performance in test cases where up to 95 %
of the sample data are concentrated in a small sub-region of the whole input
space.

2 Normalized Gaussian Network

The Normalized Gaussian network (NGnet) is a universal function approximator
that was first proposed by Moody and Darken [7]. The NGnet approximates a
mapping f : IRN → IRD from an N -dimensional input space to a D-dimensional
output space, where an input vector x is transformed to an output vector y with

y =
M∑
i=1

Ni(x)W̃ix̃. (1)

Here, M is the number of units, x̃ is an (N + 1)-dimensional input vector with
x̃′ ≡ (x′, 1), and W̃i is a D × (N + 1)-dimensional linear regression matrix.
Normalized Gaussian functions are used as activation functions, and Ni(x) is the
normalized output of the i-th multivariate Gaussian probability density function
(pdf). The model then softly partitions the input space into local units i.

A stochastic interpretation of the NGnet has been first proposed by Xu
et al. [11]. The model parameters are then estimated by maximum likelihood
learning based on the log-likelihood of the observed in- and output data (x, y).
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The Expectation-Maximization (EM) algorithm is used for parameter estima-
tion, and an offline approach has been proposed by Xu et al. that was later
adapted to an online EM-algorithm by Sato and Ishii [9]. Celaya and Agostini
[2] have further improved the approach to achieve robust learning performance
in regard to negative interference.

For the online EM-algorithm, the stochastic model is defined by a probability
distribution P (x, y, i|θ), where θ ≡ {μi, Σi, σ

2
i , W̃i|i = 1, ...,M} is the set of

model parameters that have to be estimated. Here, μi and Σi are the center and
covariance matrix of the i-th Gaussian pdf, and σ2

i (t) is an output variance for
the i-th unit. The parameters are updated incrementally for every time step t:

μi(t) = 〈〈x〉〉i(t)/〈〈1〉〉i(t) (2)

Σ−1
i (t) = [〈〈xx′〉〉i(t)/〈〈1〉〉i(t) − μi(t)μ′

i(t)]
−1 (3)

W̃i(t) = 〈〈yx̃′〉〉i(t)[〈〈x̃x̃′〉〉i(t)]−1 (4)

σ2
i (t) =

[〈〈|y|2〉〉i(t) − Tr(W̃i(t)〈〈x̃y′〉〉i(t))]
D〈〈1〉〉i(t)

(5)

These parameter updates include a symbol 〈〈·〉〉i that denotes a weighted accu-
mulator and is defined by the following step-wise equation

〈〈f(x, y)〉〉i(t) = Λi(t)〈〈f(x, y)〉〉i(t − 1) + Ωi(t)f(x(t), y(t)). (6)

Here, Λi(t) is a forgetting factor determining how much old training results are
forgotten at time t; Ωi(t) is an update factor influencing how much each unit
i learns about the newly received data sample (x(t), y(t)). Celaya and Agostini
have proposed a new update approach with localized forgetting [2]. This app-
roach ensures that only as much old information is forgotten as new information
is received for a unit i. The forgetting factor is set to Λi(t) = λ(t)Pi(t), and the
update factor is Ωi(t) = 1−λ(t)Pi(t)

1−λ(t) . The factors include a posterior probability

Pi(t) ≡ P (i|x(t), y(t), θ) = P (x,y,i|θ)
∑M

j=1 P (x,y,j|θ) functioning as a weight and a discount

factor λ(t). The discount factor λ(t) has to be chosen so that λ → 1 when t → ∞
for fulfilling the Robbins-Monro condition for convergence of stochastic approx-
imations. λ(t) plays an important role in discarding the effect of old learning
results that were employed to an earlier inaccurate estimator.

3 Network Model Selection

In the following, we discuss network model selection, another problem that arises
especially for the application of NGnets to sequential learning problems. It is
difficult to choose an accurate network model complexity and initialization of
model parameters without incorporating domain knowledge. Learning results
can be highly dependent on a good initialization, but an accurate model selec-
tion by hand needs excessive trial-and-error studies. One solution is a dynamic
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adaptation of the network model during learning. This avoids the need of setting
the model complexity in advance. Model adaptation is executed with some meth-
ods to increase or reduce model complexity. These methods can also be applied
self-constructively to build the model from scratch during learning which has
the advantage that the initialization problem is avoided. Several works for RBF
networks have proposed self-constructive unit adaptation, Platt’s Resource Allo-
cating Network (RAN) [8] as well as its extensions (RANEKF [5], MRAN [6])
and the GGAP-RBF network that has been proposed by Huang et al. [4].

3.1 Unit Manipulation Mechanisms

Some unit manipulation mechanisms have been introduced for the NGnet [9]
and are adapted in this paper to use with the localized forgetting approach pro-
posed by Celaya and Agostini [2]. Previously, dynamic model selection was not
considered for the localized forgetting approach. The adapted unit manipula-
tion mechanisms include a produce, delete and split mechanism. In addition, we
propose a merge mechanism to reduce redundancy of units and further improve
model compactness.

Produce. P (x(t), y(t)|θ(t−1)) is the probability that indicates how properly the
current model parameters θ(t − 1) can estimate the newly received data sample
(x(t), y(t)). When the probability is smaller than a certain threshold TProduce,
a new unit is created according to the produce mechanism in [9].

Delete. A weighted accumulator of one 〈〈1〉〉i(t) indicates how much the i-th
unit has been in charge of the observed data until the current time step t.
When the delete mechanism has been first proposed in [9], it was assumed that
〈〈1〉〉i(t) is a weighted mean scaled between zero and one. In the applied local
forgetting approach, 〈〈1〉〉i(t) is however a weighted sum which is not scaled and
therefore cannot be used directly as a reference. We introduce a local unit update
counter cupdate as a normalizer to overcome this problem. The update counter
is incremented by one at every time step where the unit’s update is numerically
important. In other words, when the update factor is Ωi(t) > 10−16, cupdate is
incremented. A unit is deleted if 〈〈1〉〉i(t)/cupdate < TDelete with delete threshold
TDelete.

Split. The output variance of a unit i, σ2
i (t), represents the accumulated squared

error between the unit’s predictions and the real outputs. High variance values
are related to the unit being in charge of a too large partition of the input space,
and splitting such units can improve learning performance. Our split decision
compares σ2

i (t) to the output variances of the other units using a local evaluation
where only output variances of some nearest neighbors are considered. When
the unit’s output variance is considerably bigger than the biggest variance of its
neighbors, the unit is split according to the split mechanism in [9].
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Merge. In the following, we introduce the main contribution of this paper, a
merge manipulation mechanism, that is an important addition to reduce redun-
dancy in the network model. Redundancy means here that two network units
overlap so much that they are approximating almost the same partition of the
input-output-space. For finding possible merge candidates, the grade of overlap
between units has to be evaluated over the input and output space. Similar to a
merge approach discussed in [3], we use the Bhattacharyya Coefficient (BC) to
measure the overlap between two multivariate Gaussian distributions G1(μ1, Σ1)
and G2(μ2, Σ2). In case of Gaussian distributions, a closed form solution for the
BC exists as stated below

dB(G1, G2) =
1
8

· (μ1 − μ2)′Σ−1(μ1 − μ2) +
1
2

· log
|Σ|√|Σ1| · |Σ2|

(7)

BC(G1, G2) = exp (−dB(G1, G2)) (8)

Here, dB is the Bhattacharyya distance and Σ = (Σ1 + Σ2)/2. For a similarity
S(i, j) between two units i and j, we have to calculate the overlap of the units’s
input and output pdfs. Suppose, the input pdf of a unit i is Ginput

i (μi, Σi) and
the output pdf is Goutput

i (W̃ix̃, σ2
i I). The similarity S(i, j) is then calculated by

S(i, j) = BC(Ginput
i , Ginput

j ) · BC(Goutput
i , Goutput

j ). (9)

If S(i, j) > TMerge with a threshold TMerge, then the units are possible merge
candidates. The flow of the merge mechanism is described in the following:

1. Calculate the similarity S(i, j) for all pairs {i, j}.
2. Choose the pair {imax, jmax} with maximal similarity.
3. If S(imax, jmax) > TMerge then merge units into one and go to step 1.
4. Otherwise, stop routine.

The merge mechanism is computationally heavy, especially when the network
model complexity M is high. Furthermore, it is unnecessary to apply merge at
every time step t, because merge candidates are not found that frequently. Inter-
vals of a few hundred time steps are sufficient. Yet, a new problem arises when
applying merge in intervals, because the calculation of the output BC depends
on input x for the output center W̃ix̃. A calculation of similarities using current
input x(t), in the form x̃′(t) ≡ (x(t), 1)′, is therefore inappropriate since the cal-
culated similarities depend on and change with x(t). Preliminary experiments
showed that this can lead to an underestimation of similarity, for example when
x(t) and the units are in different parts of the input space. A possible alternative
would be to use the weighted sum 〈〈x̃〉〉′

i(t) ≡ (〈〈x〉〉i(t), 〈〈1〉〉i(t))′, however pre-
liminary experiments showed that this approach is overestimating the similarity
between the output distributions. Especially the first term of dB becomes very
small due to the output center. Therefore, we revise the overlap calculation to
avoid the inclusion of input x in the output center for the BC calculation.

We use a multivariate theorem applicable to Gaussian distributions to con-
duct an affine transformation of the output distribution. According to the the-
orem, a distribution U ∼ N(μ,Σ) can be linearly transformed with a vector
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c and a matrix D to a distribution V ∼ N(c + DμU ,DΣUD′). Here, we want
to transform the output distribution y ∼ N(W̃ix̃, σ2

i I) so that input x is not
included in the center of the output distribution. For convenience, we consider
the transformation of the transpose y′ ∼ N(x̃′W̃ ′

i , σ
2
i I) instead. W̃i is defined in

(4), and the transpose is

W̃ ′
i = (〈〈yx̃′〉〉i(t)[〈〈x̃x̃′〉〉i(t)]−1)′ = [〈〈x̃x̃′〉〉i(t)]−1〈〈x̃y′〉〉i(t). (10)

We then use U = y′, μU = x̃′W̃ ′
i , ΣU = σ2I, V = W̃ ′

i , D = [〈〈x̃x̃′〉〉i(t)]−1〈〈x̃〉〉i(t)
and c = 0 to transform U to V .

μV = [〈〈x̃x̃′〉〉i(t)]−1〈〈x̃〉〉i(t)〈〈x̃′〉〉i(t)W̃ ′
i = W̃ ′

i (11)

ΣV = [〈〈x̃x̃′〉〉i(t)]−1〈〈x̃〉〉i(t)σ2
i I([〈〈x̃x̃′〉〉i(t)]−1〈〈x̃〉〉i(t))′ = σ2

i [〈〈x̃x̃′〉〉i(t)]−1 (12)

So, V becomes W̃ ′
i ∼ N(W̃ ′

i , σ
2
i [〈〈x̃x̃′〉〉i(t)]−1), and input x is excluded from the

output center. But W̃ ′
i is a (N + 1) × D-dimensional matrix, and the left term

of (7) becomes a D ×D-dimensional matrix dependent on the output dimension
D. Therefore, we update (7) to

dB(G1, G2) =
1

8D
· Tr

(
(μ1 − μ2)′Σ−1(μ1 − μ2)

)
+

1
2

· log
|Σ|√|Σ1| · |Σ2|

, (13)

where Tr is the trace of the matrix.
Finally, we need to merge units when the similarity between them is higher

than a threshold TMerge. Again, we consider the Gaussian distributions for the
input and output space and merge their center and covariances in the same
matter. A new center μnew and covariance Σnew are calculated by

μnew = ω1μ1 + ω2μ2, (14)

Σnew =
2∑

i=1

ωi (Σi + (μi − μnew)(μi − μnew)′) , (15)

where ω1,2 = 〈〈1〉〉1,2(t)
〈〈1〉〉1(t)+〈〈1〉〉2(t) is functioning as a weight.

4 Experiments

In order to evaluate the effectiveness of the proposed method, we compare an
NGnet with merge manipulation to an NGnet without merging. We consider a
commonly used function approximation task [2,9,10] to test the learning per-
formance of the NGnets. The function has the input dimension N = 2, output
dimension D = 1, and is defined by:

g(x1, x2) = max{e−10x2
1 , e−50x2

2 , 1.25e−5(x2
1+x2

2)}. (16)

Also, a normally distributed random noise ε(t) ∼ N(0, 0.01) is added
to the function output g(x(t)), with input vector x(t) = (x1(t), x2(t)).
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Then, y(t) = g(x(t)) + ε(t) is obtained as the noisy sample output. Four tests
are conducted, one with a balanced and three with imbalanced data distribu-
tions, each applying 10,000 training data samples. For the Balanced test case,
the training data are i.i.d for (−1 ≤ x1, x2 ≤ 1). For the imbalanced test cases,
non-identically distributed data are used. This means that a certain percentage
of the data samples are extracted from a sub-region of the input domain with
(0 ≤ x1, x2 ≤ 0.25), and the remaining data are i.i.d in (−1 ≤ x1, x2 ≤ 1). We
have named the imbalanced test cases ImbXX% in our results, and three dif-
ferent percentages are tested with 50%, 75%, and 95% of the data sampled in
the sub-region. Imbalanced data distributions are applied to test the robustness
of the proposed method in environments prone to negative interference. For all
test cases, merge is applied after every 1,000 updates and its threshold is set to
TMerge = 0.7. The other manipulation thresholds are set to TProduce = 0.1 and
TDelete = 0.001. The discount factor λ(t) is updated with λ(t) = 1 − 0.99

0.01t+50 ,
depending on time step t.

Table 1. Experimental results

Test case Without merge With merge

RMSE Net. size Time (min.) RMSE Net. size Time (min.)

Balanced 0.0464 53.12 0.22 0.0423 50.04 0.21

Imb50% 0.0491 58.2 0.32 0.0475 52.66 0.27

Imb75% 0.0565 60.96 0.35 0.0562 53.26 0.30

Imb95% 0.0954 70.26 0.36 0.0959 59.18 0.32

The experiments are simulated on an Intel Xeon E5-2650@2 GHz, RAM
64 GB, Win7 x64 machine. Learning performance is evaluated with the Root
Mean Square Error (RMSE) and the same test data set (1,000 samples) for
all test cases. Obtained results are presented in Table 1 as an average over 50
test runs. Overall, merging results in a performance improvement while network
model complexity is visibly reduced. Although, merge manipulation adds some
extra computations, an NGnet with merging results in shorter computation times
because of the reduced model complexity, and the average computation time per
test run decreases in all cases. Even for the imbalanced test cases, the merge
approach performs better overall despite the approximation task being more dif-
ficult. An exception is Imb95%, here performance decreases slightly when merge
is applied. We think, the decrease in performance is related to the cooperation of
the model units when calculating an output for a received input vector. Due to
the unit’s cooperation, existing units need to readjust their parameters after a
change in model complexity [10] to cope with the changing relationships between
them. An additional merge mechanism leads to further changes of model com-
plexity during learning. In case of imbalanced data distributions, higher sample
frequencies in the sub-region lead to more overlapping units, implying more
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merges and resulting in more parameter readjustments. The opportunities for
readjustments are however little in rarely sampled regions which may result in
decreasing learning performance when additional unit manipulations by merg-
ing take place. Yet, it is worth noting that Imb95% is an extreme case where
95 % of the data are sampled in the sub-region that consists only of 1.56 % of
the input space. Still, performance barely decreases while model complexity is
reduced largely to 84 % of the non-merge size. Overall, the performance of merge
is robust and the cooperative nature of the model has almost no negative impact
on the performance even in extreme cases.

5 Conclusion

In this paper, we have proposed a way of unit merging for a self-constructive
NGnet in order to reduce redundancies in the network model. In addition, we
have changed the overlap calculation for the output space to select redundant
units more accurately. We have demonstrated the effectiveness of the proposed
method for a function approximation tasks with balanced and imbalanced train-
ing data distributions. Compacter models are created with the additional merge
mechanism while in most cases improving learning performance. We have con-
sidered test cases where up to 95 % of the data were sampled in a very small
sub-region of the input space and model complexity was reduced around 11 % on
average. Even for a strongly imbalanced data distribution, the proposed method
succeeded in largely reducing the model complexity while keeping a good learn-
ing performance.

Possible future work includes the application of the proposed method to real
world systems and the automation of the unit manipulation threshold parameter
selection.
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Abstract. The Learning to Enumerate problem is a new variant of the
typical active learning problem. Our objective is to find data that sat-
isfies arbitrary but fixed conditions, without using any prelabeled train-
ing data. The key aspect here is to query as few as possible non-target
data. While typical active learning techniques try to keep the number
of queried labels low they give no regards to the class these instances
belong to. Since the aim of this problem is different from the common
active learning problem, we started with applying uncertainty sampling
as a base technique and evaluated the performance of three different base
learner on 19 public datasets from the UCI Machine Learning Repository.

Keywords: Active learning · Learning to enumerate · Exploration vs.
exploitation · Epsilon-greedy

1 Introduction

The pervasiveness of sensors, the popularity of the web and the existence of big
data repositories make it very easy to collect huge amounts of data. For that
reason we have a need to analyze big data and machine learning is a promising
approach that is already successfully applied. Yet in contrast with the ease of
data collection, collecting annotations (such as the ground truth labels used in
supervised learning) requires human input and is therefore quite costly and not
scaleable. There is much effort done to reduce such annotation costs, especially
active learning research tries to cut down the number of needed annotations by
intelligently selecting examples to train good predictors.

Sometimes we want to find data satisfying some particular conditions and our
goal is to find such data from among the whole dataset. One scenario might be
to find high risk patients among a big group of people. Without existing labeled
data to train a predictive model, we have to construct a training set, while finding
existing high risk patients under the constraint of a limited number of checkups
we can perform [3]. Another scenario could be constructing a knowledge database
with implicit knowledge not covered in the documents used as a source and must
be annotated by human experts. Among the high number of possible implicit
knowledge we want to choose only that which is true, but because we are just
constructing the knowledge database, there is no or not much data we can use
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to train a predictor [4]. So the problem is to reduce the number of annotations,
building a knowledge database and training a good predictive model at the same
time.

The existing active learning approaches are not designed to address this
problem directly, so we call this problem “learning to enumerate” and investigate
approaches, mainly based on active learning, to deal with it.

In the previously mentioned work [3] they used the same approach as in
this paper but limited their experiments to a Logistic Regression model with
uncertainty heuristic. Their results showed for ε = 0.8 the best and most stable
performance, yet they did not attempt to broaden their experiment to other
datasets. For the “dataset construction problem” [4] they do not use a ε-greedy
like strategy but randomly sample a batch of instances and perform a scoring
on them, selecting only the best few. This corresponds to the ε = 0 case in our
paper. Their experiments showed that training on a pure positive dataset results
in worse performance than training on a mixed one, which indicates an ε > 0
might be better, because it takes in some well chosen negative instances.

In this paper we use a simple ε-greedy like strategy testing different base
learners and heuristic functions on 19 small and medium-sized, public datasets
accessible through the UCI Machine Learning Repository. The best results in our
experiments were shown by a RandomForest base learner with a exploitation-
only (ε = 0) strategy, but the difference in performance compared to other
configurations is only minimal.

2 Problem Definition

Let us assume we have an Oracle O, that always gives us the correct label to a
queried instance, and call our data set X. In each round T we choose an instance
xT ∈ X with xT �= xt∀t ∈ {1, .., T − 1} and query the Oracle for the label yT =
O(xT ). Our objective is to find all X̃ ⊆ X so that x ∈ X̃,O(x) = ytarget class

with the least amount of rounds.

3 Approaches

If we had an extensive, labeled dataset to train our model, the best strategy
would be to solely rely on its predictions to identify all instances of the target
class. However, for this problem we do not have any labeled data, so we are
forced to construct our training set from scratch. Yet, only selecting instances
which are useful for improving our model does not necessarily comply with our
goal to gather all target class instances with as few queries as possible. This is
a typical exploitation vs. exploration dilemma that has been studied extensively
in Reinforcement Learning. Although there are more sophisticated strategies we
decided to start out by using a simple, fixed ε-greedy strategy [5] in our approach,
where, with probability ε, we either explore new helpful instances with some
active learning heuristic or, with probability 1 − ε, exploit the prediction of our
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current model to find the instance with the highest likelihood of being part of
the target class (see Algorithm 1 FullUpdate).

We also tested a slightly different version of this approach, only adding those
examples to the training set that have been selected by the heuristic (see Algo-
rithm1 SelectiveUpdate). On one side this change was aimed to decrease the
bias of the training set leaning too much towards the target class and improving
the quality of the training set by not adding instances the base learner is already
confident about. On the other side, this all happens at the expense of having
less training data.

In active learning there are different basic heuristics we decided to use. These
are uncertainty sampling, that uses the entropy function to compute the informa-
tiveness of each instance, and disagreement-based active learning with different
disagreement measures. Disagreement-based active learning uses a committee of
hypotheses to select those instances the committee can not agree on, hence this
approach is called Query-by-Committee. The disagreement measure we applied
are (hard) vote entropy and soft vote entropy, which can be seen as a committee-
based generalization of uncertainty sampling, as well as the Kullback-Leibler
divergence. The Kullback-Leibler divergence measures the difference between
two probability distributions and in this case it is used to quantify disagreement
as the average divergence of each committee members prediction from that of
the consensus [2].

Algorithm 1. ε-active strategy
input: dataset X, ε, heuristic H, Oracle O
Xtrain = {}
Xunlabeled = X
Train model M on Xtrain

while target class not completely separated do
if With probability ε then

xT ← H(Xunlabeled)
Query O for the true label yT of xT

Add (xT , yT ) to Xtrain (only SelectiveUpdate)

else
Compute target class probability pi for each instance xi ∈ Xunlabeled

using M
xT ← instance xi with highest pi

Query O for the true label yT of xT

end
Remove xT from Xunlabeled

Add (xT , yT ) to Xtrain (only FullUpdate)
Retrain M

end
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4 Evaluation

We compare the two algorithms with different configurations for ε and heuristic
functions in terms of positive coverage rate under budget constraints. A config-
uration is then declared superior when it shows a better positive coverage rate
over the complete budget and we call it a tie if there is either no difference or
one method performs better for cost rate < 0.5 and another for cost rate > 0.5.

4.1 Experimental Setting

For our experiments we choose datasets to cover a variety of different criteria.
The size ranges between 168 instances for the smallest and 8124 instances for
the biggest dataset. The number of attributes lies between six and 168, with the
majority being in the 10 to 40 attributes interval. Since the target class ratio
of the dataset could have a strong impact on the performance, we also included
datasets with 8 % and 79 % target class instances. We reduced any dataset with
more than two classes into a binary dataset, merging all classes not being the
target class into one.

The main objective of this paper is, to check the applicability of basic active
learning techniques compared to a straight forward exploitation-only app-
roach. Therefore we choose following five epsilon values {0, 0.2, 0.5, 0.8, 1} to get
an idea about which side tends to be more profitable: exploitation or exploration.

