

LINUX

The	Ultimate	Step	by	Step	Guide	to
Quickly	and	Easily	Learning	Linux

	

TED	DAWSON
	

©	Copyright	2015	by	WE	CANT	BE	BEAT	LLC

	

	

Chapter	One:	LINUX	HISTORY

Chapter	Two:		LINUX	DISTRIBUTION	(DISTRO)

Introduction

GUIDE	TO	CHOOSING	DISTRIBUTION

Linux	Mint

Ubuntu

Debian	GNU/Linux

Mageia

Fedora

openSUSE

Arch	Linux

CentOS

PCLinuxOS

Slackware	Linux

FreeBSD

Chapter	Three:	LICENSING

COMMUNITY

DEVELOPMENT

Chapter	Four:	INSTALLING	DEBIAN	8

What	is	Debian

Customizing	your	System

Terminal

Install	sudo

Set	up	the	network

Setup	your	hosts	file

Log	in	via	SSH!

Installing	the	basics

Installing	MySQL

Setting	up	MySQL

Chapter	Five:	INSTALLING	CENTOS	7

Installation	of	CenOS7

Step	1:	Download	the	ISO	Image

Step	2:	Make	a	bootable	Drive

Step	3:	Begin	Installation

Step	4:	Select	Language	and	Keyboard

Step	5:	Change	the	Installation	Destination

Step	6:	Select	the	Partitioning	Scheme

Step	7:	Create	a	Swap	Space

Step	8:	Create	a	Mountpoint

Step	9:	Accept	Changes

Step	10:	Set	Date	and	Time

Step	11:	Begin	Installation

Step	12:	Set	Up	Root	Password

Step	13:	Create	a	User	Account

Step	14:	Complete	Installation

Change	and	Set	Hostname	Command

Method	#1:	hostnamectl

How	do	I	see	the	host	names?

How	do	I	delete	a	particular	host	name?

How	do	I	change	host	name	remotely?

Method	#2:	nmtui

Method	#3:	nmcli

To	view	the	host	name	using	nmcli:

To	set	the	host	name	using	nmcli:

Chapter	Six:	LINUX	AND	UNIXMAN	COMMAND

Syntax

Description

General	Options

Main	Modes	of	Operation

Finding	Manual	Pages

Controlling	Formatted	Output

Section	Numbers

Exit	Status

Environment

Files

Examples

Chapter	Seven:	LINUX	DIRECTORY	COMMAND

sample	outputs

List	only	files	in	Unix

Task:	Create	aliases	to	save	time

Chapter	Eight:	WORKING	WITH	FILES

UNIX	File	Names

Looking	at	the	Contents	of	Files

Cat	Command

More	Command

Head	Command

Tail	Command

Copying,	Erasing,	Renaming

Copying	Files

Erasing	Files

Renaming	a	File

Using	the	Command	Line

Standard	Input	and	Standard	Output

Redirection

Using	Pipes	and	Filters

Some	Additional	File	Handling	Commands

Word	Count

Comparing	the	Contents	of	Two	Files:	the	cmp	and	diff	Commands

Chapter	Nine:	NAVIGATION	AND	FILE	MANAGEMENT

Prerequisites	and	Goals

Navigation	and	Exploration

Finding	where	you	are	with	the	“pwd”	command

Looking	at	the	Contents	of	Directories	with	“ls”

Moving	Around	the	Filesystem	with	“cd”
Viewing	Files

File	and	Directory	Manipulation

Create	a	File	with	“touch”

Create	a	Directory	with	“mkdir”

Moving	and	Renaming	Files	and	Directories	with	“mv”

Copying	Files	and	Directories	with	“cp”

Removing	Files	and	Directories	with	“rm”	and	“rmdir”

Editing	Files

Chapter	Ten:	UNIX	SHELL	SCRIPTING

Shell	Scripting	Introduction

Chapter	Eleven:	SHELL	BASIC	OPERATOR

Arithmetic	Operators

Relational	Operators:

Boolean	Operators

String	Operators

File	Test	Operators

Run	The	.Sh	File	Shell	Script	In	Linux	/	Unix

.sh	As	Root	User

chmod	Command:	Run	Shell	Script	In	Linux

Chapter	Twelve:	SHELL	EMBEDDING	AND	OPTIONS

Shell	installing

Backticks

Backticks	or	single	quotes

Shell	Alternatives

Practice:	Shell	Installing

Chapter	Thirteen:	SHELL	HISTORY	SEARCH	COMMAND

Emacs	Line-Edit	Mode	Command	History	Searching

fc	command

Delete	command	history

FILE	NAME	GLOBBING	WITH	*,	?,	[]

Chapter	fourteen:	UNIX	-	SHELL	INPUT/OUTPUT	REDIRECTIONS

Chapter	Fifteen:	UNIX	SHELL	FUNCTION

Creating	Functions

Example

Pass	Parameters	to	a	Function

Returning	Values	from	Functions

Example

Nested	Functions

Function	Call	from	Prompt

Unix	-	Pipes	and	Filters

The	grep	Command

The	sort	Command

The	pg	and	more	Commands

Chapter	Sixteen:	UNIX	USEFUL	COMMAND

Files	and	Directories

Manipulating	data

Messages	between	Users

Chapter	Seventeen:	REGULAR	EXPRESSION

Invoking	sed

The	sed	General	Syntax

Deleting	All	Lines	with	sed

The	sed	Addresses

The	sed	Address	Ranges

The	Substitution	Command

Substitution	Flags

Using	an	Alternative	String	Separator

Replacing	with	Empty	Space

Address	Substitution

The	Matching	Command

Using	Regular	Expression

Using	Multiple	sed	Commands

Back	References

Chapter	Eighteen:	FILE	SYSTEM	BASICS

Directory	Structure

The	df	Command

The	du	Command

Mounting	the	File	System

Unmounting	the	File	System

User	and	Group	Quotas

Chapter	Nineteen:	UNIX-USER	ADMINISTRATION

Managing	Users	and	Groups

Modify	a	Group

Delete	a	Group:

Create	an	Account

Modify	an	Account

Delete	an	Account

Chapter	Twenty:	SYSTEM	PERFORMANCE

Performance	Components

Unix	-	System	Logging

The	/etc/syslog.conf	file

Logging	Actions

Log	Rotation

Important	Log	Locations

Chapter	Twenty-one:	UNIX	SIGNALS	AND	TRAPS

LIST	of	Signals

Default	Actions

Sending	Signals

Trapping	Signals

Cleaning	Up	Temporary	Files

Ignoring	Signals

Resetting	Traps

ABOUT	THE	AUTHOR

LINKS	AND	RESOURCES
DEDICATION

SPECIAL	THANKS

Chapter	One:	LINUX	HISTORY
	

The	history	 of	 Linux	 began	 in	 1991	with	 the	 