The basic active learning techniques we tested are uncertainty sampling and
disagreement-based active learning. We implemented Query-by-Committee with
three disagreement measures: vote entropy, soft vote entropy and Kullback-
Leibler (KL) divergence [2]. In order to compare and understand the general
impact of those heuristic functions, random sampling was added as a base line
heuristic.

In our experiments, we use RandomForest (RF), Stochastic Gradient Descent
Training with LogisticRegression loss (LR) and SGD Training with the modified
huber loss (HL) as different base learners to evaluate the impact of different kind
of models on this problem. We choose those models for different reasons. Ran-
domForest performs well in the general case but is especially suited for categori-
cal input features, LR trains a linear model that may converge faster and handle
a small training set better and HL trains a linear model that is more robust
towards possible outliers in the dataset. As for the implementation, we used the
scikit-learn framework [1]. Since we aim towards a most general investigation,
we choose the hyper parameters according to the general recommandation made
in the scikit-learn user guide [6]. With no initial training data, optimizing hyper
parameters has to happen in the course of exploration, which would introduce
new problems about expending the few training data on a cross-validation set
and finding the right point to split and update the datasets.

All in all we ran 6 experiments with the following configurations for each our
algorithms: For each model we run experiments with varying epsilon and fixed
KL-heuristic as well as with fixed ε at 0.2 and varying heuristics. We choose the
KL-heuristic for the varying epsilon configurations because it performed best in
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the initial experiments and ε was fixed at 0.2 for the same reasons. For each
dataset we averaged across 20 iterations to compute a reliable result.

We started every experiment with a training set of one randomly sampled
instance from each class. This is a implementation constraint to ensure that our
model can output a probability for each class.

4.2 Comparing the Two Algorithms

In this section we compare both our algorithms with their best performing ε. For
ε-active-full this is ε = 0 and for ε-active-sel it is ε = 0.2. ε-active-full
outperforms ε-active-sel on 18 datasets and ties on the last using RF model
and using LR and HL models it shows in 15 out of 19 cases better results, while
going head to head on the last 4 datasets (see Table 1). This shows us that even
though we may add redundant instances to our training set and shift the class
balance heavily towards the target class, more low-quality training instances are
more useful than few with higher quality. The class imbalance seems be mostly
dealt with in the training of the model, so it holds no advantage to restrict the
addition of instances based on confidence.

4.3 Comparing Different Epsilons

Figure 1 shows that for ε-active-full the exploitation-only (ε = 0) strat-
egy works best on this dataset. This holds true for most datasets and for all
the other datasets exploitation-only is at least tied with the best competi-
tor. Even though the exploitation-only strategy is always one of the best
choice independent of the base learner, what changes with the base learner is
the amount of datasets, where exploitation-only is tied for best strategy with
other ε values. From Table 1 you can see that the combination of RF and ε = 0
is superior for on all datasets, while with the LR and HL model ε = 0 is only
distinguishable superior for 10 out of 19 datasets (not in Table 1).

ε-active-sel shows the same results with the difference that for ε-active-
sel ε = 0.2 is the best strategy, whereas ε = 0 performs much worse than
for ε-active-full. This is to be expected since ε-active-full enables ε = 0
to add new instances to the training set after each iteration, which does not
happen in ε-active-sel, where instances are only added if they were selected
by the heuristic. There is also a clear trend that bigger epsilon perform gradually
worse than smaller ones. While for ε-active-full it is clear that ε = 0 is the
best option, for ε-active-sel the best epsilon value might still be in the interval
of [0,0.2].

4.4 Comparing Different Heuristic Functions

We tested every base learner with fixed ε = 0.2 for different heuristic functions.
The results differ slightly between algorithms and base learners. For ε-active-
full with RandomForest uncertainty sampling, hard vote entropy and soft vote
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Fig. 1. RandomForest model (left: ε-active-full, right: ε-active-sel) on the con-
gressional voting records dataset with varying ε. For ε-active-full the performance
drops the higher ε gets. The same holds still true for ε-active-sel with the exception
of ε = 0, which shows a typical good start performance that gets worse due to the
constant training set. Optimal depicts the case where only target class instances are
queried.

entropy proofed to be the best heuristics in 15 cases and in 4 cases random
sampling outperformed all other heuristics.

In ε-active-sel with LR there was no heuristic that clearly performed the
best. KL-heuristic was best on five datasets the same number as uncertainty
sampling. Hard vote entropy, soft vote entropy and random sampling were best
on two datasets each and on five data there was no distinct winner. In conclusion
it is to say that which heuristic to choose strongly depends on the base learner,
but the performance difference to the other heuristics is often only a small one.

Fig. 2. Results on the congressional voting records dataset using a RandomForest
model for ε-active-full (left) and a logistic regression model for ε-active-sel
(right). For ε-active-full random sampling (dashed line with triangle up
marker) performs sometimes better than the other heuristics, while in ε-active-sel
uncertainty sampling or KL-heuristic are in general a bit ahead.
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Table 1. This table summarizes the results from our experiments. The last column
states which class was selected as target class. We use following abbreviations: Full =
FullUpdate, Sel = SelectiveUpdate, RF = RandomForest, LR = LogisticRegression, r
= random sampling, u = uncertainty sampling, h = hard vote entropy, s = soft vote
entropy, kl = Kullback-Leibler, all = all variants performed the same.

Dataset name ε Algorithm Learner Heuristic Target class

Full Sel Full Sel Full Sel

Annealing 0 0.2 Full RF RF all s 5

Chess (K-R vs. K-P) 0 0.2 Full RF LR r kl won

CongressionalVotingRecords 0 0.2 Full RF LR r kl democrat

Forest type mapping 0 0.2 Full RF LR u/h/s all h

Horse Colic 0 0.2 Full RF LR u/h/s all 1 (outcome)

Indian Liver Patient Dataset 0 0.2 Full RF RF u/h/s all 2

Ionosphere 0 0.2 Full/Sel RF LR r u/h g

Mammographic Mass 0 0.2 Full RF/LR LR u/h/s r 1

Mushroom 0 0.2 Full RF/LR LR r r e

Musk (Version 2) 0 0.2 Full RF LR u/h/s u/s 1

Pima Indians Diabetes 0 0.2 Full/Sel RF LR u/h/s kl 1

Qualitative Bankruptcy 0 0.2 Full/Sel LR LR u/h/s h B

SPECT Heart 0 0.2 Full/Sel RF/LR LR u/h/s u 1

Statlog (German Credit Data) 0 0.2 Full RF all u/h/s kl 2

Statlog (Heart) 0 0.2 Full RF RF u/h/s kl 2

Urban Land Cover 0 0.2 Full RF LR u/h/s u 1

Red Wine Quality 0 0.2 Full RF LR u/h/s all 7

White Wine Quality 0 0.2 Full RF LR u/h/s u 7

Yeast 0 0.2 Full RF LR u/h/s all CYT

4.5 Comparing Different Base Learners

For the reasons explained in Sect. 4.1 we included different base learner in our
experiments. We use the best known ε for each algorithm, that is 0 for ε-active-
full and 0.2 for ε-active-sel. There is a big difference in the results between
the two algorithms: For ε-active-full RF is the best model in 18 cases and
LR beats RF only on one datset and ties on three (compare Table 1 column:
learner/Full). HL always performs worse than the other two.

In ε-active-sel LR shows the better general performance. In 14 cases it is
superior to RF and only on 4 datasets RF is better than LR. HL ties on 8
datasets with LR but is never better.

These results suggest that RF works better with more training data even
though they might be redundant or low quality. ε-active-sel seems to have not
enough training set instances for RF to converge to the same level as LR. The
results also show that for ε-active-full RF is still better than LR even in the
beginning, when the number of instances is still low. Again this suggest that LR
seems to have problems handling the lower quality training set compared to RF.
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5 Conclusion

To sum it all up, based on our results we can state the following: The configura-
tion that performed the best is a RandomForest model, with a exploitation-
only strategy, adding every selected instance to the training set. We could not
identify any pattern regarding class bias, number of attributes or total number
of instances, that influenced certain configurations in any consistent way. Hence
the classify and retrain approach beats the simple ε-greedy approach, yet the
results also show that for many not so simple datasets, where we got a bad
performance in general, there is still a lot of room to improve.

In this paper we only began working on this problem, for future work there
is still lot unclear. One possible question is to explore even more base learner or
let the base learner gradually tune their hyper parameters to better adapt to the
data. Another direction would be adapting more sophisticated state-of-the-art
active learning techniques, like some contextual bandit approaches, that have
already proved to be superior on the more typical active learning problems.

Acknowledgments. This research was supported by the Landesstiftung Baden-
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Abstract. Inference approaches in Arabic question answering are in their first
steps if we compare them with other languages. Evidently, any user is interested
in obtaining a specific and precise answer to a specific question. Therefore, the
challenge of developing a system capable of obtaining a relevant and concise
answer is obviously of great benefit. This paper deals with answering questions
about temporal information involving several forms of inference.
We have implemented this approach in a question answering system called

IQAS: Inference Question Answering System for handling temporal inference.

Keywords: Question answering system � Temporal inference � Several forms
of inference

1 Introduction

Advances in Natural Language Processing (NLP), Information Retrieval techniques
(IR) and Information Extraction (IE), have given Question/answering systems (QA) a
strong boost. QA have started incorporating NLP techniques to parse natural language
documents, extract entities, resolve anaphora, and other language ambiguities [1]. In
order to develop question answering capabilities, we believe that a large corpus of
questions and answers that are based on temporal information should be discovered. In
this paper, we focus on the task of question answering in Arabic by thinking of an
approach which can improve the performance of traditional Arabic question answering
systems for handling temporal inference. Obviously, any user is interested in obtaining
a specific and precise answer to a specific question [2]. Therefore, the challenge of
developing a system capable of obtaining a relevant and concise answer is obviously of
great benefit. The challenge becomes huge when we try to automatically process a
complex natural language such Arabic.

In this paper, we propose a new approach dealing with the recognition and pro-
cessing of temporal information for Question Answering (QA).

The remaining of this paper is organized as follow. In the next section, we give a
short overview of QA systems with a special attention to the QA systems based on
complex questions. After that, we describe our proposed approach and its different
steps. Finally, we conclude this work and make suggestions for future researches.
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2 Related Works

In this section, we present the earlier works related to question answering in Arabic.
Despite extensive research in Arabic, the criteria represent a challenge to the automatic
language processing systems [3]. In the last decade, the volume of Arabic textual data
has started growing on the Web. Question-Answering systems represent a good
solution for textual information retrieval and knowledge sharing and discovery. This is
reason why a large number of QA systems has been developed and extensively studied
recently.

Those approaches deal only with non-complex questions where the answers are
selected from their corresponding short and simple texts. The challenge becomes
greater when we try to create capabilities of processing complex questions and finding
their answers from a collection of texts. An important component of this effort deals
with the recognition and processing of temporal information for Question Answering
(QA).

When asking a question that refers directly or indirectly to a temporal expression,
the answer is expected to validate the temporal constraints. To achieve such func-
tionality, QA systems need first, to deal with relations between temporal expressions
and events mentioned in the question and, second, to rely on temporal inference to
justify the answer. Whenever the answer to a question needs to be justified, if temporal
expressions are involved, the justification must contain some form of temporal infer-
ence [9]. For example, the expected answer type of question Q1 is a Date:
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In this paper, we present a Question Answering (QA) methodology to handle
temporal inference by combining all these forms of inference.

3 Proposed Approach

The proposed approach involves three main modules (Fig. 1), namely: (1) question
processing for interpreting the question, its temporal requirements and selecting can-
didate answers, (2) document processing, which includes indexation based on temporal
information, finally (3) answer processing, where we start with the temporal inference
before getting the answer.

3.1 Question Processing

The objective of this process is to understand the asked question, for which analytical
operations are performed for the representation and classification of the questions.

Fig. 1. Proposed approach
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The first step of question processing is based on the classification of the questions
referring to the temporal information extracted from the question. We have used the list
of questions produced in TERQAS Workshop1.

Some of the question classes are listed in Fig. 2. This classification is based on the
ways questions signal their time or event dependence and on how straightforward it is
to determine the time at which information needs to be understood from a question so
that will be possible to provide a suitable answer.

The classes of questions in Table 1, are characterized by the presence of a date and
temporal signals, e.g. “since”, “after” and in some of them, we need to decompose the
question to a temporal relation between events, indicated by a temporal signal.

We have experimented in a first time this classification using a set of 100 temporal
questions and a set 100 associated answers extracted from temporal passages. The
obtained results are very encouraging: 80 % of the temporal information selected from
the suitable answer which contains the temporal information already expected from the
question classification, 13 % to the unexpected answers (not correspond with the
classification) and 7 % to the unfounded answers. In second time, we expand the
number of questions; the results are shown in Table 2.

Some attempts were made to reach a better question analysis in the question
answering task. Most of these attempts focused on keyword extraction from the user’s
question [4] made some query formulation and extracted the expected answer type,
question focus, and important question keywords. To perform a better question anal-
ysis, the research of [5] analyzed questions by eliminating stop words, extracting

Table 1. Classes of temporal questions

Question class Example

Time-Related When was Moncef Marzouki president of Tunisia?
How long did the Tunisian revolution last?

Event-Related What must happen before the {Christmas} feast can begin in Poland?
Temporal-Order Did John Sununu resign before or after George Bush’s ratings began to

fall?
Entity-Related How old was Mondela when he died?

Table 2. Experiment results

Number of questions Suitable answers

100 80
200 172
400 365

1 TERQAS was an ARDA Workshop focusing on Temporal and Event Recognition for Question
Answering Systems. www.cs.brandeis.edu/_jamesp/arda/time/readings.html.
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named entities and classified the questions into Name, Date, Quantity, and Definition
questions according to the question word used.

The research of [6] made some query formulation and extracted the expected answer
type, question focus, and important question keywords. The question focus is the main
noun phrase of the question that the user wants to ask about. For example, if the user’s
query is “What is the capital of Tunisia?” then the question focus is “Tunisia” and the
keyword “capital” and the expected answer type is a named entity for a location.

In our proposal, the step of analyzing the question is based on the elimination of
stop words, extraction of the name entities and on the question classification.

3.2 Document Processing

Extraction of the Relevant Document. QA systems benefit from keywords to quickly
and easily find the relevant passages. All the documents are indexed with all these
forms of information that enable the retrieval of the candidate’s text passages.

Extraction of the Relevant Passage. Passages that do not contain time stamps or do
not comply with the temporal relations that are searched are filtered out. Event
recognition and classification as well as temporal expressions have been pointed out to
be very important for our approach. TimeML [7] is a corpus annotated with: (a) time
expressions; (b) events and (c) links between them. These annotations enable several
forms of temporal inference [8–10]. The temporal information processing includes
extracting events (TimeML EVENT tag), temporal expressions (TimeML TIMEX) and
identifying temporal relations (TimeML TLINK tag).

The step of temporal passage retrieval has allowed only passages that contained at
least one absolute or relative time expression. It also captures the event temporal
orderings of the predicates and their relations to the answer structures.

3.3 Answer Processing

This module is responsible for selecting the response based on the relevant fragments
of the documents. To be able to answer time-related questions, a question answering
system has to know when specific events took place. For this purpose, temporal
information can be associated with extracted facts from text documents [11, 12].

Temporal Inference. Either time expressions or events are related but are sometimes
ambiguous. For example, the question Q: “how long did the Tunisian revolution last?”
is classified to ask about a Time-Related, due to the presence of the question stem “how
long”.
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The answer that is inferred from this paragraph is “18 December 2010–14 January
2011”.

In Q, the event of the “Tunisian revolution” can be paraphrased by the “The
Jasmine Revolution” expressed in the first sentence of the paragraph. The same mining
is referred to the underlined expression “The events”.

The first reference (The Jasmine Revolution began on 18 December 2010) indi-
cates a relation of INITIATION between the event “The Jasmine Revolution” and the
fully specified temporal expression “18 December 2010” strengthened by the adverb
“began”. The second reference has an aspectual relation of TERMINATION, which is
strengthened by the adverb “finally”.

The final inference enables the recognition of duration of an event when a time
expression is identified for its initiation and for its termination. The correct answer is
27 days. The Automatic Translation provided by Wikipedia allows us to have by a
simple and a quick projection to translate the pertinent passage and the right answer
already found to Arabic. Such answers are important in Arabic QA system as they can
be used to provide an answer from a document collection. We therefore decided to
investigate the potential of those answers by acquiring patterns automatically.

4 Answers Patterns

It has been noted in several QA systems that certain types of answer are expressed
using regular forms [13, 14]. For example, for temporal question like BIRTHDATEs
(with questions like “When was X born?”/ ), typical answers are:

When formulated as regular expressions, they can be used to locate the correct answer.
Patterns are then automatically extracted from the returned documents and standardized
to be then applied to find answers to new questions from a document collection. The
precision of the patterns is calculated by cross-checking the patterns across various
examples of the same type. This step will help to eliminate dubious patterns.

5 Conclusion

One of the most crucial problems in any Natural Language Processing (NLP) task is the
representation of time. This includes applications such as Information Retrieval tech-
niques (IR), Information Extraction (IE) and Question/answering systems (QA). This
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paper deals with temporal information involving several forms of inference in Arabic
language. We introduced a methodology to compute temporal inference for QA that
enables us to enhance the recognition of the exact answers to a variety of questions
about time. We have argued that answering questions about temporal information
requires several different forms of inferences, including inferences that derive from
relations between events and their arguments.
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Abstract. This paper is concerned with distributed optimal control
problem. An adaptive critic neural networks solution is proposed to
solve optimal distributed control problem for systems governed by par-
abolic differential equations, with control and state constraints and dis-
crete time delay. The optimal control problem is discretized by using a
finite element method in space and the implicit Crank-Nicolson midpoint
scheme in time, then transcribed into nonlinear programming problem.
To find optimal control and optimal trajectory feed forward adaptive
critic neural networks are used to approximate co-state equations. The
efficiency of our approach is demonstrated for a model problem related
to a mixed nutrient uptake by phytoplankton with space diffusion and
discrete time delay of nutrient uptake.

Keywords: Distributed control problem with discrete time delays ·
State and control constraints · Feed-forward neural network · Adaptive
critic synthesis · Numerical examples · Ecological model

1 Introduction

We consider an optimal distributed control problem for systems governed by
parabolic differential equations, with control and state constraints and discrete
time delay. The problem is motivated by better understanding of real world sys-
tems eventually with the purpose of being able to influence these systems in a
desired way. The solution of distributed control problem is characterised by the
state (evolving forward in time) and co-state (evolving backward in time) equa-
tions with initial and terminal conditions, respectively. We pursue the one-shot
multigrid startegy as proposed in [1]. A one-shot multigrid algorithm means
solving the optimality system for the state, the co-state and the control vari-
ables in parallel in the multigrid process evolving forward in time. The finite
c© Springer International Publishing Switzerland 2016
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element approximation plays an important role in the numerical treatment of
optimal control problems. This approach has been extensively studied in the
papers e.g. [2,3,7,9] for parabolic optimal control problems. Through discretiza-
tion the optimal control problem is transcribed into a finite-dimensional non-
linear programming problem (NLP-problem). Optimal control problems have
thus been a stimulus to develop optimization codes for large-scale NLP-problem
[1,5,9]. Then neural networks are used as a universal function approximation
to solve co-state variable forward in time with “adaptive critic designs” [10,12].
The paper presented extends adaptive critic neural network architecture pro-
posed by [6] to the optimal distributed control problem for systems governed by
parabolic differential equations with control and state constraints and discrete
time delay. In this paper, we study discretization techniques for solving nonlin-
ear optimal control problems with control and state constraints. In Sect. 2 we
present a formal statement of first order necessary conditions for the general
parabolic problem. These conditions turn out to be consistent with their coun-
terparts for the discretized problem obtained from the KuhnTucker conditions
(Sect. 3). The main focus is on the numerical solution of control and state con-
strained problems and on the verification of the optimality conditions. In Sect. 3,
we discuss a space-time discretization approach in which both control and state
variables are discretized. We use augmented Lagrangian techniques. The archi-
tecture of the proposed adaptive critic neural network synthesis for the optimal
control problem with delays in state and control variables subject to control and
state constraints is described also. We also present a new algorithm to solve
distributed optimal control problems. Simulation and illustrative example are
presented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 The Optimal Control Problem

We consider the nonlinear control problem governed by parabolic equations with
delays in state and control variables subject to control and state constraints. Let
x(p, t) ∈ Rn and u(p, t) ∈ Rm denote the state and control variable, respectively
in a given space-time domain Q = [a, b] × [t0, tf ]. The optimal control problem
is to minimize

J (u) =
∫ b

a

g(x(p, tf ))dp (1)

+
∫ b

a

∫ tf

t0

f0(x(p, t), x(p, t − τx), u(p, t), u(p, t − τu))dtdp,
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subject to

∂x(p, t)
∂t

= D
∂2x(p, t)

∂p2
+ f(x(p, t), x(p, t − τx), u(p, t), u(p, t − τu)), (2)

∂x(a, t)
∂p

=
∂x(b, t)

∂p
= 0, t ∈ [t0, tf ],

x(p, t) = φs(p, t), u(p, t) = φc(p, t), p ∈ [a, b], t ∈ [t0 − τu, t0],
ψ(x(p, tf )) = 0, c(x(p, t), u(p, t)) ≤ 0, p ∈ [a, b], t ∈ [t0, tf ],

where τx ≥ 0 and τu ≥ 0 are discrete time delay in the state and control variable,
respectively. The functions g : Rn → R, f0 : R2(n+m) → R, f : R2(n+m) → Rn,
c : Rn+m → Rq and ψ : Rn → Rr, 0 ≤ r ≤ n are assumed to be sufficiently
smooth on appropriate open sets, and the initial conditions φs(p, t), φc(p, t) are
continuous functions. The theory of necessary conditions for the optimal control
problem of form (1) is well developed, see e.g. [5,9]. The augmented Hamiltonian
function for problem (1) is given by

H(x, xτx
, u, uτu

, λ, μ) =
n∑

j=0

λjfj(x, xτx
, u, uτu

) +
q∑

j=0

μjcj(x, u),

where λ ∈ Rn+1 is the adjoint variable and μ ∈ Rq is a multiplier associated to
the inequality constraints. Assume that τx, τu ≥ 0, (τx, τu) �= (0, 0) and τx

τu
∈ Q

for τu > 0 or τu

τx
∈ Q for τx > 0. Let (x̂, û) be an optimal solution for (1). Then

the necessary optimality condition for (1) implies [5] that there exist a piecewise
continuous and piecewise continuously differentiable adjoint function λ : Q →
Rn+1, a piecewise continuous multiplier function μ : Q → Rq, μ̂(p, t) ≥ 0 and
a multiplier σ ∈ Rr satisfying

∂λ

∂t
= D

∂2λ

∂p2
− ∂H

∂x
(x̂, x̂τx

, û, ûτu
, λ, μ)

−χ[t0,tf −τx]
∂H
∂xτx

(x̂+τx
, x̂, û+τx

, ûτu+τx
, λ+τx

, μ+τx
), (3)

λ(p, tf ) = gx(x̂(p, tf )) + σψx(x̂(p, tf )),
∂λ(a, t)

∂p
=

∂λ(b, t)
∂p

= 0, (4)

0 = −∂H
∂u

(x̂, x̂τx
, û, ûτu

, λ, μ)

−χ[t0,tf −τu]
∂H
∂uτu

(x̂+τu
, x̂τx+τu

, û+τu
, û, λ+τu

, μ+τu
). (5)

Furthermore, the complementary conditions hold, i.e. in p ∈ [a, b], t ∈ [t0, tf ],
μ(p, t) ≥ 0, c(x(p, t), u(p, t)) ≤ 0 and μ(p, t)c(x(p, t), u(p, t)) = 0. Herein,
the subscript x, xτx

, u and uτu
denotes the partial derivative with respect to

x, xτx
, u and uτu

, respectively and x+τx
= x(p, t+τx), xτx+τu

= x(p, t−τx+τu).
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3 Discretization and Adaptive Critic Neural Networks
Solution of the Optimal Control

The purpose of this section is to develop discretization techniques by which the
distributed control problem (1) are transformed into a nonlinear programming
problem (NLP-problem) [1,2,9]. We assume that τu = l τx

k with l, k ∈ N. Defining
hmax = τx

k gives the maximum interval length for an elementary transformation
interval that satisfies τx

hmax
= k ∈ N and τu

hmax
= l ∈ N. The minimum grid point

number for an equidistant discretization mesh Nmin = tf −t0
hmax

. Choose a natural
number K ∈ N and set N = KNmin. Let tj ∈ 〈t0, tf 〉, j = 0, . . . , N, be an
equidistant mesh point with tj = t0 + jht, i = 0, . . . , N , where ht = b−a

N is a
time step and tf = Nh + t0. Assume that the rectangle R = {(p, t) : a ≤ p ≤
b, t0 ≤ t ≤ tf} is subdivided into N by M rectangles with sides ht and hs = b−a

M .
Start at the bottom row, where t = t0, and the solution is x(pi, t0) = φs(pi, t0). A
method for computing the approximations to x(p, t) at grid points in successive
rows {x(pi, tj) : i = 0, 1, . . . , N, j = 0, 1, . . . ,M}, will be developed. An implicit
scheme, invented by Jon Crank and Phyllis Nicholson, is based on numerical
approximations for the solution of Eq. (2) at the point (x, t + ht/2) which lies
between the rows in the grid. Let the vectors xij , fi,j ∈ Rn, uij ∈ Rm, i =
0, . . . , N, j = 0, . . . , M, be an approximation of the state variable and control
variable x(pi, tj), f(pi, tj) and u(pi, tj), respectively at the mesh point (pi, tj).
We will produce the difference equation, with r = Dht/h2

s = 1 results in the
implicit difference formula

Gi,j+1 = xi−1,j+1 − 4xi,j+1 + xi+1,j+1 + xi−1,j + xi+1,j + htfi,j = 0. (6)

for i = 1, 2, . . . , N − 1. The terms on the right-hand side of the Eq. (6) are all
known. When the Crank-Nicholson method is implemented with a computer,
the linear system can be solved by their direct means or by iteration. Let z :=
((xij), (uij), i = 0, . . . , N, j = 0, . . . , M) ∈ RNs , Ns = (n+m)NM and I(Q) =
{(i, j), i = 1, . . . , N − 1, j = 1, . . . ,M − 1}. The optimal control problem is
replaced by the following discretized control problem in the form of nonlinear
programming problem with inequality constraints: Minimize

J (z) = hsht

∑
(i,j)

f0(xij , xτxij , uij , uτuij) + hs

∑
(i)

g(xiM ) (7)

subject to
Gi,j+1 = 0, x0j = x1j , xNj = xN−1j , (8)
xi,−j = φx(pi, t0 − jh), j = k, . . . , 0, ui,−j = φu(pi, t0 − jh), j = l, . . . , 0,

ψ(xi,N ) = 0, c(xij , uij) ≤ 0, i = 0, . . . , N, j = 0, . . . , M − 1.

In a discrete-time formulation we want to find an admissible control which min-
imizes objective function (7). Let us introduce the Lagrangian function for the
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nonlinear optimization problem (7):

L(z, λ, σ, μ) = hsht

∑
(i,j)

f0(xij , xτxij , uij , uτuij) + hs

∑
(i)

g(xiM )

+
∑

(i,j)∈I(Q)

λi,j+1(Gi,j+1)

+
∑

(i,j)∈I(Q)

μijc(xij , uij) +
∑
(i)

σiψ(xiN )

+
∑
(j)

λ0,j
x0,j+1 − x0,j

hs
+

∑
(j)

λN,j
xN,j+1 − xN,j

hs
. (9)

The first order optimality conditions of Karush-Kuhn-Tucker for the problem
(7) are:

0 = Lxij
(z, λ, σ, μ) = λi−1,j − 4λi,j + λi+1,j + λi−1,j+1 + λi+1,j+1

+htλi,j+1fxij
(xij , xi,j−k, uij , ui,j−l)

+htλi,j+k+1fxijτx
(xi,j+k, xij , ui,j+k, ui,j−l+k)

+μijcxij
(xij , uij), j = 0, . . . , M − k − 1, (10)

0 = Lxij
(z, λ, σ, μ) = λi−1,j − 4λi,j + λi+1,j + λi−1,j+1 + λi+1,j+1

+htλi,j+1fxij
(xij , xi,j−k, uij , ui,j−l), j = M − k, . . . ,M − 1,

λ0j = λ1j , λNj = λN−1,j

0 = LxiM
(z, λ, σ, μ) = gxiM

(xim) + σiψxiM
(xiM ) − λiM , (11)

0 = Luij
(z, λ, σ, μ) = htλi,j+1fuij

(xij , xi,j−k, uij , ui,j−l)
+htλi,j+l+1fuijτu

(xi,j+l, xi,j−k+l, ui,j+l, ui,j) + μijcuij
(xij , uij),

j = 0, . . . ,M − l − 1, (12)
0 = Luij

(z, λ, σ, μ) = htλi,j+1fuij
(xij , xi,j−k, uij , ui,j−l) + μijcuij

(xij , uij),
j = M − l, . . . , N − 1.

Eqs. (10) – (12) represent the discrete version of the necessary conditions (4) – (5)
for optimal control problem (1).

In the optimal control problems the objective is to devise a strategy of action,
or control law, that minimizes the desired performance cost Eq. (7). In 1992,
Werbos [12] introduced an approach for approximate dynamic programming,
which later became known under the name of adaptive critic designs (ACD).
A typical design of ACD consists of three modules action, model (plant), and
critic. We need to determine three pieces of information: How to adapt the critic
network; How to adapt the model network; and How to adapt the action network.
The action consists of a parametrized control law. The critic approximates the
value-related function and captures the effect that the control law has on the
future cost. At any given time the critic provides guidance on how to improve
the control law. In return, the action can be used to update the critic. An
algorithm that successively iterates between these two operations converges to
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Algorithm 1. Algorithm to solve the optimal control problem.
Input: Choose t0, tf , a, b, N, M - number of steps, time and space steps

ht, hs εa, εc - stopping tolerance for action and critic neural networks,
respectively, xi,−j = φs(pi, t0 − jht), j = k, . . . , 0,
ui,−j = φc(i, t0 − jht), j = l, . . . , 0 -initial values.

Output: Set of final approximate optimal control û(pi, t0 + jht) = ûij and
optimal trajectory x̂(pi, t0 + (j + 1)ht) = x̂i,j+1, j = 0, . . . , M − 1,
respectively

1 Set the initial weight W
a = (V a, W a), W

c = (V c, W c)
for j ← 0 to M − 1 do

2 for i ← 1 to N − 1 do
3 while erra ≥ εa and errc ≥ εc do
4 for s ← 0 to max(k, l) do
5 Compute ua

i,s+j , μa
i,s+j and λc

i,s+j+1 using action (Wa) and
critic (Wc) neural networks, respectively and xi,s+j+1 by Eq. (8)

6 Compute λt
ij , ut

ij , and μt
ij using Eqs. (10) and (12)

F(uij , μij) = (Luij (z, λ, σ, μ), −c(xij , uij)) = 0
7 if j = M − 1 then
8 F(ui,M−1, μi,M−1, σi) =

(Lui,M−1(z, λ, σ, μ), −c(xi,M−1, ui,M−1), −ψ(xi,M )) with

λiM = GxiM (xiM ) + σiψxiM (xiM )

9 errc =‖ λt
ij − λc

ij ‖
10 erra =‖ (u, μ)tij − (u, μ)aij ‖
11 With the data set xij , λt

ij update the weight parameters W
c

12 With the data set xij , (u, μ)tij update the weight parameters W
a

13 Set λc
ij = λt

i,j , (u, μ)ai,j = (u, μ)ti,j

14 Set λ̂i,j = λt
i,j , (ûi,j , μ̂i,j) = (u, μ)ti,j

15 Compute x̂i,j+1 using Eq. (8) and ûi,j

16 λ0j = λ1j , λNj = λN−1,j

17 return λ̂i,j , ûi,j , μ̂i,j , x̂i,j+1

the optimal solution over time. The plant dynamics are discrete, time-invariant,
and deterministic, and they can be modelled by a difference Eq. (8). The action
and critic network are chosen as feed forward three-layer neural networks with
input, hidden and output layer. The adaptive critic neural network procedure of
the optimal control problem is summarized in Algorithm1. In the adaptive critic
synthesis, the action and critic network were selected such that they consist of
n+m subnetworks, respectively, each having n−3n−1 structure (i.e. n neurons
in the input layer, 3n neurons in the hidden layer and one neuron in the output
layer). The training procedure for the action and critic networks, respectively, are
given by [10]. From the free terminal condition (ψ(x) ≡ 0) from Eqs. (10) – (11)
we obtain that λ0 = −1, and λiM = 0, i = 1, . . . , N. We use this observation
before proceeding to the actual training of the adaptive critic neural network.
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4 Nitrogen Transformation Cycle

The aerobic transformation of nitrogen compounds [6] includes: Heterotrophic
bacteria (x1), bacteria from the genus Nitrosomonas (x2), bacteria mainly from
the genus Nitrobacter (x3), phytoplankton (x4), detritus (x5), organic nitrogen
compounds DON (x6), ammonium (x7), nitrites (x8), and nitrate (x9). The
individual variables x1, . . . , x9 represent nitrogen concentrations contained in
the organic as well as in inorganic substances and living organisms presented in
the model. The following system of partial differential equations is proposed as
a model for the nitrogen transformation cycle:

∂xi(p, t)

∂t
= D

∂2xi(p, t)

∂p2
+ xi(t)Ui(x(t))− xi(t)Ei(x(t))− xi(t)Mi(x(t)), i = 1, 2, 3,

∂x4(p, t)

∂t
= D

∂2x4(p, t)

∂p2
+ x4(t − τ)(U4(x(t − τ))− Ei(x(t − τ))− Mi(x(t − τ))),

∂x5(p, t)

∂t
= D

∂2x5(p, t)

∂p2
+

4∑
i=1

xiMi(x)− K5x5(t),

∂x6(p, t)

∂t
= D

∂2x6(p, t)

∂p2
+ K5x5(t)− x1(t)U1(x(t)) + x4(t)E4(x(t))− x4(t)P6(x(t)),

∂x7(p, t)

∂t
= D

∂2x7(p, t)

∂p2
+ x1(t)E1(x(t))− x2(t)U2(x(t))− x4(t)P7(x(t)), (13)

∂x8(p, t)

∂t
= D

∂2x8(p, t)

∂p2
+ x2(t)E2(x(t))− x3(t)U3(x(t)),

∂x9(p, t)

∂t
= D

∂2x9(p, t)

∂p2
x3(t)E3(x(t))− x4(t)P9(x(t)),

where xi(p, t) are the concentrations of the recycling matter in microorgan-
isms, the available nutrients and detritus, respectively, and ∂x(a,t)

∂p = ∂x(b,t)
∂p = 0.

Functions Ui, Ei and Mi describe uptake, excretion and mortality rate, respec-
tively, and U4 = P6 +P7 +P9. The constant τ stands for the discrete time delay
in uptake of nutrients by phytoplankton. Three variables u = (u(1), u(2), u(3))
express the preference coefficients for update of x6, x7, x9. It can be expected
that the phytoplankton will employ control mechanisms in such a way as to
maximize its biomass over a given period tf of time:

J(u) =
∫ b

a

∫ tf

t0

x4(p, t)dtdp → max (14)

under the constraint

C(x, u) := b1U4(x, u) + b2P6(x, u) + b3P9(x, u) + b4E4(x, u) ≤ W (I), (15)
ui ∈ [0, uimax] for i = 1, 2, 3.

The last inequality expresses the fact that the amount of energy used for “liv-
ing expenses” (synthesis, reduction and excretion of nutrients) by phytoplankton
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Fig. 1. Adaptive critic neural network simulation of optimal control û1(t) and ū1(t)
with initial condition ψs(t) = (0.1, 0.1, 0.2, 0.8, 0.4, 0.5, 0.6, 0.7, .1)(1 + cos(2πp)) and
ψc(t) = (0, 0, 0), respectively for t ∈ [−1, 0].
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Fig. 2. Adaptive critic neural network simulation of optimal control û2(t) and ū2(t)
with initial condition ψs(t) = (0.1, 0.1, 0.2, 0.8, 0.4, 0.5, 0.6, 0.7, .1)(1 + cos(2πp)) and
ψc(t) = (0, 0, 0), respectively for t ∈ [−1, 0].

cannot exceed a certain value W (I) which depends on light intensity I (for detail
explanation see [6]). We are led to the following optimal control problems:

(1) instantaneous maximal biomass production with respect to u:

ẋ4 = x4(U4(x, u) − E4(x, u) − M4(x, u)) → max (16)

under the constraint C(x, u) ≤ W (I), for all t ∈ [t0, tf ] and ui ∈ [0, uimax],
i=1, 2, 3,

(2) global maximal biomass production with respect to u:

J(u) =
∫ tf

t0

x4(t)dt → max (17)

under the constraint C(x, u) ≤ W (I), for all t ∈ [t0, tf ] and ui ∈ [uimin, uimax]
for i=1,2,3.
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4.1 Numerical Simulation

The solution of distributed optimal control problem (14) with state and control
constraints using adaptive critic neural network and NLP methods are displayed
in Figs. 1 and 2. In the adaptive critic synthesis, the critic and action network
were selected such that they consist of nine and four subnetworks, respectively,
each having 9-27-1 structure (i.e. nine neurons in the input layer, twenty seven
neurons in the hidden layer and one neuron in the output layer). The proposed
neural network is able to meet the convergence tolerance values that we choose,
which leads to satisfactory simulation results. Simulations show that there is a
very good agreement between short-term and long-term strategy and the pro-
posed neural network is able to solve nonlinear optimal control problem with
state and control constraints. The optimal strategy is the following. In the
presence of high ammonium concentration, the uptake of DON and nitrate is
stopped. If the concentration of ammonium drops below a certain limit value,
phytoplankton starts to assimilate DON or nitrate dependently on values b2, b3.
If the concentration of all three forms of nitrogen are low, all of them are assim-
ilated by phytoplankton at the maximal possible rate, e.i. ûi(t) = uimax for all
t ∈ [t0, tf ] (Figs. 1 and 2). Our results are quite similar to those obtained in [6]
by using Pontriagin’s maximum principle.

5 Conclusion

In the current work, we presented an efficient optimization algorithm for dis-
tributed optimal control an inequality constraints on the controls and states.
Using Crank-Nicolson’s methods the optimal control problem is transcribed into
a discrete-time high-dimensional nonlinear programming problem which is char-
acterized by state and co-state equations involving forward and backward in
time, respectively. The solution of co-state equations is approximated based on
adaptive critic designs and is involved forward in time. This approach is applica-
ble to wide class of nonlinear systems. The method was tested on the model of
mixed substrate utilization by phytoplankton. Using MATLAB, a simple simu-
lation model based on adaptive critic neural network was constructed.
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Abstract. In this paper, by employing fixed point theorem and differ-
ential inequality techniques, some sufficient conditions are given for the
existence and the global exponential stability of the unique weighted
pseudo almost-periodic solution of high-order Hopfield neural networks
with delays. An illustrative example is also given at the end of this paper
to show the effectiveness of our results.

Keywords: Weighted pseudo almost-periodic solution · High-order
Hopfield neural networks · Delays

1 Introduction

High order Hopfield neural networks (HOHNNs) have attracted many attentions
in recent years due to the fact that they have stronger approximation property,
faster convergence rate, greater storage capacity, and higher fault tolerance than
lower-order neural networks. In particular, there have been extensive results
on the problem of the existence and stability of equilibrium points, periodic
solutions, and almost periodic solution of HOHNNs in the literature. We refer
the reader to [1–5] and the references therein.

As is well known, both in biological and man-made neural networks, delays
are inevitable, due to various reasons. For instance, time delays can be caused by
the finite switching speed of amplifier circuits in neural networks. Time delays
in the neural networks make the dynamic behaviors become more complex, and
may destabilize the stable equilibria [2–5]. Thus, it is very important to study
the dynamics of neural networks delay.

In this paper, we are mainly concerned with the existence of weighted pseudo
almost periodic solutions to the following models for HOHNNs with delays:

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 478–485, 2016.
DOI: 10.1007/978-3-319-44778-0 56
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x′
i(t) = −cixi(t) +

n∑
j=1

dij(t)gj(xj(t)) +
n∑

j=1

aij(t)gj(xj(t − τ))

+
n∑

j=1

n∑
l=1

bijl(t)gj(xj(t − σ))gl(xl(t − ν))

+ Ii(t), i = 1, . . . , n. (1)

where n corresponds to the number of units in a neural network, xi(t) cor-
responds to the state vector of the ith unit at the time t, ci > 0 represents
the rate with which the ith unit will reset its potential to the resting state
in isolation when disconnected from the network and external inputs at the
time t, dij(t), aij(t) and bijl(t) are connection weights of the neural network,
τ ≥ 0, σ ≥ 0 and ν ≥ 0 correspond to the transmission delays, Ii(t) denote the
external inputs at time t, and gj is the activation function of signal transmission.

For instance, we make the following assumptions:

(H1) For all 1 ≤ i, j, l ≤ n, the functions t �−→ dij(t), t �−→ aij(t), t �−→
bijl(t), t �−→ Ii(t) are weighted pseudo almost-periodic functions.

(H2) Let ρ : R �−→ (0,+∞), ρ ∈ U∞ is continuous and assume

sup
s∈R

[
ρ(s + δ)

ρ(s)
] < ∞ and sup

T>0
[
μ(T + δ, ρ)

μ(T, ρ)
] < ∞, for each δ ∈ R

(H3) For each j = {1, 2, . . . , n}, there exist nonnegative constants Lg
j and Mg

j

such that for all u, v ∈ R

| gj(u) − gj(v) |≤ Lg
j | u − v |, | gj(u) |≤ Mg

j .

Furthermore, we suppose that for all 1 ≤ j ≤ n, gj(0) = 0.

Throughout this paper, we will use the following concepts and notations.
BC(R,Rn) denotes the set of bounded continued functions from R to R

n. Note
that (BC(R,Rn), ‖ . ‖∞) is a Banach space where ‖ . ‖∞ denotes the sup norm

‖ f ‖∞= max
1≤i≤n

sup
t∈R

| fi(t) | .

Furthermore, C(R,Rn) denotes the class of continuous functions from R into
R

n. Let (Rn, ‖ . ‖∞) be Banach space. Let U denotes the collection of functions
(weights) ρ : R �−→ (o,∞) which are locally integrable over R such that ρ > 0
almost everywhere. From now on, if ρ ∈ U and for T > 0, we then set

μ(T, ρ) =
∫ T

−T

ρ(x)dx.

As in the particular case when ρ(x) = 1 for each x ∈ R, we are exclusively
interested in those weights ρ, for which lim

T−→∞
μ(T, ρ) = ∞.
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Let U∞ := {ρ ∈ U : lim
T−→∞

μ(T, ρ) = ∞}
and UB := {ρ ∈ U∞ : ρ is bounded with inf

x∈R

ρ(x) > 0}.

Obviously, UB ⊂ U∞ ⊂ U, with strict inclusions.

Definition 1. [3]. A function f ∈ C(R,Rn) is called (Bohr) almost periodic if
for each ε > 0 there exists L(ε) > 0 such that every interval of length L(ε) > 0
contains a number τ with the property that ‖ f(t + τ) − f(t) ‖∞< ε, for each
t ∈ R. The number τ above is called an ε-translation number of f , and the
collection of all such functions will be denoted as AP (R,Rn).

To introduce those weighted pseudo-almost periodic functions, we need to
define the weighted ergodic space PAP0(R,Rn, ρ). Weighted pseudo-almost peri-
odic functions will then appear as perturbations of almost periodic functions by
elements of PAP0(R,Rn, ρ).

Let ρ ∈ U∞. Define

PAP0(R,Rn, ρ) := {f ∈ BC(R,Rn) : lim
T−→∞

1
μ(T, ρ)

∫ T

−T

‖ f(σ) ‖ ρ(σ)dσ = 0}.

Definition 2. [3]. Let ρ ∈ U∞. A function f ∈ BC(R,Rn) is called weighted
pseudo-almost periodic (or ρ-pseudo almost periodic) if it can be expressed as
f = g + φ, where g ∈ AP (R,Rn) and φ ∈ PAP0(R,Rn, ρ). The collection
of such functions will be denoted by PAP (R,Rn, ρ).

The initial conditions associated with (1) are of the form

xi(s) = ϕi(s), s ∈ (−θ, 0], i = 1, 2, . . . , n,

The rest of this paper is organized as follow. In Sect. 2, the existence of
weighted pseudo almost-periodic solutions of (1) are discussed. In Sect. 3, a
numerical example is given to illustrate the effectiveness of our results. Finally,
we draw conclusion in Sect. 4.

2 The Existence and the Global Exponential Stability
of Weighted Pseudo Almost Periodic Solution

In this section, we establish some results for the existence of the weighted pseudo
almost-periodic solution of (1). For convenience, we introduce the following nota-
tions, for i, j, l = 1, 2, . . . , n, it will be assumed that dij , Ii, aij , bijl : R −→ R,
and there exist constants dij , Ii, aij and bijl such that

sup
t∈R

(| dij(t) |) = dij , sup
t∈R

(| Ii(t) |) = Ii,

sup
t∈R

(| aij(t) |) = aij , sup
t∈R

(| bijl(t) |) = bijl.
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Lemma 1. Suppose that assumptions (H2) hold. If ϕ(.) ∈ PAP (R,Rn, ρ), then
ϕ(. − h) ∈ PAP (R,Rn, ρ).

Lemma 2. If ϕ,ψ ∈ PAP (R,R, ρ), then ϕ × ψ ∈ PAP (R,R, ρ).

Lemma 3. Suppose that assumptions (H1)–(H3) hold and for all 1 ≤ i ≤ n

(H4) : sup
T>0

{ ∫ T

−T

e−ci(T+t)ρ(t)dt

}
< ∞.

Define the nonlinear operator Γ as follows, for each ϕ = (ϕ1, . . . , ϕn) ∈
PAP (R,Rn, ρ), (Γϕ)(t) := xϕ(t) where

xϕ(t) = (
∫ t

−∞
e−(t−s)c1F1(s)ds, . . . ,

∫ t

−∞
e−(t−s)cnFn(s)ds)T

and

Fi(s) =
n∑

j=1

dij(s)gj(ϕj(s)) +
n∑

j=1

aij(s)gj(ϕj(s − τ))

+
n∑

j=1

n∑
l=1

bijl(s)gj(ϕj(s − σ))gl(ϕl(s − ν)) + Ii(s),

then Γ maps PAP (R,Rn, ρ) into itself.

Theorem 1. Suppose that assumptions (H1)–(H4) hold and (H5): there exist
nonnegative constants L, p and q such that

L = max
1≤i≤n

{Ii

ci
}, p = max

1≤i≤n
{c−1

i [
n∑

j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jM

g
l ]} < 1,

q = max
1≤i≤n

{c−1
i [

n∑
j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijl(L
g
jM

g
l + Mg

j Lg
l )]} < 1.

Then the delayed HOHNNs of (1) has a unique weighted pseudo almost periodic
solution in the region B = {ϕ ∈ PAP (R,Rn, ρ), ‖ ϕ − ϕ0 ‖∞≤ pL

(1−p)}, where

ϕ0(t) = (
∫ t

−∞
e−(t−s)c1I1(s)ds, . . . ,

∫ t

−∞
e−(t−s)cnIn(s)ds)T .

Proof. One has

‖ ϕ0 ‖∞ = sup
t∈R

max
1≤i≤n

(|
∫ t

−∞
e−(t−s)ciIi(s)ds |)

≤ max
1≤i≤n

(
Ii

ci
) = L.
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After

‖ ϕ ‖∞ ≤ ‖ ϕ − ϕ0 ‖∞ + ‖ ϕ0 ‖∞
≤ ‖ ϕ − ϕ0 ‖∞ +L.

Set B = B(ϕ0, p) = {ϕ ∈ PAP (R,Rn, ρ), ‖ ϕ − ϕ0 ‖∞≤ pL
(1−p)}. Clearly, B is a

closed convex subset of PAP (R,Rn, ρ) and, therefore, for any ϕ ∈ B by using
the estimate just obtained, we see that

‖ Γϕ − ϕ0 ‖∞

= max
1≤i≤n

sup
t∈R

{|
∫ t

−∞
e−(t−s)ci [

n∑
j=1

dij(s)gj(ϕj(s)) +
n∑

j=1

aij(s)gj(ϕj(s − τ))

+
n∑

j=1

n∑
l=1

bijl(s)gj(ϕj(s − σ))gl(ϕl(s − ν))]ds |}

≤ max
1≤i≤n

sup
t∈R

{
∫ t

−∞
e−ci(t−s)[

n∑
j=1

dijL
g
j ‖ ϕ ‖∞ +

n∑
j=1

aijL
g
j ‖ ϕ ‖∞

+
n∑

j=1

n∑
l=1

bijlL
g
jM

g
l ‖ ϕ ‖∞]ds}

≤ max
1≤i≤n

{c−1
i [

n∑
j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jM

g
l ]} ‖ ϕ ‖∞

= p ‖ ϕ ‖∞≤ pL

1 − p
,

where p = max
1≤i≤n

{c−1
i [

n∑
j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jM

g
l ]} < 1, it implies

that (Γϕ)(t) ∈ B. So, the mapping Γ is a self-mapping from B to B.
Next, we prove that the mapping Γ is a contraction mapping of the B. In

fact, in view of (H3), for ∀φ, ψ ∈ B, we have

| (Γφ − Γψ)i(t) |

= |
∫ t

−∞
e

−(t−s)ci [
n∑

j=1

dij(s)(gj(φj(s)) − gj(ψj(s))) +
n∑

j=1

aij(s)(gj(φj(s − τ)) − gj(ψj(s − τ)))

+

n∑

j=1

n∑

l=1

bijl(s)(gj(φj(s − σ))gl(φl(s − ν)) − gj(ψj(s − σ))gl(ψl(s − ν)))]ds |

≤
∫ t

−∞
e

−(t−s)ci [

n∑

j=1

dijL
g
j sup

t∈R

| φj(t) − ψj(t) | +
n∑

j=1

aijL
g
j sup

t∈R

| φj(t) − ψj(t) |

+

n∑

j=1

n∑

l=1

bijl | gj(φj(s − σ))gl(φl(s − ν)) − gj(ψj(s − σ))gl(φl(s − ν))

+ gj(ψj(s − σ))gl(φl(s − ν)) − gj(ψj(s − σ))gl(ψl(s − ν)) |]ds

≤
∫ t

−∞
e

−(t−s)ci [

n∑

j=1

dijL
g
j sup

t∈R

| φj(t) − ψj(t) | +
n∑

j=1

aijL
g
j sup

t∈R

| φj(t) − ψj(t) |
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+
n∑

j=1

n∑

l=1

bijl(L
g
j M

g
l + M

g
j L

g
l ) ‖ φ − ψ ‖∞]ds

≤ c
−1
i [

n∑

j=1

dijL
g
j +

n∑

j=1

aijL
g
j +

n∑

j=1

n∑

l=1

bijl(L
g
j M

g
l + M

g
j L

g
l )] ‖ φ − ψ ‖∞,

where i = 1, 2, . . . , n, it follows that

‖ Γφ − Γψ ‖∞ ≤ max
1≤i≤n

{c−1
i [

n∑
j=1

aijLg
j +

n∑
j=1

n∑
l=1

bijl

× (Lg
j Mg

l + Mg
j Lg

l )]} ‖ φ − ψ ‖∞ .

Notice that q = max
1≤i≤n

{c−1
i [

n∑
j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijl(L
g
jM

g
l +Mg

j Lg
l )]} <

1, it is clear that the mapping Γ is a contraction. Therefore the mapping Γ
possesses a unique fixed point z∗ ∈ B, T z∗ = z∗. So z∗ is a weighted pseudo
almost-periodic solution of system (1) in the region B. The proof of Theorem 1
is now complete.

Theorem 2. If the conditions (H1)–(H5) hold, then system (1) has a unique
weighted pseudo almost periodic solution z(t) which is globally exponentially
stable.

Proof. It follows from Theorem 1 that system (1) has at least one weighted
pseudo almost periodic solution z(t) = (z1(t), . . . , zn(t))T ∈ B with initial value
u(t) = (u1(t), . . . , un(t))T . Let x(t) = (x1(t), . . . , xn(t))T be an arbitrary solution
of system (1) with initial value ϕ∗(t) = (ϕ∗

1(t), . . . , ϕ
∗
n(t))T .

Let yi(t) = xi(t) − zi(t), ϕi(t) = ϕ∗
i (t) − ui(t) i = 1 . . . n, then

y′
i(t) = −ci(t)yi(t) +

n∑
j=1

dij(t)(gj(yj(t − u) + zj(t − u)) − gj(zj(t − u)))

+
n∑

j=1

aij(t)(gj(yj(t − τ) + zj(t − τ)) − gj(zj(t − τ)))

+
n∑

j=1

n∑
l=1

bijl(t)(gj(yj(t − σ) + zj(t − σ))gl(yl(t − ν)

+ zl(t − ν)) − gj(zj(t − σ))gl(zl(t − ν))), i = 1, . . . , n. (2)

Let Fi be defined by

Fi(w) = ci − w −
n∑

j=1

dijL
g
j −

n∑
j=1

aijL
g
je

wτ −
n∑

j=1

n∑
l=1

bijl(L
g
je

wσMg
l + Mg

j Lg
l e

wν),

where i = 1, . . . , n, w ∈ [0,+∞[ and by (H5), we obtain that

Fi(0) = ci −
n∑

j=1

dijL
g
j −

n∑
j=1

aijL
g
j −

n∑
j=1

n∑
l=1

bijl(L
g
jM

g
l + Mg

j Lg
l ) > 0.
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Since Fi(.) is continuous on [0,∞[ and Fi(w) −→ −∞;w �−→ +∞, there
exist ε∗

i > 0 such that Fi(ε∗
i ) = 0 and Fi(εi) > 0 for εi ∈ (0, ε∗

i ).
By choosing η = min{ε∗

1, . . . , ε
∗
n}, we obtain that the weighted pseudo almost

periodic solution of system (1) is globally exponentially stable. The globally
exponential stability implies that the pseudo almost periodic solution is unique.
We complete the proof.

3 Application

In order to illustrate some feature of our main results, we will apply the model
for n = 2:

x′
i(t) = −cixi(t) +

2∑
j=1

dij(t)gj(xj(t)) +
2∑

j=1

aij(t)gj(xj(t − τ))

+
2∑

j=1

2∑
l=1

bijl(t)gj(xj(t − σ))gl(xl(t − ν)) + Ii(t), 1 ≤ i ≤ 2, (3)

where c1 = c2 = 2, g1(t) = g2(t) = sin t, τ = σ = ν = 1, ρ(t) = et

(dij(t))1≤i,j≤2 =

(
0.2 sin t + 0.1e−t 0.1 cos t

0.1 sin
√
2t + 0.1e−t 0.2 cos

√
2t + 0.1e−t

)

(aij(t))1≤i,j≤2 =

(
0.1 cos t + 0.1e−t 0.2 sin t
0.4 cos t + 0.1e−t 0.1 sin t + 0.1e−t

)
, (Ii(t))1≤i≤2 =

(
0.8 cos

√
5t

0.5 sin t + 0.1e−t

)

(b1jl(t))1≤j,l≤2 =

(
0 0.3 sin

√
3t + 0.1e−t

0 0

)
, (b2jl(t))1≤j,l≤2 =

(
0 0.2 cos

√
5t + 0.1e−t

0 0

)

Then L = 0.4, p = 0.75 < 1, q = 0.9 < 1 and sup
T>0

{∫ T

−T
e−ci(T+t)ρ(t)dt} < ∞.

Consequently, it is not difficult to verify that this example satisfies Theorem 1,
then model (1) has a unique weighted pseudo almost periodic solution in the
considered region. Figure 1 shows the oscillations of the solution of Eq. (1).

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

X1

X2

(a) The orbit of X1 - X2

0
20

40
60

80
100

−0.5
0

0.5
1

1.5
−1.5

−1

−0.5

0

0.5

Time (t)X1

X2

(b) The phase system

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

Time (t)

X

X1
X2

(c) Transient response

Fig. 1. Example 1.
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4 Conclusion

In nature there is no phenomenon that is purely periodic, and this gives the
idea to consider the almost-periodic oscillation, the pseudo almost-periodic and
weighted pseudo almost-periodic situations. So, in this paper, some sufficient con-
ditions are presented ensuring the existence and uniqueness of weighted pseudo
almost-periodic solutions of HOHNNs with delays (1). Finally, an illustrative
example is given to demonstrate the effectiveness of the obtained results.
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Abstract. Usually, the solution of the conventional extreme learning
machine, which is a type of single-hidden-layer feedforward neural net-
works, is not sparse.

In this paper, to overcome this problem, we discuss a sparse extreme
learning machine using empirical feature mapping. Here, the basis vec-
tors of empirical feature space are the linearly independent training vec-
tors. Then, unlike the conventional extreme learning machine, only these
linearly independent training vectors become support vectors. Hence,
the solution of the proposed method is sparse. Using UCI bench-mark
datasets, we evaluate the effectiveness of the proposed method over the
conventional methods from the standpoints of the sparsity and classifi-
cation capability.

Keywords: Empirical feature space · Extreme learning machine ·
Sparse · Support vector

1 Introduction

Recently, extreme learning machine (ELM) [1–3], which is a type of single-
hidden-layer feedforward neural network (SLFNs), has been widely studied by
many researchers. Unlike standard SLFNs, it is not necessary to tune the hid-
den layer. Namely, in training ELM, we can generate randomly hidden nodes
if the activation functions are differentiable. And, we optimize only the weights
β = (β1, . . . , βL)� between the hidden and output nodes, where L is the number
of hidden nodes. Hence, the computational time of training ELM may be very
faster than that of standard SLFNs. In determining β of ELM, we solve the
optimization problem in order to minimize the training error and the norm of
β. And furthermore, kernel method can be applied to ELM if we replace the
random hidden nodes with feature mapping such as support vector machines
(SVMs) [4]. However, as with least squares SVM (LS-SVM) [4,5] which is a
type of SVM, the solution of the ELMs is not sparse. Hence, with huge training
data, ELM entails huge storage space and the computational cost of test. To
overcome these problems, in [6,7], support vectors (SVs) are chosen by adopting
inequality constraints as with standard SVMs. Then, non-SVs in this method
c© Springer International Publishing Switzerland 2016
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are deleted. However, in training this type of ELM, the information of these
data is lost. Hence, the solution of sparse ELM is difference from that of the
conventional ELM.

In this paper, to overcome these problems, we propose sparse ELM (S-ELM),
which is trained in the empirical feature space [8–12]. Namely, replacing ELM
feature mapping with empirical feature mapping, we let the solution of ELM be
sparse in the proposed method. First, empirical feature space, which is pro-
posed in [9] by Xiong et al., is generated by solving eigenvalue problem of
kernel matrix. Then, the values of kernel function in empirical feature space
are equivalent to those in feature space. Here, to reduce the computational cost
of generating empirical feature space, we use the reduced empirical feature space,
which is proposed in [10] by Abe, in our work. Because the basis vectors of the
reduced empirical feature space is linearly independent training vectors, we select
these vectors without solving the eingenvalue problem. Then, to select these vec-
tors, we use Cholesky factorization. Next, Using empirical feature mapping, β
is determined by solving optimization problem in order to minimize the training
error and norm of β. Then, unlike ELM using kernel method, β is known to
user because hidden nodes, which are empirical feature mapping, are known to
user. In classification step, we need β and empirical feature mapping of input.
To obtain this mapping, we need only linearly independent training vectors.
Hence, because these training vectors can be defined as SVs, the solution of the
proposed method is sparse. Furthermore, unlike ELM and SVMs using kernel
method, hidden layer is not black-box.

This paper is organized as follows. In Sect. 2, we describe the conventional
ELM. In Sect. 3, we propose S-ELM using empirical feature space. In Sect. 4,
we demonstrate the effectiveness of the proposed method over the conventional
methods through computer experiments using bench mark data sets. And we
conclude our work in Sect. 5.

2 Conventional Extreme Learning Machines

In training ELM, unlike usual SLFNs, only output weights are optimized. The
weights and bias terms of hidden node can be selected randomly, if the activiation
functions are differentiable.

For binary classification problem, the number of training vectors and the
set of m-dimensional training vectors and their labels be M and {xi, yi} (i =
1, . . . ,M), where yi = 1 or yi = −1 if the i-th training vector xi belongs to
class 1 or class 2. And, the weight vectors aj (j = 1, . . . , L) and bias terms bj
(j = 1, . . . , L) between input and hidden nodes are determined randomly, where
the activation function f(a�

j xi+bj) is differentiable. The decision function D(x)
of ELM is given by

D(x) = sign(β�f(x)), (1)
f(x) = (f(a�

1 x + b1), . . . , f(a�
Lx + bL))�. (2)
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Then, minimize the training errors by solving

Fβ = y, (3)
F = (f(x1), . . . ,f(xM ))�, (4)
y = (y1, . . . , yM )�. (5)

The output weight vector β is obtained by

β = F †y, (6)

where F † is obtained by using Moore-Penrose generalized inverse of F .
And, according to [13], if the norm of output weights is small, the general-

ization capability is high for feedforward neural networks. Hence, instead of (3),
the optimization problem is defined as follows:

min 1
2β�β + C

2

∑M
i=1 ξ2i (7)

s.t. β�f(xi) = yi − ξi for i = 1, . . . ,M, (8)

where C and ξi is the hyper-parameter, which determines the trade-off between
minimizing training error and the norm of β, and the slack variable for xi In
ELM, Using Kernel method, the random hidden node can be replaced with high
dimension feature mapping. Then, the decision function D(x) is given by

D(x) = f�(x)F�(
IM×M

C
+ K)−1y, (9)

f�(x)F� = (K(x,x1), . . . ,K(x,xM )), (10)
Kij = K(xi,xj) for i, j = 1, . . . , M, (11)

K(x,x′) = f�(x)f(x′), (12)

where IM×M (∈ R
M×M ) is unit matrix. In our following study, we use linear

kernels: x�x′, polynomial kernels: (x�x′ +1)d, where d is a positive integer, and
radial basis function (RBF) kernels: exp(−γ||x − x′||2), where γ is the width of
the radius. Then, d and γ are kernel parameters while linear kernels do not have
those. ELM using kernel method is similar to LS-SVM. As different points from
LS-SVM, the dual optimization problem of ELM does not have the condition∑M

i=1 αi, where αi (i = 1, . . . ,M) are Lagrange multipliers, and ELM can unify
for regression and classification (binary and multiclass) problems.

ELM using kernel method does not even need to determine the random hid-
den nodes. However, to obtain the decision function D(x), it is necessary for this
ELM to use all training vectors. Hence, the solution of ELM using kernel method
is not sparse, and its ELM entails huge storage space and the computational cost
of test.

3 Sparse Extreme Learning Machine

To overcome the above problems of ELM using kernel method, SELM training,
which reduce the number of training vectors by adopting inequality constraints
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as with standard SVMs, has been proposed in [6,7]. However, the information of
the reduced training vector is lost. In this paper, to overcome this problem, we
train ELM in empirical feature space instead of reducing the number of training
vectors.

3.1 Empirical Feature Mapping

Usually, the empirical feature space [9] is generated by solving the eigenvalue
problem of kernel matrix K. However, it is time consuming to solve this problem
and to transform input variables into variables in the empirical feature space.
Hence, we use the reduced empirical feature space, which have proposed by Abe
in [8]. The mapping function h(x) into the reduced empirical feature space is
given by

h(x) = (K(x,xe
1), . . . ,K(x,xe

N ))�, (13)

where xe
i (i = 1, ...,M ′) are the M ′ linearly independent training vector in the

high dimension feature space. Namely, the basis vectors of the reduced empirical
feature space are these training vectors, which are selected by Cholesky factor-
ization. We assumed that the diagonal element in Cholesky factorization is zero
if the argument of the square root in the diagonal element is less than or equal
to a threshold value μ.

3.2 Training S-ELM Using Empirical Feature Mapping

The optimization problem of S-ELM in the reduced empirical feature space given
by (7) and

s.t. β�h(xj) = yi − ξj for j = 1, . . . ,M, (14)

where β is N -dimensional vector. Then, unlike the conventional ELM, we solve
the primal form of the optimization problem because N ≤ M . β is given by

β = (
IN×N

C
+

M∑
i=1

h(xi)h�(xi))−1
M∑
i=1

yih(xi), (15)

where IN×N (∈ R
N×N ) is unit matrix. The decision function is given by

D(x) = β�h(x). (16)

Then, unlike the conventional ELM using kernel method, the β is known to user.
Hence, to obtain decision function of input, we need only N ’linearly independent
training vector and they become SVs.

In the following, we show the proposed algorithm.
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Algorithm of the Proposed S-ELM

Step 1. Select the linearly independent training data by Cholesky factorization
of kernel matrix K.

Step 2. Using the selected linearly independent training data xe
i (i = 1, . . . , N)

in Step 1, calculate the reduced empirical feature mapping function
h(x) with (13).

Step 3. Using h(x) determined in Step 2, calculate β by (15).
Step 4. Using β determined in Step 3, calculate D(x) by (16).

4 Experimental Results

We compared the number of SVs and the generalization ability of ELM using
kernel method, S-ELM, and LS-SVM, which is similar to the conventional ELM
using kernel method, using two-class benchmark data sets [4,8,10–12,14,15]
listed in the Table 1 that shows the number of inputs, training data, test data,
and data sets. We measured training time using a personal computer (3.10 GHz,
2.0 GB memory, Windows 7 operating system).

Table 1. Two class Benchmark data sets

Data Inputs Training Test Sets

Banana 2 400 4900 100

B. cancer 9 200 77 100

Diabetes 8 468 300 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1300 1010 20

Ringnorm 20 400 7000 100

F. solar 9 666 400 100

Splice 60 1000 2175 20

Thyroid 5 140 75 100

Titanic 3 150 2051 100

Twonorm 20 400 7000 100

Waveform 21 400 4600 100

4.1 Selection of Hyper-Parameters

In the following study, we normalized the input ranges into [0, 1]. For ELM,
S-ELM, and LS-SVM, we determined a kernel type, a kernel parameter of the
selected kernels, and C by five-fold cross-validation for each problem. For S-ELM,
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Table 2. Determined kernels and parameters values by five-fold cross-validation

LS-SVM ELM S-ELM

Data kernels d or γ C kernels d or γ C kernels d or γ C μ

Banana RBF γ =100 0.1 RBF γ = 100 0.1 RBF γ = 200 0.1 10−2

B. cancer RBF γ =10 1 RBF γ =50 0.1 RBF γ = 50 0.1 10−2

Diabetes RBF γ =10 5 RBF γ = 10 5 Pol d =3 10 10−5

German RBF γ =3 50 RBF γ =10 10 RBF γ = 10 5 10−5

Heart RBF γ =1.5 10 RBF γ = 1.5 10 RBF γ =1 500 10−5

Image RBF γ=1000 100 RBF γ = 200 5× 103 RBF γ =1000 104 10−6

Ringnorm RBF γ =100 0.1 RBF γ = 50 10 RBF γ =50 50 10−2

F. solar Pol d = 3 1 Pol d = 4 0.1 Linear – 103 10−2

Splice RBF γ = 10 50 RBF γ = 10 10 RBF γ = 15 10 10−2

Thyroid RBF γ = 100 5 RBF γ = 100 5 RBF γ = 100 100 10−3

Titanic Linear – 5 RBF γ = 100 5 RBF γ =100 0.1 10−2

Twonorm Pol d = 2 0.1 RBF γ = 0.5 5 RBF γ =1.5 10 10−3

Waveform RBF γ = 15 1 RBF γ = 15 1 RBF γ = 10 5 10−3

we determined the threshold value μ of Cholesky factorization by five-fold cross-
validation. We selected a kernel type from linear, polynomial, and RBF kernels.
If we selected polynomial or RBF kernels, we selected d or γ from {2, 3, 4, 5}
or {0.1, 0.5, 1, 1.5, 3, 5, 10, 15, 20, 100, 200, 500, 1000}. And we selected C from
{0.1, 1, 5, 10, 50, 100, 500, 103, 5 × 103, 104} and threshold value of Cholesky fac-
torization μ from {10−2, 10−3, 10−4, 10−5, 10−6}. Table 2 shows the selected type
of kernels and parameters by the above procedure. In this table, “Pol.” denote
polynomial kernels.

4.2 Performance Comparison

Table 3 shows the average recognition rates of the test data sets, their standard
deviations, which are denoted in columns of “Rec.”, and the average number of
support vectors which are denoted in columns of “SVs”.

The Number of SVs. In Table 3, for all problems, LS-SVM and the con-
ventional ELM are the same number of SVs as training vectors. Namely, their
solution is not sparse. On the other hand, for all problems, the number of SVs of
the proposed S-ELM is fewer than those of LS-SVM and the conventional ELM.
And, for five problems, the number of SVs of the proposed S-ELM is fewer than
half of those of LS-SVM and the conventional ELM. Especially, for F. Solar and
Titanic datasets, the number of SVs of the proposed S-ELM is much fewer than
one tenth of those of LS-SVM and the conventional ELM. According to the com-
parison with the conventional methods, we can affirm that the proposed S-ELM
is effective from the standpoint of sparsity.
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Table 3. Comparison of the average recognition rates in percent, standard deviations
of the rates, and the average number of support vectors

LS-SVM ELM S-ELM

Data Rec. SVs Rec. SVs Rec. SVs

Banana 89.24 ± 0.53 400 89.27 ± 0.51 400 89.51± 0.46 157

B. cancer 73.61 ± 4.49 200 74.65± 4.25 200 73.96 ± 4.56 164

Diabetes 76.96 ± 1.56 468 76.94 ± 1.58 468 77.19± 1.69 165

German 76.23 ± 2.09 700 76.26± 2.07 700 75.93 ± 2.18 689

Heart 84.21± 3.07 170 84.16 ± 3.08 170 84.10 ± 3.04 131

Image 97.34± 0.60 1300 96.94 ± 0.42 1300 97.15 ± 0.61 1197

Ringnorm 98.55± 0.11 400 95.43 ± 0.62 400 96.30 ± 0.46 399

F. solar 66.63 ± 1.62 666 66.60 ± 1.73 666 67.08± 1.71 9

Splice 89.38± 0.72 1000 89.11 ± 0.69 1000 88.93 ± 0.75 977

Thyroid 95.97± 2.17 140 95.95 ± 2.22 140 95.77 ± 1.99 85

Titanic 77.34 ± 1.15 150 77.57±1.03 150 77.29 ± 0.67 11

Twonorm 97.40 ± 0.18 400 97.57± 0.13 400 97.55±0.13 155

Waveform 90.31± 0.39 400 90.28 ± 0.41 400 90.26 ± 0.43 399

Generalization Ability. In Table 3, through Welch’s t-test whose level of sig-
nificance is 5 (%), we can affirm that there is no significant difference between the
average recognition rate of the proposed S-ELM and the conventional ELM for
almost problems except Banana, Ringnorm, F. Solar, and Titanic datasets. And,
for three problems, the proposed S-ELM performs better than the conventional
ELM through Welch’s t-test. Furthermore, for almost problems except Banana
and Ringnorm and Twonorm dataset, we can affirm that there is no signifi-
cant difference between the average recognition rate of the proposed S-ELM and
LS-SVM through Welch’s t-test. And, for two problems, the proposed S-ELM
performs better than the conventional ELM through Welch’s t-test. According
to the comparison with the conventional methods, we can affirm that the pro-
posed S-ELM performs the same or better than the conventional methods from
the standpoint of the generalization ability.

5 Conclusion

In this paper, we proposed S-ELM using empirical feature mapping. Because,
unlike the conventional ELM using kernel method, we require only linearly
independent training vectors in order to obtain the decision function of input.
Namely, the solution of S-ELM is sparse.
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According to the computer experiments using two-class benchmark data sets,
we can affirm that the proposed S-ELM performed much better than the con-
ventional ELM and LS-SVM from the standpoint of sparsity. And we can affirm
that the proposed S-ELM performed the same or better than the conventional
ELM and LS-SVM from the standpoint of classification.
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Abstract. The paper compares three approaches to train Echo state
network (ESN) actors of Adaptive Critic Design (ACD): the classical
gradient-based learning rule and two associative learning rules. First
associative rule exploits the Hebbian learning law of the Adaptive Search
Element from the seminal paper of Barto et al., while the the second one
uses the Temporal Difference (TD) error for both critic and actor ele-
ments. The proposed learning approaches were applied to optimization
of a complex nonlinear process for bio-polymer production. The compar-
ison of the obtained results was done with respect to the convergence
speed as well as to the reached local optima.

Keywords: Dynamic programming · Reinforcement Learning ·
Hebbian learning · Adaptive Critic Design · Echo State Network

1 Introduction

Adaptive Critic Designs (ACD) [14] are closely related to the behavioral model
of “learning from experience” called Reinforcement Learning (RL) [1]. The core
of these methods is in approximation of Bellman’s equation [2] by a neural net-
work called “adaptive critic” so that it is able to predict “future outcomes” of
the current actions. Then the critic predictions are exploited to train an actor
network by solving dynamic programming task in forward manner. During the
last thirty years theoretical developments in this field led to numerous variations
of optimal control approaches [11]. True on-line applications of ACD approaches,
however, need very fast training algorithms [15]. That is why in [7,8] was pro-
posed to use a recently developed class of Recurrent Neural Networks (RNNS)
called Echo State Networks (ESNs) [4]. Their structure incorporates a randomly
generated dynamic reservoir of neurons. The only trainable connections from the
reservoir to the readout layer could be tuned on-line by Recursive Least Squares
(RLS) method.

In case of ACD the critic and actor are trained by a gradient algorithm called
“backpropagation of utility” [21]. In contrast, the RL from [1] uses associative
(Hebbian) learning laws for both critic and actor networks. From biological point
c© Springer International Publishing Switzerland 2016
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of view, however, the gradient learning is considered as non-plausible while the
associative learning algorithms are closer to the biological neurons behavior.
That is why in [9,10] it was proposed to combine the ESN critic trained by RLS
with the ESN actor trained by the associative learning law of Adaptive Search
Element from [1].

In the present work another associative rule that exploits the states of the
reservoir neurons as eligibility traces and TD error instead of critic prediction
(reinforcement signal) was proposed and applied for training of both critic and
actor. It is tested on the same optimization task (of a complex nonlinear process
for bio-polymer production) as in [10]. The obtained results are compared with
respect to the convergence speed as well as to the obtained solution, i.e. the
reached local optima.

2 Problem Formulation

2.1 ACD Approach

The main scheme of ACD [16] is given on Fig. 1.
Here the dashed lines represent the training cycle. The vector State(t) con-

tains measurable object variables that are indicators of its current state, a(t) is
action (control) variable. The critic ESN has to be trained to predict the dis-
counted sum of future utility U(t), i.e. to approximate Bellman’s equation as
follows:

J (State(k), a(k)) =
k∑

t=0

γtU (State(t), a(t)) (1)

where γ is discount factor taking values between 0 and 1. The critic network is
trained so as to minimize the Temporal Difference (TD) error:

TDerror(k) = J(k) − U(k) − γJ(k + 1) (2)

ESN
actor

ESN
critic

process

U(k)

State(k)

a(k)
TDerror(k)

J(k)

∂J(k)/∂a(k)

Fig. 1. ACD scheme with closed-loop control and ESN actor.
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The actor ESN is the controller that has to be tuned so as to generate control
actions that maximize (minimize) the utility. The feedback connection from the
process state to the controller can include the full state vector or some of the state
variables. The dashed lines represent the backpropagation of training signals for
the critic (upper) and the actor (lower) respectively.

2.2 Echo State Network

Complete description of the ESN structure can be found in [4]. Here only basic
mathematical notions used further in the paper are given. The ESN output
vector denoted here by out(k) (it will be J(k) or a(k) for critic and action
network respectively) for the current time instance k is a function of its input
and current state:

out(k) = fout
(
W out

[
in(k) R(k)

])
(3)

Here, in(k) is a vector of network inputs and R(k) a vector composed of the
reservoir neuron states; fout is a linear function (usually the identity), W out is
a nout × (nin + nR) trainable matrix (here nout, nin and nR are the sizes of the
corresponding vectors out, in and R).

The neurons in the reservoir have a simple sigmoid output function fres

(usually hyperbolic tangent) that depends on both the ESN input in(k) and the
previous reservoir state R(k − 1):

R(k) = fres
(
W inin(k) + W resR(k − 1)

)
(4)

Here W in and W res are nin × nR and nR × nR matrices that are randomly
generated and are not trainable. There are different approaches for reservoir
parameter production [12]. A recent approach used in the present investigation
is proposed in [18]. It is called intrinsic plasticity (IP) and suggests initial adjust-
ment of these matrices, aimed at increasing the entropy of the reservoir neurons
outputs. For on-line training, the RLS algorithm [4] was used.

3 Three Training Algorithms

3.1 Gradient Training of ESN Actor

The details of backpropagation of utility and gradients calculations can be found
in [8]. Here only the basic gradient training rule for ESN actor output weights
W out

a is reminded as follows:

W out
a i(k) = W out

a i−1(k) ± α
∂Ji(k)
∂ai(k)

Rai(k) (5)

where i denotes the iteration number and 0 < α < 1 is the learning rate. The sign
(+ or −) in the above equation depends on the optimization task (i.e. whether
it is to maximize or to minimize the utility function).
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3.2 Associative Training of ESN Actor

Following [1] learning rule of Associative Search Element (ASE) and formulas
from [9] the associative learning rule for actor output weights W out

a becomes:

W out
a i(k) = W out

a i−1(k) ± αJi(k)eai(k) (6)

where eai(k) denotes the eligibility trace of all neurons in the reservoir of the
action ESN. According to [1] and accounting for specificity of the ACD scheme
used here, the eligibility traces become:

eai(k) = δeai−1(k) + (1 − δ)ai(k)Rai(k) (7)

where 0 < δ < 1 is decay rate of the trace.

3.3 TD Learning Algorithm for both ESN Critic and Actor

In most works that relate the RL elements onto neural correlates in the human
brain, e.g. [13], the reinforcement signal is related to the dopamine activity
and the TD error of its prediction is used for learning by both critic and actor
elements. This motivated the idea to explore such kind of learning rule for both
ESNs in the ACD scheme from Fig. 1.

The proposed rule is similar to the associative rule for training of the critic
element from [1], but the reinforcement signal is replaced by the TD error.
Another difference is that the eligibility traces are replaced by the current signal
that enters the output layer of the ESN, i.e. a vector consisting of the current
reservoir state and the current ESN input (see Eq. (3)). Motives for this change
come form the fact that, due to dynamical nature of ESN, the current state of
its reservoir depends not only on its current input but also on the history of
reservoir states. Hence it could be considered as a “trace” of the ESN previous
states. Thus the modified TD error-based learning rule become:

W out
c i(k) = W out

c i−1(k) ± αTDerrori(k)
[
Rci(k) inci(k)

]
(8)

W out
a i(k) = W out

a i−1(k) ± αTDerrori(k)
[
Rai(k) inai(k)

]
(9)

Here in(k) denotes the corresponding ESN input and R(k) corresponding
reservoir current state. The TDerror(k) is calculated according to Eq. (2). In all
equations i denotes iteration number.

Further in the text this learning rule is briefly called TD learning in order to
be distinguishable from the previously described associative learning approach.

4 Simulation Experiment Description

4.1 PHB Production Process

The test object under consideration here (PHB production process) is a biotech-
nological process for mixed culture cultivation. During it the sugars (glucose)
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are converted to lactate by the microorganism L.delbrueckii and then the
lactate is converted to PHB (poly-β-hydroxybutyrate) by the microorganism
R.euthropha. The target process product (PHB) is biodegradable polymer used
as thermoplastic in food and drug industry. In [20] quite a complete mathemati-
cal model of the process has been developed and different control strategies were
exploited separately or in combination. The model consists of seven nonlinear
ordinary differential equations. More details can be found in [6,20]. This model
was used as process simulator in our simulation experiment. The target product
overall outcome is the subject of optimization in present study.

4.2 Optimization Task

The target product is measured by grams per liter and here was denoted by Q.
The reactor volume in liters is denoted by V . Hence the utility function that is
target product in grams at time step k is:

U(k) = Q(k)V (k) (10)

and the aim of optimization procedure will be to maximize the overall outcome
by the end of process, i.e.:

Usum =
N∑

k=0

Q(k)V (k) (11)

Vector State(k) includes all main process state variables, i.e.:

State(k) =
[
X1(k) S(k) P (k) X2(k) N(k) Q(k)

]
(12)

where X1 and X2 denote concentrations of two microorganisms; P is the interme-
diate metabolite (lactate) concentration; N is the nitrogen source concentration;
S is sugar source concentration.

The applied control scheme is described in more details in [6,20]. We suppose
that all concentration controllers work properly, i.e. they are able to follow the
set points correctly. Hence the optimization task to be solved is to determine
the proper values of the set points through time. The control vector consists of
the three set points of the main controllers as follows:

a(k) =
[
S∗(k) N∗(k) DO∗(k)

]
(13)

Here DO is dissolved oxygen concentration in the cultural broth.
Following the ACD scheme from Fig. 1, for each control variable a corre-

sponding ESN actor network was trained. In present work we choose to have
only one input of each actor ESN - the key intermediate metabolite P since it is
on-line measurable and its concentration is of crucial importance for the process.

All control variables have imposed restrictions in terms of the allowed min-
imum and maximum values. They were included in the utility function to be
optimized by penalty terms as follows:

Uopt(k) = U(k) − 1
2
ra(k)2 (14)
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Here ra(k) is a kind of punishment signal in the case when calculated by the
ESN control action is outside allowed interval [amin, amax] as follows:

ra(k) =

⎧⎨
⎩

amin − a(k), a(k) < amin

0, amin ≤ a(k) ≤ amax

a(k) − amax, a(k) > amax

(15)

5 Results and Discussion

For simulation of ESNs the Matlab toolbox [17] was used. The critic network
has 9 inputs (6 for the process state variables plus 3 for the control actions), 10
reservoir neurons and 1 output. All actor networks have one input, one output
and 5 neurons in the reservoirs. All reservoir neurons have hyperbolic tangent
output function. The initial set point time profiles were created using expert
information given in [6]. Detailed optimization algorithm can be found in [5]. It
consists of consecutive critic and actor training iterations. Initial value of the
discounting factor γ was zero and it was gradually increased up to 0.5 during
first 1000 iterations. During the last 200 iterations of the simulation γ remained
constant.

Figure 2 represents changes of overall utility (Eq. (11)) through iteration
steps. As can be seen from it, both associative and TD learning algorithms out-
perform the gradient one but the best outcome was achieved by the associative
algorithm.

From the other hand, the associative algorithm behaves more like the gradient
one with respect to big jumps up and down around the prospective optimal value
during iterations. This similarity might be explained with the same training
algorithm (RLS) of the critic element in both cases. However, by the end of

0 200 400 600 800 1000 1200
160

170

180

190

200

210

220

230

iteration number i

U
su

m
(i

)

 

 

associative gradient TD

Fig. 2. Change of utility function value during iterative optimization.
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iterations the associative algorithm is able to settle down and to approach the
local optimum while the gradient one stacked into non-optimal valley, probably
due to the bigger steps it did in the course of training. Hence the preliminary
results demonstrate better stability of the associative algorithm in comparison
with the gradient one.

In contrast, in the case of TD algorithm the critic is trained by the same
TD error-based learning rule. This might be the reason why the TD algorithm
reaches much faster the local optimum and slightly oscillates around it until
the end of iterations. However, the preliminary investigations showed that TD
algorithm is stable only for very small values of the learning rate and each
attempt to increase it lead to oscillations through iterations, slow convergence
and even inability to reach the optimum.

6 Conclusions

The presented comparative investigation of a gradient and two associative learn-
ing algorithms of ESN actors within ACD schemes having ESN for both critic
and actor elements showed that no matter whether the critic element is trained
with RLS or associative rule, the associative/TD training of the actors achieved
much better results in comparison with the gradient one. Another interesting
observation is that the ESN reservoir state can be successfully considered as a
kind of eligibility trace like in seminal work of Barto et al. [1].

The reported results are preliminary. More exhaustive investigations using
different test objects and variety of optimization tasks are needed to prove the
advantages and disadvantages of all considered here algorithms.

Further theoretical investigations on the similarity between simple two neu-
rons architecture form Barto et al. [1] and more complicated dynamic reservoir
structures used in present work will be another direction of future work.
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Abstract. When a multi-parameter inverse problem is solved with arti-
ficial neural networks, it is usually solved separately for each determined
parameter (autonomous determination). In their preceding studies, the
authors have demonstrated that joining parameters into groups with
simultaneous determination of the values of all parameters within each
group may in some cases improve the precision of solution of inverse prob-
lems. In this study, the observed effect has been investigated in respect
to its resistance to noise in data. The study has been performed at the
example of the inverse problem of magnetotellurics, which has a high
dimensionality.

Keywords: Artificial neural networks · Perceptron · Multi-parameter
inverse problems · Noise resistance · Group determination of parameters

1 Introduction

Inverse problems (IP) are an important class of problems. Almost any problem
of indirect measurements can be considered to be one of them. Inverse problems
include many problems from the domains of geophysics [1], spectroscopy [2],
various types of tomography [3], and many others.

Among them is the IP of magnetotelluric sounding, where the purpose is to
find the distribution of conductivity in the thick of the Earth by the components
of electromagnetic field measured on its surface [4, p. 157]. Due to shielding of
the underlying layers by the overlying ones, the contribution of the deeper-lying
layers is smaller.

In general case, such problems have no analytical solution. So usually they
are solved by optimization methods based on repeated solution of the direct
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problem with minimization of residuals [4, p. 158], or by matrix-based methods
using regularization by Tikhonov [5, p. 304].

Optimization methods have several drawbacks, such as high computational
cost, the need for good first approximation, and, most importantly, the need
to have a correct model for solving the direct problem. For regularization based
methods, the main difficulty is the necessity to choose a regularization parameter.
In this study we consider artificial neural networks (ANN) as an alternative
method of solving various IP [6–8] that is free from these shortcomings.

In practical tasks, it is often necessary to find the distribution of some para-
meter in one area of space by the values of some features measured in another
area of space. Thus, the sought-for distribution has to be defined by a finite
number of parameters, i.e. by introducing a so-called parameterization scheme
with subsequent interpolation of the parameter values to the whole area. So
there emerges a multi-parameter IP.

In ANN solution of multi-parameter IPs, the possible approaches are:

1. Autonomous determination - solution of a separate single-output IP, creating
a separate ANN for each of the determined parameters. This approach is the
most universal one, and it is used most often.

2. Simultaneous determination of all the sought parameters, creating a single
ANN with the number of outputs NO equal to the full number of the deter-
mined parameters. Efficiency of such approach rapidly degrades with increas-
ing NO.

3. Group determination - joining parameters into groups with simultaneous
determination of parameters (creating a single ANN) within each group. The
method of parameter grouping is imposed by physical sense of the determined
parameters and by their known interconnections.

In [9], it has been demonstrated that when solving the IP of magnetotelluric
sounding (MTS IP), group determination of parameters in some cases allows
increasing the quality of problem solution compared to autonomous determina-
tion. Later, this effect was confirmed for other parameterization schemes [10]. It
has been concluded that the observed effect was caused by fundamental proper-
ties of ANN rather than by properties of specific data.

The purpose of the present study was testing of the observed effect for
resilience to noise in data.

2 Parameterization Scheme

In this study, we consider the 2D case, i.e. a vertical section of the Earth’s
surface. The electrical conductivity in the direction perpendicular to the plane
of the section is assumed to be constant. We consider the most general model of
medium parameterization - the so-called macro-grid. In this case, the distribution
of conductivity is described by its values in the nodes of the macro-grid, and the
conductivity values among the nodes are calculated by interpolation. A block
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Fig. 1. Section parameterization scheme.

denoted by its column number and row number, corresponds to the node of the
macro-grid, coinciding with the upper right corner of the block (Fig. 1).

The vertical size of the blocks is determined by the penetration depth of
electromagnetic waves, limited by the skin effect. The lower border of each block
corresponds to limiting penetration depth of an electromagnetic wave with defi-
nite measurement frequency. The number of blocks along the vertical equals the
number of measurement frequencies - 13.

Horizontal size of blocks in the studied central (“anomalous”) area is set
according to the desired resolution. Most interesting is the central area from
column 4 to 28 and from layer 1 to 12. Side areas are necessary to set border
conditions for numeric solution of the direct problem, so their size gradually
increases towards the edges.

As the conductivity ranges from 10−4 to 1 S/m, the ANN was fed with
decimal logarithm of the absolute conductivity values, ranging from −4 to 0.

3 Data

Work data were obtained by numerical solution of the direct problem [11,
p. 213] by finite difference method. The initial data set contained 30,000 samples,
divided into training, validation, and test sets in the ratio 70:20:10, respectively.
The samples were obtained for random combinations of conductivity of blocks.

The values of 4 components of the electromagnetic field ρE , ϕE , ρH , ϕH were
calculated for 13 frequencies in 126 pickets of the Earth’s surface. So the input
data dimensionality was 4× 13× 126 = 6552. High input dimensionality requires
data preprocessing by compression or selection of significant features.
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The output data dimensionality corresponds to the number of nodes of
the macro-grid NO = 336. High output dimensionality also requires special
approaches to the solution, which were the subject of this study.

4 Use of the Neural Network

The neural network was used as follows. Training was performed on the training
data set. To prevent overtraining, it was stopped at 500 epochs without error
improvement on the validation set. Independent estimation of the results was
performed on the test (out-of-sample) sets (with various types and levels of
noise described below).

For autonomous determination, significant input feature selection was per-
formed for each determined parameter [12]. For group determination, the ANN
is fed with the features significant for any of the determined parameters. The
number of outputs of the ANN is determined by the size of grouping window.

In this study, the IP was solved with perceptrons with 3 hidden layers, having
the following number of neurons: 24, 16, 8 for networks with 6 or less outputs;
26, 18, 10 for networks with output dimension from 7 to 9; 28, 20, 12 for the
network with 10 outputs; 30, 22, 14 for networks with 11 or 12 outputs; 32, 24,
16 for the network with 13 outputs.

All hidden layers had a logistic activation function; the output layer had a
linear one. For each considered configuration of the grouping window, 5 networks
with various initializations of weights were trained. The statistical indicators of
their performance were averaged.

ANN trained on the data without adding noise were applied to noisy test
data sets, containing noise of various types and levels.

5 Description of the Noise

Two types of noise were considered: additive and multiplicative, and two kinds
of statistics: uniform noise (uniform distribution) and Gaussian noise (normal
distribution). The value of each observed feature was transformed as follows:

xagn
i = xi + norminv(random, μ = 0, σ = noiselevel) · max(xi) (1)

xaun
i = xi + (1 − 2 · random) · noiselevel · max(xi) (2)

xmgn
i = xi · (1 + norminv(random, μ = 0, σ = noiselevel)) (3)

xmun
i = xi · (1 + (1 − 2 · random) · noiselevel) (4)

for additive Gaussian (agn), additive uniform (aun), multiplicative Gaussian
(mgn), and multiplicative uniform (mun) noise, respectively. Here, random is a
random value in the range from 0 to 1, norminv function returns the inverse
normal distribution, max(xi) is the maximum value of the given feature over all
patterns, noise level is the level of noise (the considered values were: 1 %, 3 %,
5 %, 10 %, 20 %).
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To work with noise, each of the 300 patterns of the initial test set was used
to produce 10 patterns with various noise implementations for each of the noisy
data sets (with various types and levels of noise). Thus, each of the noisy test
sets contained 3000 patterns.

6 Results

From Fig. 2, it can be seen that resistance of the neural network solution of the
IP to additive noise is worse than that to multiplicative noise, and resistance to
Gaussian noise is worse than that to uniform noise. At high noise levels, group
determination allows significant improvement of the quality of the solution.

Fig. 2. Dependence of the solution quality (root mean squared error, RMSE) for deter-
mined parameter no. 17 (layer 1) on noise level for various noise types and statistics,
for autonomous determination (line) and group determination (markers).

The effect of group determination can be also observed for all other parame-
ters (Figs. 3, 4, 5 and 6), starting from some definite noise level depending on
noise type. It should be noted that at increasing noise level, the size of parameter
grouping window, at which group determination gives maximum effect, is shifted
towards greater values (Figs. 4, 5 and 6).

Also note that for parameter no. 50 the effect of group determination is not
observed without noise (Fig. 6). However, in presence of noise the effect is the
more expressed, the stronger is the noise in data for any parameter (Figs. 2
and 6).
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Fig. 3. Dependence of the solution quality (RMSE) on output (layer) number for addi-
tive Gaussian noise in data at various noise levels (0, 1, 3, 5, 10, 20 %), for autonomous
determination (line) and group determination (markers).

Fig. 4. Dependence of the solution quality (RMSE) on the size of grouping window for
determined parameter no. 83, for additive uniform noise in data, at various noise levels
(0, 3, 10 %).

The observed effects can be explained with the properties of a multi-layer per-
ceptron as a universal approximator. When a perceptron has several outputs, the
composite features extracted in the hidden layers have to be optimal for approx-
imation of all the outputs at once. This results in a more rigid approximating
dependence, which is also more noise resistant. That is why the effect of group
determination of parameters is more pronounced at higher levels of noise at the
input (Fig. 2). On the other hand, higher level of noise requires a more rigid
approximation provided with a greater number of grouped parameters (Figs. 4
and 6).
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Fig. 5. Dependence of the solution quality (RMSE) on grouping window size for deter-
mined parameter no. 116, for multiplicative Gaussian noise in data, at various noise
levels (0, 3, 10 %).

Fig. 6. Dependence of the solution quality (RMSE) on grouping window size for deter-
mined parameter no. 50, for multiplicative uniform noise in data, at various noise levels.

7 Conclusions

This study considered group determination of parameters for neural network
solution of a multi-parameter inverse problem in presence of noise in data, at
the example of the 2D inverse problem of magnetotellurics.

The ANN solution, both for autonomous and for group determination of
parameters, is less resistant to additive noise than to multiplicative, and less
resistant to Gaussian noise than to uniform.

The effect of group determination is observed starting from some definite
noise level for all determined parameters and for any type of noise, and it is the
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more pronounced, the higher is the level of noise. Group determination is more
noise resistant than autonomous determination. Possible reasons of the observed
effects are discussed.

However, in the whole, noise resilience of ANN trained on “clean” data with-
out noise is quite low. To improve it, in future studies, ANN should be trained
on noisy data with various types and levels of noise.

So, in this study it has been demonstrated that use of group determination
of parameters in neural network solution of multi-parameter inverse problems
allows one not only to improve the quality of the solution of the inverse problem
without noise, but also to increase noise resistance of the solution.
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Abstract. Large margin nearest neighbor classification (LMNN) is a
popular technique to learn a metric that improves the accuracy of a
simple k-nearest neighbor classifier via a convex optimization scheme.
However, the optimization problem is convex only under the assumption
that the nearest neighbors within classes remain constant. In this contri-
bution we show that an iterated LMNN scheme (multi-pass LMNN) is a
valid optimization technique for the original LMNN cost function with-
out this assumption. We further provide an empirical evaluation of multi-
pass LMNN, demonstrating that multi-pass LMNN can lead to notable
improvements in classification accuracy for some datasets and does not
necessarily show strong overfitting tendencies as reported before.

Keywords: Metric learning · Large margin nearest neighbor · Multi-
pass · Convergence

1 Introduction

Metric learning is concerned with inferring a metric from data that supports fur-
ther processing of said data. The most common application of metric learning is
the support of classification schemes. In simple terms this can be described as a
distance that makes data points from the same class look more similar and data
points from different classes look more dissimilar. Large margin nearest neigh-
bor classification (LMNN) is one of the most popular techniques in the metric
learning zoo [1,8,11], which specifically aims to improve the accuracy of a k-
nearest neighbor classifier. It has been sucessfully applied in pattern recognition
tasks such as pedestrian recognition [4], face identification [6] and movement
classification [7].

As most other metric learning approaches, LMNN introduces a positive
semidefinite matrix M to the standard Euclidean metric and optimizes this
matrix according to a cost function that models the k-nearest neighbor clas-
sification error. This optimization is an instance of semidefinite programming,
which implies that a global optimum can be found [2,11]. However, this desirable
property only holds under the assumption that the closest k neighbors from the
same class - the so-called target neighbors - remain constant. It is easy to imagine
c© Springer International Publishing Switzerland 2016
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Fig. 1. A schematic illustration of a scenario where changes in the target neighborhood
make the LMNN optimization easier. Left: the initial configuration where the data point
x1 is closest to x3 within the same class. Middle: after a first metric learning step, x2

becomes the target neighbor. x1 would still not be correctly classified, because x4 is
closer to x1 than x2. Right: another metric learning step can now transform the space
such that x1 and x2 are close but x1 and x4 are far apart.

a setting where this assumption is violated. Consider Fig. 1 (left and middle), for
example. Here, the optimization of the convex problem does not find the global
optimum in the LMNN cost function but a local one. The global optimum can
only be found if neighborhood changes induced by the metric change are taken
into account. This gives reason to suspect that classic LMNN might fail for data
sets where changes in the neighborhood are likely to occur. Therefore it seems
worthwhile to investigate the theoretical validity of LMNN in more detail.

In this contribution we show that the constant neighborhood assumption
leads to an overestimation of the LMNN cost function, which implies that an
update of the target neighborhood leads to an improvement in the cost func-
tion value. After updating the target neighbors, another LMNN run can be
applied, resulting in a multi-pass LMNN scheme, converging to a local optimum
(Sect. 5). We also demonstrate that such an iterative scheme does indeed improve
the classification accuracy on artificial data (Sect. 6), and does not show strong
overfitting tendencies on real data, that have been reported before [11].

2 Related Work

Several properties of large margin nearest neighbor classification (LMNN) have
been investigated in the literature. For example, Do and colleagues have shown
that LMNN can be regarded as learning a set of local SVM variants in a quadratic
space [5]. Further, Ying and Li have reformulated LMNN as an Eigenvalue opti-
mization problem [12]. Finally, several extensions of the original LMNN app-
roach have been proposed, such as varied cost functions that support faster
optimization [10], hierarchical LMNN [3], multi-task LMNN [9] and several more
[1,8]. However, these extensions still assume a constant target neighborhood. To
our knowledge, only Weinberger and Saul have attempted to adapt the target
neighborhood in a multi-pass LMNN scheme [11]. However, they do not provide
theoretical justification for this approach.



512 C. Göpfert et al.

3 Quadratic Form Distances

Most metric learning schemes - LMNN among them - focus on a so-called
Mahalanobis metric [1,8]. More precisely, assume that we have N data points
X = {x1, . . . , xN} ⊂ R

n. We define dM as a binary function

dM (xi, xj) :=
√

(xi − xj)
T · M · (xi − xj) (1)

Note that dM is a metric iff M ∈ R
n×n is positive semidefinite. If M is the

n-dimensional identity matrix, this is the standard Euclidean distance. Interest-
ingly, positive-semi-definiteness of M also implies that M can be refactored into
a product M = LT · L for some matrix L ∈ R

n×n. L can then be interpreted
as a linear transformation to a space, where dM corresponds to the Euclidean
metric. The challenge of a metric learning algorithm is to adapt M , such that
the target task - e.g. classification - becomes simpler.

4 Large Margin Nearest Neighbor Classification

The aim of large margin nearest neighbor classification (LMNN) is to ensure good
classification accuracy of a k-nearest neighbor classifier. A k-nearest neighbor
classifier assigns the class label of the majority of the k nearest neighbors. Thus,
to guarantee correct classification for each point, it has to be ensured that the
majority of the k nearest neighbors belong to the correct class. LMNN formalizes
this objective in a cost function with two parts: the first ensures that certain
data points from the same class are close together, the second ensures that data
points from different classes are not close together.

More precisely, given a data set X = {x1, . . . , xN} ⊂ R
n with the respective

class labels yi, the LMNN cost function E is given as [11]:

E(M) :=
N∑
i=1

∑
j∈Nk

M (i)

d2M (xi, xj)+
N∑
l=1

(1−yi ·yl) ·
[
d2M (xi, xj)+γ2−d2M (xi, xl)

]
+

(2)
where γ is a positive real number called the margin; [·]+ denotes the hinge-
loss defined as [r]+ := max{0, r}; and N k

M (i) are the indices of the k-nearest
neighbors (regarding dM ) of point xi that belong to the same class. N k

M (i) is
also called the target neighborhood of xi.

Note that N k
M depends on M . Therefore, a direct minimization of E by adapt-

ing M is infeasible. However, if the target neighborhood is fixed, a semidefinite
program results, which can be solved efficiently [2,11]. We call this the constant
target neighborhood assumption. It can be formalized as the minimization of Ẽ,
where

Ẽ(M, N k) :=

N∑

i=1

∑

j∈Nk(i)

d2
M (xi, xj) +

N∑

l=1

(1 − yi · yl) ·
[
d2
M (xi, xj) + γ2 − d2

M (xi, xl)
]

+
.

(3)
and the second argument is fixed to some assignment of k target neighbors for
each point. Note that Ẽ(M,N k

M ) = E(M).
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5 Multi-pass LMNN

We intend to show that an indirect minimization of E is possible using an alter-
nating optimization scheme. We proceed in two steps: First we prove that the
classic LMNN solution overestimates E. Then we provide a convergence proof
for our proposed alternating scheme.

Theorem 1. Let M and M ′ be positive-semidefinite n × n matrices. Then it
holds:

N k
M = N k

M ′ ⇒ Ẽ(M ′,N k
M ) = Ẽ(M ′,N k

M ′) (4)

N k
M �= N k

M ′ ⇒ Ẽ(M ′,N k
M ) > Ẽ(M ′,N k

M ′) (5)

Proof. If N k
M = N k

M ′ , then Ẽ(M ′,N k
M ) = Ẽ(M ′,N k

M ′) = E(M ′) and the asser-
tion in Eq. 4 is clear.

If N k
M (i) �= N k

M ′(i) for some i ∈ {1, . . . , N}, then for each j ∈ N k
M (i)\N k

M ′(i),
j′ ∈ N k

M ′(i), and l ∈ {1, . . . , N}, we have

dM ′(xi, xj′) < dM ′(xi, xj) (6)

and
[
d2M ′(xi, xj′) + γ2 − d2M ′(xi, xl)

]
+

≤
[
d2M ′(xi, xj) + γ2 − d2M ′(xi, xl)

]
+

(7)

Thus, the summand for i of Ẽ(M ′,N k
M ) is strictly larger than the corresponding

summand of Ẽ(M ′,N k
M ′). As every other summand is either equal to or larger

than the corresponding one in Ẽ(M ′,N k
M ′), the assertion in Eq. 5 follows.

If the constant target neighborhood assumption is guaranteed to lead to an
overestimation of the actual cost function value, a minimization of Ẽ under con-
stant neighborhood assumption also decreases E. This suggests an alternating
optimization scheme as shown in Algorithm 1, which is equivalent to multi-pass
LMNN as proposed by Weinberger and Saul [11]. We optimize M w.r.t. Ẽ, then
update the target neighborhoods. If at least one target neighborhood changes,
we continue, otherwise the algorithm has converged.

Theorem 2. Algorithm 1 is guaranteed to converge to a local optimum after a
finite number of steps.

Proof. Let (Mt)t be a sequence of matrices produced by a run of Algorithm 1.
Then we know that Ẽ(Mt+1,N k

Mt
) ≤ Ẽ(Mt,N k

Mt
) due to the convex opti-

mization step and Ẽ(Mt+1,N k
Mt+1) ≤ Ẽ(Mt+1,N k

Mt
) due to Theorem 1. Thus,

E(Mt+1) ≤ E(Mt) for all t.
If the algorithm terminates after T steps, then N k

MT
= N k

MT−1
. This implies

that Ẽ reached a local optimum because no change in the matrix can be made
anymore that would decrease the value - otherwise it would have been chosen
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Algorithm 1. An alternating optimization scheme for the LMNN cost function
shown in Equation 2.

Initialize M ← In.
converged ← false
while ¬converged do

Optimize M w.r.t. Ẽ(M, N k
M ) via classic LMNN techniques.

converged ← true
for i ∈ {1, . . . , N} do

Update N k
M (i).

if N k
M (i) has changed then
converged ← false.

end if
end for

end while
return M .

in the last step. This, in turn, implies a local optimum of E. Therefore, the
stopping criterion of Algorithm 1 corresponds to a local optimum.

Now, assume that the algorithm does not stop. Since there is only a finite
number of target neighborhoods to choose from, there must be t, t′ with t′ > t,
such that N k

Mt
= N k

Mt′ . Since the optimization step of the algorithm finds a
global optimum w.r.t. the current neighborhood it has to hold Ẽ(Mt′+1,N k

Mt′ ) =
Ẽ(Mt+1,N k

Mt
). Because Ẽ decreases monotonously, Ẽ has to be constant for all

iterations between t and t′. No two successive neighborhoods of NMt
, . . . ,NMt′

are the same, otherwise the algorithm would stop. But according to Theorem 1,
Ẽ decreases strictly whenever the target neighborhood changes.

Therefore, we conclude that Algorithm 1 searches through the possible target
neighborhoods without repetition, until a local optimum is achieved. As only a
finite number of target neighborhoods exist, convergence is achieved after a finite
number of steps.

6 Experiments

In order to assess multi-pass LMNN experimentally, we applied the current ver-
sion (3.0) of the LMNN toolbox provided by Weinberger [11] in several iterative
runs. Note that this recent version is a gradient-boosted variant of the opti-
mization, unlike the original suggestion. As in the original paper, we set the
neighborhood parameter to k = 3 for LMNN, and evaluated the performance of
a k-nearest neighbor classifier on the learned metric after each iteration in a 10-
fold cross-validation. For the sake of practicality, we did not run the algorithm
until convergence but stopped after 5 iterations.

Artificial Data: To illustrate a typical situation where multi-pass LMNN is
superior to single-pass LMNN we use a two-dimensional dataset suggested in
Weinberger and Sauls original paper, namely a zebra-striped pattern, where
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Fig. 2. The initial zebra stripes dataset, as well as the projected data points LT · xi

after the first iteration and the last iteration.

stripes of points of the first and the second class alternate [11] (see Fig. 2, left).
Such a dataset does not only highlight the value of a localized cost function,
it also illustrates the importance of updating the target neighborhood. In the
initial configuration, some of the target neighbors belong not to the same stripe,
but to a different stripe, which makes the LMNN cost function under constant
neighborhood assumption hard to optimize. However, after a first pass of LMNN
metric learning, we expect that the learned metric “shrinks” the y dimension of
the dataset, such that points in the same stripe move closer together. Thereby,
more target neighbors belong to the same stripe and the LMNN cost function
becomes easier to optimize.

Indeed, we observe this effect in the experimental evaluation. In each suc-
cessive pass the y dimension shrinks, thereby increasing the accuracy of a k-NN
classifier. In Fig. 2 we show the data as projected by the matrix L after each iter-
ation. Figure 3 (left) displays the training and test error versus LMNN iteration,
averaged in a 10-fold cross-validation.

Table 1. The number of data points N , the number of features/dimensions n, and the
resulting classification error for each of the experimental data sets. The classification
error is given for training and test set respectively, with standard deviation.

Dataset N n Train error Std. Test error Std.

zebra 200 2 0.019 0.004 0.015 0.023

iris 128 4 0.024 0.008 0.040 0.053

wine 152 13 0.000 0.000 0.021 0.028

bal 535 4 0.063 0.019 0.073 0.036

isolet 7,797 617 0.000 0.000 0.030 0.003

letters 20,000 16 0.002 0.000 0.027 0.005

Real datasets: In order to assess the performance on real data we also repeated
most of the experiments with multi-pass LMNN reported in [11]. In particular,
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Fig. 3. The classification error on the training (blue) and on the test set (red) plotted
for all datasets, averaged over 10 cross-validation trials. The x-axis shows the current
LMNN iteration. The error bars signify the standard deviation across trials. (Color
figure online)

we experimented on the USPS letter dataset, the isolet dataset, the iris dataset,
the bal dataset and the wine dataset. Statistics regarding the datasets as well
as the final classification error are shown in Table 1. The development of the
classification error over time is displayed in Fig. 3.

All in all, we observe no strong benefit of multi-pass LMNN over 1-pass
LMNN. However, we also did not observe noticeable over-fitting effects as
reported by [11], which is likely due to relatively early stopping with five itera-
tions.

7 Conclusion

We have shown that local optima of the LMNN cost function can be found
using multi-pass LMNN. We have also demonstrated that data sets, for which
an adapted metric changes the structure of the target neighborhood, can profit
noticeably from multiple passes of LMNN metric learning. As a simple formula,
multi-pass LMNN can be considered to be beneficial if the ideal target neigh-
borhood is not obvious to the original metric. Interestingly, this benefit seems
to be rather minor in the tested real datasets. Also, we did not notice (strong)
over-fitting effects as reported by [11].

Overall, we conclude that multi-pass LMNN is a relatively risk-free and easy-
to-use extension of classic LMNN approach that can be easily combined with
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other extensions of choice and comes with a theoretical convergence guarantee,
which the original LMNN approach does not provide. Additionally, it might lead
to noticeable performance improvements in datasets, where the initial target
neighborhood leads to suboptimal learning impulses.
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Abstract. Action perception and the control of action execution are
intrinsically linked in the human brain. Experiments show that concurrent
motor execution influences the visual perception of actions and biologi-
cal motion (e.g. [1]). This interaction likely is mediated by action-selective
neurons in premotor and parietal cortex. We have developed a model based
on biophysically realistic spiking neurons that accounts for such interac-
tions. The model is based on two coupled dynamic neural fields [2], one
modeling a representation of perceived action patters (vision field), and
one representing associated motor programs (motor field), each imple-
mented by 30 coupled spiking ensembles. Each ensemble contains 80 exci-
tatory and 20 inhibitory adaptive Exponential Integrate-and-Fire (aEIF)
neurons [3]. Within each field asymmetric recurrent connections between
the ensembles stabilize a traveling pulse solution, which is stimulus-
driven in the visual field and autonomously propagating in the motor
field after initiation by a go-signal. Both fields are coupled by interac-
tion kernels that results in mutual excitation between the fields of the
traveling pulse propagate synchronously and in mutual inhibition oth-
erwise. We used the model to reproduce the result of a psychophysical
experiment that tested the detection of point-light stimuli in noise during
concurrent motor execution [1], and for the simulation of the modulation
of motor behavior by concurrent action vision [4]. The proposed model
reproduces correctly the interactions between action vision and execu-
tion in these experiments and provides a link towards electrophysiological
detailed models of relevant circuits.

Keywords: Action perception coupling · Neural fields
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Abstract. We study the dynamics of semiconductor lasers with optical
feedback and direct current modulation, operating in the regime of low
frequency fluctuations (LFFs) [1]. In the LFF regime the laser intensity
displays abrupt spikes: the intensity drops to zero and then gradually
recovers. We focus on the inter-spike-intervals (ISIs) and use a method
of symbolic time-series analysis [2], which is based on computing the
probabilities of symbolic patterns. We show that the variation of the
probabilities of the symbols with the modulation frequency [3] and with
the intrinsic spike rate of the laser allows to identify different regimes of
noisy locking [4]. Simulations of the Lang-Kobayashi mode

Keywords: Semiconductor laser · Optical feedback · Diode laser mod-
ulation · Optical neuron · Low-frequency fluctuations · Excitability
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Abstract. Functional interactions between neurons inferred on the
analysis of frequency-domain analysis, such as coherence and partial
coherence analyses, have been recognized for a long time as a neces-
sary tool for the understanding of neural coding complementary to the
time-domain analysis. Partial coherence analysis allows to determine the
association between two spike trains as a function of an external stim-
ulus or of another neuron’s activity recorded simultaneously to the pair
of spike trains [1]. We have implemented a simple neural network com-
posed of MAT neurons [2] using Flint, a simulator concurrently developed
with PhysioDesigner (http://www.physiodesigner.org). The algorithms
for partial coherence analyses were implemented as tools available at
OpenAdap.net [3] and Garuda platform [4] made freely available to a
broad community. The results of the analyses presented here allow a
user to infer functional interactions that can be tested against small
changes in the simple neural network model. Moreover, users can eas-
ily access the methods of analyses presented here to process users’ own
multivariate spike trains.

Keywords: Neuronal connectivity · Coherence · Partial coherence ·
Frequency domain
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Abstract. Using spiking neural network (SNN) controllers [3] to imple-
ment multiple motor tasks for complex redundant robots requires effi-
cient methods to compute complex kinematic and dynamic functions
with spiking neurons. Three fundamental problems arise while using
SNNs to compute high-dimensional robot kinematics using steady-state
spike rate decoding (following the neural engineering framework [2]):
first, differential maps from the generalized coordinates to task-space,
task control Jacobians, cease to be humanly factorizable into sub-
functions with low-dimensional domains; second, efficient Jacobian fac-
torizations require multiple neuron layers, exacerbating neuron spike
noise and latency; and third, function-agnostic sampling strategies
require an exponential growth in the number of neural response sam-
ples as the number of input dimensions increases. Here, we present an
SNN implementation that overcomes these problems to compute kine-
matic functions (Jacobians) for the Kuka LBR iiwa, and Kinova JACO,
which have seven and six degrees-of-freedom respectively. Both robots
are redundant for task space motion control. To control them, we devel-
oped a multi-task control system where task Jacobians, and a part of the
Jacobian’s dynamically consistent generalized inverse, were implemented
with SNNs. Our SNN was an asynchronous spiking neural simulation
with dynamical neurons modeled using the Neurogrid neuromorphic sys-
tem’s soma equations [1]; it thus serves as a model of what neuromorphic
computers can achieve.
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Abstract. We introduce a two layer network of spiking neurons with a
regulated feedback between both layers determined by a unit function-
ing as a gating element. Its activity, which ultimately influences the syn-
chrony regime, depends on the processing of the sensory inputs through
a receptive field of time-varying radius. The time evolution of this scale
affects the length of the intervals which are relevant to attentional effects.

Attention can be regarded as an attempt to reduce variability in the
difference between expected and actual sensory input. Cognitive process-
ing of sensory stimuli is represented by spike rate as well as by spike tim-
ing and the ensuing degree of synchrony. The fact that feedback modifies
spike rates by changing spike timing may highlight new aspects of the
neural correlates in cognitive processing. That was one of the motivations
for the present network, after realizing that the synchrony of global oscil-
lation can be described by changes in feedback signals.

We try to model the degree of readiness for success in an visual
attentional task using a changing length scale, i.e., a single variable with
dimension of length which evolves in time. Our considered stimuli are cir-
cles and the internal states of the system are represented by the radius
of a visual receptive field (RF), which is also circular and evolves in
time. Next, going on to neurons themselves, time oscillation and syn-
chrony properties supply pictures of their global states, and may reflect
the variations which take place during a cognitive task.

Taking advantage of a gated feedback mechanism, we propose a model
for how oscillations can occur sooner at cued regions, and also, with
longer delays, at uncued regions. A two-layer network causes a delay in
global oscillations when the cue is ‘invalid’, i.e., occurs at a different
region than the target. Further, an evolution rate parameter for the RF
scale determines the efficiency of the system’s adaptation to new stimuli,
to the extent that different degrees of success depend on the value of
that rate, which we may interpret as an indirect measure of attention.

Our obtained values show rough agreement with experimental mea-
sures of typical ‘consolidation’ times. The model provides changing pic-
tures when evolution rates increase by an order of magnitude. On top of
lapse lengths, differences in global oscillation onsets between ‘valid-cue’
and ‘invalid-cue’ cases are present. These differences may vary from 200
ms to 25–50 ms when applying such modifications.

Keywords: Attention · Global oscillation · Gated feedback
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Abstract. Biological neuronal networks are capable of displaying var-
ious types of activity, such as oscillatory behaviour, irregular excita-
tions, or bursting. These dynamical patterns are often linked to different
brain states and functions, such as perception, awareness, or cognition. A
prominent example of a discernible dynamical pattern is epileptic activity
that shows as series of high-amplitude excessively synchronous discharges
in the EEG recordings and entails impairment of brain functionality that
may include brief losses of consciousness.

Mechanisms of initiation of epileptic activity are nowadays elusive.
Considerations based in the methods of nonlinear dynamics suggest that
the routes to epilepsy could include instantaneous switching between
multistable states, fast excitations, or slow passing through a bifurca-
tion. Here, we theoretically study these initiations in a neuronal popu-
lation subjected to background activity of the cortical network, which
combines rhythms from a wide range of frequencies. We approximate
this background activity with a single source of temporally correlated
noise, which bears resemblance to spectral properties of the brain activ-
ity known from the EEG recordings.

To study these effects we employ a stochastically driven mesoscopic
neuronal model, which is capable of displaying both healthy and epilep-
tic behaviour and it features bistability, bifurcation and excitability. By
varying spectral characteristics of the driving signal we find conditions
favourable for initiations of epileptic activity and by characterizing the sys-
tem’s response to harmonic driving, we identify epileptogenic rhythms.

In summary, our work demonstrates potential mechanisms by which
pathological, epileptic-like dynamics can be initiated and spread due to
the presence of certain rhythms in an ongoing activity of the brain. We
also link our theoretical results to the experimental findings on precursors
of epileptic activity.
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Abstract. Slow waves propagate in the cortical network and their
spatio- temporal patterns provide valuable information about the under-
lying circuitry. In a previous study [1] done in an isolated cortical network
in vitro, we found that propagation is lead by the most excitable layers
of the network. Here we experimentally probe the network by apply-
ing DC electric fields of different intensities (between −2 and +5 V/m)
oriented perpendicular to cortical layers and explore the resulting mod-
ulation of slow wave propagation. To this end, we recorded with 16-
electrode arrays covering supra and infragranular layers of 400µm thick
cortical slices. We next inferred the optimal set of speeds that most
accurately explained the patterns and the delays observed in the elec-
trophysiological data. As previously reported [2], the vertical (colum-
nar) propagation was faster (10.3± 4.3 mm/s) than horizontal (lami-
nar) propagation (5.4± 1.9 mm/s). Our main finding was that DC fields
induced a strong modulation of horizontal propagation, while no signif-
icant changes were measured on vertical propagation. Besides, positive
DC fields decreased the refractory period, thus increasing the probabil-
ity of propagation of subsequent waves, while the opposite occurred with
negative DC fields. This differential impact of DC fields on wave propa-
gation suggests that different mechanisms are regulating both processes.
In this study we explore experimentally and theoretically the possibil-
ity that excitation/inhibition are differently involved in the regulation of
horizontal and vertical propagation in the network.

Keywords: Propagation · Electric fields · Slow waves · Cortical net-
work · Up states
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Abstract. Steady State Evoked Potentials (SSEP) are emerging in the
EEG signals in response to periodically changing stimulus. Their fre-
quencies correspond to stimulus frequency, its harmonics and subhar-
monics. The SSEP can be observed in visual, auditory and somatosen-
sory modalities. Despite applications of SSEP in cognitive neuroscience,
clinical neuroscience and brain computer interfaces (BCI), physiological
mechanisms of SSEP generation are unknown. The aim of this study was
investigation of SSEP mechanisms with a realistic computational model.
The model consisted of single compartment excitatory and inhibitory
cells arranged in multiple cortical columns, based on data from cat’s pri-
mary visual cortex. The modelled neurons received three kinds of Poisson
inputs, which represent: background sensory input from the thalamus,
background top-down input from higher order cortical regions and peri-
odic stimulus from the thalamus, representing sensory stimulation. The
sensory stimulus was modelled by Poisson process, with mean rate mod-
ulated periodically in time by square or sinusoidal function at frequency
in 7 to 50Hz range. The EEG signal was modelled as a sum of synaptic
currents of pyramidal neurons. We compared the simulation data with
experimental EEG recordings obtained in somatosensory cortex during
vibrotactile stimulation. The spectra of modeled SSEP signals exhibited
fundamental and higher harmonic frequencies similarly to experimental
observations. The first harmonic was stronger than fundamental response
for the driving frequencies smaller than network natural frequency (15–
20Hz) as observed experimentally. When the driving frequency coincided
with network natural frequency the model exhibited resonance behav-
iour, visible in power spectrum, firing rate and synchronicity measures.
The neurons firing rates were approximately constant and much lower
than stimulus frequencies (except from around natural frequency). The
network oscillation emerged from irregular and sparse firing of individ-
ual neurons but in phase with the population rhythm. Preservation of
connections between excitatory and inhibitory cells was necessary for the
oscillations to emerge. We conclude that (i) the observed SSEP oscilla-
tions are caused by firing-rate synchrony (ii) emergence of driven oscil-
latory synchrony patterns is mediated by mutual interactions between
excitatory and inhibitory cells (iii) SSEP oscillations correspond to oscil-
latory process and cannot be fully explained by superposition of the
transient event related responses.
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Abstract. Neural network is one of the mainstream interests in arti-
ficial intelligence research. However, neurons in most artificial neural
networks are in a fixed connection with each other at this stage, making
it impossible to achieve self-learning ability. In this paper, we present
our approach to build a self-growing and self-organizing neural network.
We try to imitate the way in biological neural network, where neurons
would form connections as a response to external stimulates, and evolve,
thus to build a self-growing, self-organizing neural network. The neuron
model in our work is built based on Leaky I&F model [1]. The inputs of
our model are digital pulse signals. A counter was added into the neuron
model, so that it could calculate the changing rate of outputs, called the
output intensity of a neuron. Only when the output intensity of a neuron
meets a certain condition, it can exchange information with other neu-
rons. The distance of the forming connection is decided by the output
intensity. While the target of connection is picked through calculation of
a Probability Matrix C, the values in which are generated by training.
Matrix C could learn from the input data, thus to optimize the gener-
ation of neural networks. We verify the generated neural network with
different inputs. Those could generate different outputs with respect to
different inputs would be treated as successful ones. Redundant connec-
tions is then deleted. We have exploited a CPU+GPU way to build the
simulation environment. CPU is used to control, while GPU is used for
all the computation of neurons. 2-bits input is first used to stimulate the
network, and prompted it to grow. After verification and optimization,
those generated seeds are used to build more complex ones. The result
shows that, neural network built by our method can self-grow and self-
organize as the complexity of the input external signals increase. Also
our neural network can show some level of intelligence.
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Abstract. The flexibility and relative simplicity of neuronal cultures
make them excellent tools to investigate open questions in living neu-
ronal networks, and offer a unique scenario to tackle important questions
in network theory. In our research group we use different configurations
of neuronal cultures and monitor their spontaneous activity. Two kinds
of preparations are of special interest, namely homogeneous and aggre-
gated. For the former, neurons cover uniformly the substrate, leading to a
connectivity blueprint in which neurons also connect in a uniform manner
[1]. For the latter, neurons form compact aggregates (clusters) connected
to one another, leading to a network in which nodes (the clusters) and
links (connections among clusters) are well visible and accessible [2].

For the homogeneous cultures, and using modeling scenarios from
dynamical systems and information theory, we were able to unveil the
functional connectivity of the network and ascribe the macroscopic prop-
erties of the observed activity patterns with the microscopic, network-
level traits [1, 3]. For the aggregated networks, we observed that they
exhibit a particular dynamics in which clusters tend to fire together in
small groups, shaping dynamic modules of varying size. Such a trait leads
to functional networks that are both modular and hierarchical. Addition-
ally, network dynamics showed a strong sensitivity to the details of the
connectivity among aggregates. We have exploited this observation to
monitor the changes in the functional network before and after physical
damage, to quantify the re-organization of the modules upon circuitry
degradation, and to assess which circuit configuration is more resilient
to damage [2].
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Abstract. The past decade has witnessed a rapid growth in the amount
of human brain imaging papers investigating what goes on while we are
at rest and other internally directed mental states. In parallel, the field
of decision-making has investigated how these same medial parietal, pre-
frontal, and temporal lobe regions, collectively known as the default net-
work, also contribute to an internal model of the world that guides our
decisions- i.e. model-based decision-making.

In this talk, I will discuss how this neural system might guide inter-
nally oriented behaviours like mental exploration, generalization, imagi-
nation, and transitive inference that contribute to model-based decision-
making. Specifically, I will present a variety of evidence supporting a
framework, where endogenous oscillations across different brain regions
might help coordinate hippocampal reactivation of memories and sub-
sequently guide rapid prefrontal inferences about novel decisions. I will
present a task adapted from rodent spatial decision-making that enabled
us to elucidate core neural computations underlying the human capacity
to make fast and robust inferences in complex environments with little
or no learning. These findings highlight a unique contribution of medial
prefrontal cortex when making choices that require deep prospection and
counterfactual processing.

Drawing from research conducted in the laboratory of Gustavo Deco,
I will show offline functional magnetic resonance imaging signal fluc-
tuations throughout the default mode network (DMN), which includes
frontal and parietal midline regions, are uniformly influenced by hip-
pocampal sharp-wave ripples. These data help relate ongoing DMN fluc-
tuations to the consolidation of past experience and preparation for
future behaviour. Lastly, I will discuss how interregional oscillatory inter-
actions between these same medial prefrontal cortex and medial tempo-
ral/parietal lobe areas contribute to how we mentally explore and imag-
ine learned representations.

Taken together, these data contribute to a framework that could
potentially reveal the neural mechanism underlying rapid and robust
mental simulation, where interareal coordination between medial pre-
frontal, parietal, and temporal regions allows the brain to explore past
experience in order to prepare for novel decisions.
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Abstract. The complexity of the connectivity blueprint in living neu-
ronal circuits has motivated the development of theoretical and computa-
tional tools to infer their major characteristics. Three major descriptors
are of interest, namely the average number of connections, the distrib-
ution of connections, and high-order topological features such as clus-
tering. In our study we have explored them by analyzing the activity in
neuronal cultures, and considered approaches that include the analysis
of the network as a dynamical system, percolation, and spin models.

For the first approach, we recorded spontaneous neuronal activity
and resolved the ignition times of all the monitored neurons. The analy-
sis shows that activity takes place in the form of bursts, events of fast
activation of all the neurons in a short time window. These bursts occur
quasi-periodically along time and initiate in a few, well-defined locations
in the culture, which we call nucleation points [1]. The number of nucle-
ation points, as well as the characterisitics of the propagating fronts,
strongly depend on the circuitry of the network. Hence, by carrying out
experiments with different perturbations of the neuronal circuitry (e.g.
by chemical or electrical action), we can extract interesting properties of
the underlying connectivity map.

For the second and third approaches, we considered a global bath
excitation protocol combined with a progressive weakening of the con-
nections among neurons [2]. This protocol leads to a percolative scenario,
in which the largest group of connected neurons defines a giant compo-
nent that decreases in size as the network is gradually disconnected. At a
critical disconnection degree, the giant component disappears. The prop-
erties of this critical point are tightly related with the topology of the
circuit, particularly the average number of connections.
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Abstract. Echo State Network (ESN) is a classical recurrent neural net-
work architecture with a wide range of applications, from robot control
to biological data analytics and stock market prediction. The key feature
of ESN paradigm is the reservoir, i.e., a random directed network of neu-
rons, which is left unaltered once constructed. Despite previous efforts
dedicated to improving the performance of ESN over Erdős-Rényi ran-
dom graphs, we still lack a general framework to reveal the relationship
between ESN performance and network structure. Here we systematically
explore the impact of various network properties, leading to the discov-
ery that the eigenvalue distribution of reservoir network determines the
performance of ESN. Following that initial insight, we found that in the
state-of-the-art ESN all reservoir networks are created asymmetrically
(ρ = 0). Yet, we find that the network symmetry parameter ρ allows for
further optimization of the reservoir topology. Our findings not only pro-
vide novel insights to artificial intelligence optimization, but also show
key relationships between the trade-off in memory and computational
capacity of neural networks.

Keywords: Reservoir computing · Echo state network · Network sci-
ence · Network spectra
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Abstract. Compressive Sensing (CS) is a signal acquisition technique
by which an unknown, continuous signal of interest is simultaneously
sampled and compressed. With CS, inner products between the signal
and random sensing vectors are collected. The objective is to perform
only few of such non-adaptive measurements while capturing the bulk
of information. CS theory states that if the signal is K-compressible in
a transform domain, and the sensing vectors satisfy certain incoherence
conditions, then the number of measurements required to reconstruct the
signal is of order O(K log N

K
), where N is the signal dimensionality. To

reconstruct the signal an inverse optimization problem has to be solved.
We propose the novel compressive sensing algorithm K-AHS that

adaptively performs measurements by selecting sensing vectors from a
predefined collection. K-AHS is adaptive because the selection of a sens-
ing vector depends on previous measurements. The key concept is that
relevant measurements are more and more refined, and gradually emerge
to significant transform coefficients of the signal, whereas irrelevant mea-
surements cause the omission of large subsets of the collection and thus
the underlying insignificant coefficients. Like CS, the K-AHS sampling
complexity is of order O(K log N

K
). However, it is not necessary to incor-

porate incoherence, or to solve an optimization problem, because the
signal is reconstructed simply by a synthesis transform.

On standard test images, K-AHS attains higher PSNR than �1-based
CS for small to intermediate numbers of measurements. Figure 1 shows
a corresponding rate distortion analysis. The transform domain is the
CDF97 wavelet basis. CS measurements are performed using randomly
selected real-valued noiselet basis vectors.

Fig. 1. Rate distortion of K-AHS and �1-based CS for test images (512 × 512).
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Abstract. Just as our experience has its origin in our perceptions,
our perceptions are fundamentally shaped by our experience. How does
the brain build expectations from experience and how do expectations
impact perception?

We aim to understand how neural circuits integrate the recent history
of stimuli and rewards in order to generate priors, and how these priors
are combined with sensory information across the processing hierarchy to
bias decisions. We trained rats in a reaction-time two-alternative forced-
choice (2AFC) task with stimuli consisting in a parametric superposition
of two amplitude-modulated tones. Rats had to discriminate the dom-
inant tone and seek reward in the associated port. We used partially
predictable stimulus sequences that, once learned, could be used to gen-
erate adaptive priors that maximize the performance. These sequences
were introduced by defining Repeating trial blocks, in which the proba-
bility to repeat the previous stimulus category was 0.7, and Alternating
blocks with probability 0.2.

We found that animals adapted their behavior to the statistics of each
block and showed a repeating choice bias after several correct repetitions
and a weaker but reliable alternating bias after correct alternations. The
magnitude of the bias built up after each correct response but reset to
zero after error trials. Moreover, animals reaction time was shorter for
expected compared to unexpected stimuli, and stimulus impact on choice
was smaller when the choice matched the expectation, than when it went
against it.

Our findings show that priors show build-up-and-reset dynamics
across trials allowing animals to capitalize on the predictability of the
stimulus sequence.

Keywords: Decision making · Expectation · Perception
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Abstract. This paper presents an artificial neural network-based con-
trol architecture allowing autonomous mobile robot indoor navigation by
emulating the cognition process of a human brain when navigating in an
unknown environment. The proposed architecture is based on a simulta-
neous top-down and bottom up approach, which combines the a priori
knowledge of the environment gathered from a previously examined floor
plan with the visual information acquired in real time. Thus, in order
to take the right decision during navigation, the robot is able to process
both set of information, compare them in real time and react accordingly.
The architecture is composed of two modules: (a) A deliberative module,
corresponding to the processing chain in charge of extracting a sequence
of navigation signs expected to be found in the environment, generating
an optimal path plan to reach the goal, computing and memorizing the
sequence of signs [1]. The path planning stage allowing the computation
of the sign sequence is based on a neural implementation of the resistive
grid. (b) A reactive module, integrating the said sequence information in
order to use it to control online navigation and learning sensory-motor
associations. It follows a perception-action mechanism that constantly
evolves because of the dynamic interaction between the robot and its
environment. It is composed of three layers: one layer using a cognitive
mechanism and the other two using a reflex mechanism.

Experimental results obtained from the physical implementation of
the architecture in an indoor environment show the feasibility of this
approach.

Keywords: Neural control architecture · Robot navigation · Hybrid
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Abstract. In this paper, we realize a Profit Sharing [2] using Self-
Organizing Map-based Probabilistic Associative Memory (SOMPAM)
[1]. The SOMPAM whichis used in the proposed method is based on
Self-Organizing Map and it has an Input/Output Layer and a Map
Layer. In this model, probabilistic associations based on brief degree
for binary/analog patterns including common term(s) can be realized.
Moreover, it can also realize additional learning by adding new neuron
if needed. In the proposed method, patterns corresponding to the pairs
of observation and action are memorized to the SOMPAM, and the brief
degree is set to value of the rule. We carried out a series of computer
experiments for prey capture problem and confirmed that the proposed
method can learn appropriate actions even when observation includes
noise. Figure 1 shows transition of the number of steps per episode of the
proposed method and the conventional Profit Sharing [2]. This figure
shows the average of 10 trials (400 trials × 10). As shown in this figure,
in early stage of learning, the agent needs about 6000∼8000 steps to
capture the prey. In contrast, after 200∼250 trials, the agent needs only
100∼300 steps to capture the prey.

Keywords: Reinforcement learning · Self-Organizing Map-based Prob-
abilistic Associative Memory

Fig. 1. Transition of the number of steps per episode (with noise).
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Abstract. Cells monitor the dynamics of multiple features in their envi-
ronment to adapt to present and foreseeable future changes. The interac-
tion of the elements of their regulatory networks allows them to integrate
different inputs and, even more, process temporal information. However,
the general mechanism by which they encode their history to extract
temporal information is still unknown.

We aim to describe the general framework through which cellular reg-
ulatory networks can integrate temporal information.

We analyzed the gene regulatory networks of five distant organisms and
identified cyclic recurrent structures, as these recurrences are essential for
dynamical encoding and integration of temporal information in networks.
In each network, we found a single group of nodes, a core, forming a recur-
rent structure. These recurrent cores are upstream of most of the other
nodes. This network organization resembles the Reservoir Computer para-
digm. In networks that adjust to this paradigm, the transient dynamics of
a recurrent group of nodes encode the recent history of the system and the
rest of the network reads these dynamics. However, although it is similar to
a Recurrent Neural Network, in Reservoir Computing there are no recur-
rences from the output nodes back to the rest of the system. The benefit of
this difference is that only the links from the recurrent core to the output
nodes need to be trained. This facilitates the learning of new environmen-
tal conditioning and prevents catastrophic interferences [1].

We show that the topology of the recurrent cores of the biological net-
works perform well in standard memory demanding tasks used in Reser-
voir Computing. We also show that these results hold when consider-
ing different biological stress signaling pathways as inputs. Furthermore,
we show that the connectivity of these networks is optimized to encode
temporal information given the constraint of the number of transcription
factors. Finally, we prove the output nodes of a network can learn to inter-
pret the dynamics of the reservoir, to perform memory-demanding tasks,
through evolutionary processes. Our work suggests that cells can process
information in a state-dependent manner: it is the transient dynamics of
a small part of the regulatory networks that codifies the recent history.

Keywords: Reservoir computing · State-dependent computation ·
Temporal information processing · Gene regulatory networks
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Abstract. The network of patents connected by citations is an evolving
graph, which represents the innovation process. A patent citing another
implies that the cited patent reflects a piece of previously existing knowl-
edge that the citing patent builds upon. We review models evolution of
the patent citation network both at the “microscopic” level of individual
patents [1–5] and at “mesoscopic” [6] levels. Microscopic level studies
helped to measure the “attractivness” of a patent, as the function of
its age and the number of citation already has obtained. A somewhat
similar approach was given here: [7]. At mesoscopic level the analysis
has been extended to subclasses, and it was demonstrated by adopting
clustering algorithms that it is possible to detect and predict emerging
new technology clusters.

Keywords: Evolving networks · Patent citation analysis

References

1. Csardi, G., Strandburg, K.J., Zalanyi, L., Tobochnik, J., Erdi, P.: Modeling inno-
vation by a kinetic description of the patent citation system. Physica A 74(12),
783–793 (2007)

2. Csardi, G., Strandburg, K.J., Tobochnik, J., Erdi, P.: Chapter 10. The inverse prob-
lem of evolving networks with application to social nets. In: Bollobas, B., Kozma,
R., Miklos, D. (eds.) Handbook of Large-Scale Random Networks, pp. 409–443.
Springer-Verlag (2009)

3. Erdi, P.: Complexity Explained. Springer-Verlag (2007)
4. Strandburg, K., Csardi, G., Tobochnik, J., Erdi, P., Zalanyi, L.: Law and the sci-

ence of networks: an overview and an application to the patent explosion. Berkeley
Technol. Law J. 21, 1293 (2007)

5. Strandburg, K., Csardi, G., Tobochnik, J., Erdi, P., Zalanyi, L.: Patent citation
networks revisited: signs of a twenty-first century change? North Carol. Law Rev.
87, 1657–1698 (2009)

6. Erdi, P., Makovi, K., Somogyvari, Z., Strandburg, K., Tobochnik, J., Volf, P.,
Zalanyi, L.: Prediction of emerging technologies based on analysis of the U.S. patent
citation network. Scientometrics 95, 225–242 (2013)

7. Valverde, S., Sole, R.V., Bedau, M.A., Packard, N.: Topology and evolution of tech-
nology innovation networks. Phys. Rev. E 76, 056118 (2007)

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, p. 543, 2016.
DOI: 10.1007/978-3-319-44778-0



Patent Citation Network Analysis: Ranking:
From Web Pages to Patents
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Abstract. Ranking of nodes in a network of diverse number of con-
nections (degree) is an extensively studied field. In the theory of social
networks centrality measures were constructed to rank nodes of networks
based on their (not unique) topological importance, Another family of
measures is related to the spectral properties of the adjacency matrix [1],
which takes into account the importance of the influence of a neighbor.
Importance can be defined recursively. Brin and Page [2] introduced a
matching recursive centrality measure called PageRank. The relevance of
this algorithm to citation networks was expressed by [3]. By adopting a
citation-based recursive ranking method for patents the evolution of new
field of technologies can be traced. Specifically, the laser/inkjet printer
technology emerged from the recombination of existing technologies, such
as sequential printing and static image production. The dynamics of the
citations coming from the different precursor classes illuminate the mech-
anism of the emergence of new fields and give the possibility to make pre-
dictions about future technological development [4]. The combination of
using clustering algorithms with ranking algorithms give more insight
about the dynamics of the patent citation network [5].
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Abstract. Slow rhythms of activity (∼ 1Hz ) are a universal hallmark
of slow-wave sleep and deep anesthesia across many animal species. A
remarkably reproducible default mode with a low degree of complex-
ity which opens a window on the brain multiscale organization, on top
of which cognitive functions emerge during wakefulness. Understanding
how such transition takes place starting from the characterization of a
stereotyped state like the slow-wave activity [1], might shade light on
the emergence of the rich repertoire of neuronal dynamics underlying
brain computation. Sleep-wake transition is a widely studied phenom-
enon [2], however it is still debated how brain state changes occur. Here
we show from intracortical recordings in anesthetized rats, that sleep-
like rhythms fade out when wakefulness is approached giving rise to an
alternation between slow Up/Down oscillations and awake-like activity
periods. This phase of activity pattern bistability is captured by a mean-
field rate-based model of a cortical column, in which for a transient
range of anesthesia levels the coexistence of two metastable attractor
states emerges. Alternation between these two states is granted by the
ongoing competition of local features and exogenous modulations gov-
erning both the excitability and the fatigue level of the modeled column.
Our results highlight a brain state transition which is not a continuous
smooth change but rather a progressive modulation of the stability of
two coexistent activity regimes, which in turn leave different fingerprints
across cortical columns. Guided by this mean-field model, spiking neu-
ron networks are devised to reproduce the electrophysiological changes
displayed during the transition.
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Abstract. Slow waves emerge from the cortical network during states
of functional disconnection (non-REM sleep, anesthesia) and anatomical
disconnection (slices, deafferented cortex) as if it were its default activity
[1]. Such emergent activity and its spatiotemporal patterns reveal fea-
tures about the underlying network. By using an observational approach
of these emergent slow waves we have identified alterations in the cor-
tical emergent patterns in transgenic models of neurological disease [2].
Here, we present a perturbational approach where we probe the network
by electrical stimulation using two different approaches: (1) By means
of DC electric fields we explore the modulation of the emergent activity,
(2) By means of electric pulses we measure the complexity of the cortical
network’s responses. To this end we have adapted to cortical slices the
perturbational complexity index (PCI) recently introduced in humans
to quantify the information content of deterministic patterns evoked in
the brain by transcranial magnetic stimulation [3]. Our in vitro pertur-
bational study reveals that the spontaneous intrinsic cortical bistability
breaks-off complexity in the neural network. We also explore the mech-
anisms modulating network complexity under different brain states.

Keywords: Complexity · Cerebral cortex · Oscillations · Synchroniza-
tion · Electric fields · Slow waves · Cortical network · Up states
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Abstract. Binding errors, also called swap errors, occur in working
memory (WM) tasks when the participant fails to report the feature
of a previously presented target but the response is accurate relative to
a non-target stimulus [1]. These errors reflect the failure of the system
to maintain bundled through memory the conjunction of features that
define one object. The brain mechanisms that maintain integrated sev-
eral features of an item in one memory remain unknown. We explore
the hypothesis that synchrony of different neural assemblies coding each
for a feature of an item plays the main role [2]. To test the synchrony
hypothesis, we built a network model for the storage of multiple items
defined by one color and one location in WM. The model is composed of
two networks for WM [3], one representing colors and the other one loca-
tions. These two networks are then connected via weak cortico-cortical
excitation. With this model we are able to maintain persistent memory
bumps that encode colors and locations in each respective network. Fast
recurrent excitation within each network induced γ oscillations during
bump activity through the interplay of fast excitation and slower feed-
back inhibition [3]. Spectral power of network activity in the γ range of
frequencies increased with the number of stored items, as it has been
reported both in humans and monkey studies [4]. Binding between fea-
tures was effectively accomplished through the synchronization of γ oscil-
lations between bumps across the two networks. As a result, different
memorized items were held at different phases of a global network oscilla-
tion, whose frequency increased with WM load. In some simulations swap
errors arose: color bumps abruptly changed their phase relationship with
location bump. Furthermore, by systematically decreasing the distance
between different memory items, thus increasing potential interference
within trials [5], the model predicts that swap errors should increase.
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Abstract. During the process of making a perceptual decision, a num-
ber of cognitive processes are sequentially involved, whose interplay
determines the subject’s final response. To help disentangling the inter-
mingling effect of these processes into behaviour, we studied how an
initial process such as stimulus encoding influences the response accu-
racy during a perceptual discrimination task in monkeys. We exam-
ined this hypothesis by analysing single-cell recordings from a monkey’s
somatosensory area 1 (S1) during a vibrotactile discrimination task, in
which the monkey compared two tactile vibrations delivered at different
times and reported which vibration had a higher frequency [1].

We quantified sensory coding accuracy during the first stimulation
period by estimating the significance of the mutual information between
each neuron’s mean firing rate and the first stimulus frequency. We eval-
uated this measure in trials in which the monkey correctly reported the
decision (correct trials) and trials in which it did not (incorrect trials).
The results of this analysis applied over nearly 100 neurons revealed that
sensory coding accuracy had a significant effect on task performance.
Indeed, among all neurons that exhibited coding accuracy differences
across both sets of trials (36 % of the population), 86% of those neurons
were only encoding stimulus information during the correct trials. These
preliminary results suggest that initial sensory coding may greatly affect
performance in a perceptual discrimination task.
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Abstract. Higher order cognition relies on selecting actions based on
current sensory information and on the outcome of previous experiences.
While humans can flexibly learn the statistical regularities of the sen-
sory environment and use them to guide behavior, little is known about
whether rodents display comparable abilities. We studied the capacity of
rats to use the history of recent actions and outcomes to bias future per-
ceptual decisions. Rats performed a novel acoustic discrimination task
(with two-alternative forced choice) in which we introduced correlations
in the rewarded choice sequence that could be used to guide decisions.
Specifically, blocks of trials in which the probability to repeat the previ-
ous stimulus category was Prep > 0.5 (repeating environment) alternated
with blocks where it was Prep < 0.5 (alternating environment). Rats were
able to accumulate acoustic evidence across the stimulus duration, as well
as integrate recent history of rewards and errors. Combining these two
sources of information to guide their choices they could improve their
discrimination performance by adapting their history-dependent choice
biases to the statistics of each environment.

We performed a probit regression analyses to show that rats, as pre-
viously described in primates, used recent history of responses to guide
action selection: they positively weighted Left and Right responses in
the last few trials to favor upcoming choice to the Left and Right ports,
respectively. More interestingly they also weighted previous response
transitions, i.e. Alternations and Repetitions, that lead them to bias
upcoming choices to Alternate or Repeat the last choice, respectively.
While sequences of successful alternations could lead to gradual build-
up of such history-dependent bias, importantly, erroneous alternations
lead to a reset of such biases.

Given this evidence we fitted a Reinforcement Learning model of
behavior to detail the mechanisms at play in integration of sensory evi-
dence with recent history. Our model includes build-up of both lateral-
ity (left/right) and transition (alternate/repeat) biases as latent (auto-
regressive) variables, each of them containing different learning rates for
correct and incorrect responses. Fitting parameters indeed showed oppos-
ing effects of correct left vs. right responses onto the laterality bias, and
opposing effects of correct alternate vs. repeat responses onto the tran-
sition bias, while errors lead to a complete reset of such biases. Our
work provides a normative framework to describe how organisms flex-
ibly adapt to regularities in the environment by updating their choice
bias according to the history of past rewards and errors.
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Abstract. Prosthetic devices have come a far way from being just
mechanical devices. In recent years, neuroprosthetic devices have been
developed, that directly infer movements commands from neuronal activ-
ities. Amongst these, hand prostheses require a more precise detection of
different hand motions than other body parts. However, detection of such
precise movements in EEG data is a non-trivial task due to the noisiness.
To challenge this problem, the WAY consortium created a classification
challenge on the Kaggle platform in the summer 2015.

The winners used a recurrent convolutional neural network that scored
0.98 AUC. Since training such a network is computationally demanding,
we applied an echo state network to the same dataset, to see whether
this faster approach can compete with the RCNN. The dataset origi-
nates from grasp and lift trials recorded by the WAY consortium [1].
They labeled the data with six different events, occurring in the same
order for each trial. Further, each of the events are labeled ±75 ms around
the onset of the event. Lastly, the dataset is imbalanced, as most of the
time no event occurs.

To challenge this imbalanced, we used a weighted ridge regression
to learn the weights of the output layer. We further tried subsampling
the frames where no event occurred. Preliminary results suggest no sig-
nificant difference between these two methods. Additionally, we used
different activation functions including hyperbolic tangent and rectified
hyperbolic tangent. Lastly, we set up the reservoir in three “bubbles”
that were highly connected, whilst between bubbles only few connec-
tions were active. Other than that, the original approach of Jaeger was
used [2]. To preprocess the data, we used common spatial patterns. We
applied these to each event separately against the rest time, leading to six
different preprocessed datasets. For each of these datasets, we classified
the corresponding event using one ESN. Afterwards, we concatenated
the predictions to form the original six events. We have not yet fully
evaluated this approach. However, preliminary results (ca. 0.76 AUC)
are promising, although they do not compete with the results of the
competition winners.
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Abstract. Brain modelling in the mesoscopic scale deals with func-
tional groups of thousands of neurons in the cerebral cortex, the cor-
tical columns, which represent the source of the electrical currents that
can be detected in the brain. These cortical columns can be modelled
theoretically with neural mass models, whose dynamics are determined
by a set of parameters with biological meaning. Changes in the values of
these parameters may point to variations in the behaviour or structure of
the system. The averaged activity of the neurons in the cortical column
results in dipole currents that can be measured with electroencephalog-
raphy (EEG).

EEG is a non-invasive and fairly cost-efficient way of detecting healthy
or pathological brain activity, and its use is currently widespread and
well established. Nevertheless, it is a descriptive technique, which can-
not explain the underlying causes that may lead to a specific functional
state. Linking brain structure and function can be done by neural mass
models, but these computational descriptions are hardly applicable in a
clinical setting due to lack of knowledge of the biological constraints that
affect the model parameters in specific brain states.

To address these shortcomings, we aim to bring computational models
and experimental measurements together with data assimilation algo-
rithms. In particular, we use the Unscented Kalman Filter to feed syn-
thetic EEG data to a neural mass model, and estimate the state of the
system and the parameters of the model therewith. Preliminary results
show the advantages of using several extracranial electrodes as opposed
to a single intracortical measurement, information-wise. We also discuss
the influence of the number of electrodes on the quality of the estimation.

Keywords: Data assimilation · Neural mass modelling · Kalman filter-
ing · Electroencephalography
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Abstract. Epilepsy is among the most common neurological disorders
with an estimated prevalence of about 1 % of the world’s population.
Around a third of all epileptic subjects are resistant to anticonvulsant
therapy and could benefit from therapeutic closed-loop interventions (e.g.
electrical stimulation) based on an accurate prediction of seizure occur-
rences. Over the last decades, a large number of algorithms have been
tested to predict seizures. Although the performance of these algorithms
has improved over time [1], a clear understanding of the mechanisms by
which epileptic networks generate seizures is still missing, which ques-
tions their current applicability.

To take this question we studied emerging properties of epileptic
networks during pre-seizure activity periods. Specifically, we analyzed
the temporal evolution of functional connectivity networks using long-
lasting (up to 12 h) periods of setereoencephalography (SEEG) intracra-
nial recordings from epileptic patients before a seizure occurred. Func-
tional networks were dynamically characterized by inferring sequen-
tial connectivity graphs in non-overlapping short time windows (0.6 s)
and extracting time-varying network measures (e.g. strength, centrality)
for each channel of interest. Pre-seizure specificity of our findings was
assessed via a control analysis on the same time period from a precedent
seizure-free day.

The results of our analysis applied to 10 patients with different clin-
ical prognosis show that seizures were preceded by long (3–8 h) peri-
ods of decreased functional network variability. These findings may open
new roads to explain the underlying network mechanisms of previously
reported pre-ictal EEG features [1] and eventually guide data-driven
seizure prediction algorithms.

Keywords: Intracranial EEG · Epileptic networks · Network centrality

Reference

1. Gadhoumi, K., et al.: Seizure prediction for therapeutic devices: a review.
J. Neurosci. Methods (2015)

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, p. 554, 2016.
DOI: 10.1007/978-3-319-44778-0



Attractor Models of Perceptual Decisions
Making Exhibit Stochastic Resonance

Genis Prat-Ortega1,2(B), Klaus Wimmer1, Alex Roxin2,
and Jaime de la Rocha1
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Abstract. Several computational models have been proposed to
describe the integration of sensory evidence in perceptual 2-Alternative
Forced-Choice (2AFC) tasks. Although these disparate models can
account for the behavior of subjects performing such tasks, for exam-
ple their performance or reaction time, they rely on different dynamical
mechanisms.

Here, we investigate the dynamics of evidence integration in models
with attractor dynamics during a fixed duration 2AFC task. We studied
a spiking network and a diffusion process in a DW potential (the one
dimensional potential equivalent to the spiking network). We have found
two interesting properties of these models when we consider a fluctuating
stimulus in which evidence is drawn in each time step from a noisy dis-
tribution with mean μ and variance σ. Both rely on the same underlying
mechanism, the stochastic transitions between wells that can be correct-
ing if the final well is deeper than the initial or error in the opposite
case. In particular, the predictions are: (1) As σ increases the fluctua-
tions with a higher impact on choice shift from the beginning (transient
integration) to the end of the stimulus (leaky integration). For small σ,
when the system reaches an attractor it is unlikely to escape, thus the
fluctuations with a higher impact on the choice are at the beginning of
the stimulus. As σ is increased, more transitions occur, and the fluctu-
ations at the end determine the final decision. (2) The categorization
performance shows a resonance with a local maximum at σmax > 0. The
Kramers transition rates are higher for the correcting than error transi-
tion because the correct well is deeper. As a consequence, there is a range
of σ where the benefit of having more correction than error transitions
offsets the decrease in signal-to-noise ratio (stochastic resonance).

Importantly, these predictions are robust for a wide range of model
parameters and specific for a model with attractor dynamics. Other mod-
els that consider optimal evidence integration yield different predictions.
Our analysis makes specific predictions that can be tested in psychophysi-
cal 2AFC tasks, which would clarify some fundamental aspects of sensory
integration dynamics.
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Abstract. The spatial perception, in which objects motion and position
are recognized in 3-D like humans, has been demanding for applications
such as an autonomous mobile robot and an autonomous car. Biologically
inspired methods with dedicated hardware have been attractive because
of its high energy efficiency compared with image processing algorithms
performed on a CPU. We have focused on planar surface detection by
using a neural network model proposed by Kawakami et al. [1, 2] and
implemented this model on a VLSI.

In the Kawakami model, the orientation and time-to-contact (TTC)
of a planar surface are detected in two steps. First, local image motions
are detected in motion detection cells (MDCs) from local retinal images.
Second, the local image motions are integrated by accumulating MDC
responses in medial superior temporal (MST) cells. In this study, we
focused on the second step. The MDC responses are given as inputs
to a VLSI. The neural connections between MDCs and MST cells are
determined by using polar and cross-ratio transforms [2]. One of the
main issues in implementing this step on a VLSI is wiring of these huge
connections. We solved this by using virtual connection scheme with con-
nection tables and packet-based communication.

We designed a VLSI chip by using TSMC 65 nm CMOS standard cell
library in 1.32 mm×1.32 mm core area. The chip includes 64 processing
elements (PEs) and each PE corresponds to an MST cell. Each PE has
a connection table stored in a local memory, and a register to accumu-
late MDC responses. The orientation and TTC of a planar surface are
detected from a location of the PE which has the maximum value. The
latency required to accumulate all MDC responses and retrieve all PEs’
register values was estimated as 2.2 ms in a 100 MHz operation by using
gate-level HDL simulation. The power consumption was also estimated
as 36 mW. The operation speed of the designed VLSI is comparable with
a C++ program performed on a CPU (Intel Core i7-3770, 3.4 GHz, TDP
77 W), while its power consumption is smaller than the CPU by less
than 1 %.
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Abstract. Quantum computing (QC) has attracted much attention due
to its enormous computing power, but proposed algorithms so far are
not sufficient for practical use. Therefore, if a quantum computer could
obtain algorithms by itself, the applicable field of QC would be extended
greatly. In this study, we investigate a learning method for a quantum
bit network (QBN) by utilizing the analogy between an artificial neural
network and a QBN as described in the previous reports [1, 2]. According
to this analogy, we can relate a synaptic weight matrix with a Hamil-
tonian.

We propose a quantum version of Hebb learning as follows; we enhance
both excitatory and inhibitory couplings according to the probability
that arbitrary two quantum bits (qubits) take the same or opposite states
when a QBN outputs a desired pattern. As a first step, we trained a QBN
shown in Fig. 1 to learn the XOR problem. We updated the Hamiltonian
only when the hidden qubit took the state “1” in order to break sym-
metry because the network always learns a pair of symmetric patterns
whether these patterns are desired or not. A typical successful learning
result is shown in Fig. 2. Though the success rate of learning with various
initial Hamiltonians reaches only 50 %, this preliminary result indicates
certain possibility for implementing learning function with a QBN.

Fig. 1. Quantum bit network Fig. 2. Probability of the correct oper-
ation as function of the number of
learning
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Abstract. Neural information processing includes the extraction of infor-
mation present in the statistics of afferent signals. For this, the afferent
synaptic weights wj are continuously adapted, changing in turn the dis-
tribution pθ(y) of the post-synaptic neural activity y. Here θ denotes rele-
vant neural parameters. The functional form of pθ(y) will hence continue
to evolve as long as learning is on-going, becoming stationary only when
learning is completed. This stationarity principle can be captured by the
Fisher information

Fθ =

∫
pθ(y)

(
∂

∂θ
ln
(
pθ(y)

)
)2

dy,
∂

∂θ
→
∑

j

wj
∂

∂wj

of the neural activity with respect to the afferent synaptic weights wj . It
then follows, that Hebbian learning rules may be derived by minimizing
Fθ. The precise functional form of the learning rules depends then on the
shape of the transfer function y = g(x) relating the membrane potential x
with the activity y.

The learning rules derived from the stationarity principle are self-
limiting (runaway synaptic growth does not occur), performing a standard
principal component analysis, whenever a direction in the space of input
activities with a large variance is present. Generically, directions of input
activities having a negative excess Kurtosis are preferred, making the rules
suitable for ICA (see figure). Moreover, when only the exponential foot of
g is considered (low activity regime), the standard Hebbian learning rule,
without reversal, is recovered.

Keywords: Information theory · Hebbian learning · Stationarity
principle
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Abstract. In order to reach accurate tourism demand forecasts, vari-
ous forecasting methods have been proposed in the literature [1]. These
approaches can be divided into two subclasses. One of them is conven-
tional methods such as autoregressive moving average (ARIMA) or expo-
nential smoothing. And, the other one is advanced forecasting techniques
such as fuzzy time series, artificial neural networks (ANN) or hybrid
approaches. The main purpose of this study is to develop some efficient
forecasting models based on ANN for tourism demand of Barcelona in
order to reach high accuracy level.

Different ANN models are constructed by changing architectures and
activation functions used in neurons of hidden layer. Three activation
functions such as stepwise, logistic and hyperbolic tangent functions are
utilized for neurons of hidden layer. The number of neurons in the input
layer is changed from 1 to 6 and the number of neurons in the hidden
layer is changed from 1 to 15. Thus, 90 architectures are examined for
each activation function since one neuron is used in the output layer. In
the implementation, 270 different ANN model constructed and applied
to tourism demand of Barcelona.

The tourist arrival to Barcelona between 2000 and 2014 has 15 yearly
observations. When this time series was analyzed by ANN models, the first
12 observations were used as training data and the rest of them as test data.
First of all, all models are trained and model parameters are determined
by using the training set. Then, the forecasting performances of the models
are evaluated by using a performance measure. Then, the best architecture
that has the minimum performance measure value calculated over the test
set is selected. All obtained forecasting results are presented and discussed.

Keywords: Forecasting · Feed forward neural networks · Time series
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Abstract. We report on the experimental observation and study of
dynamic attractors in chaotic neural networks, probed by timed current
stimuli. We observed multistability in chaotic networks and demonstrate
how systematically controlling the timing of stimulation selects the spa-
tiotemporal sequences of voltage oscillations of neurons.

We have developed a network of N neurons interconnected with mutu-
ally inhibitory gap junctions, using silicon chips. This neural network is
based on the Hodgkin-Huxley model. We then generated phase-lag maps
of neuronal oscillators by varying the timing of current stimulation to
individual neurons [1]. We observed multiple attractors that consists of
N -phasic sequences of unevenly spaced pulses, propagating clockwise and
anti-clockwise. Our results validate the command neuron hypothesis and
the control of adaptation of motor patterns to stimulation.

The proposed approach may find application for modulating heart
rate and providing therapy for heart failure [2].

Keywords: Winnerless chaotic network · Dynamic attractors
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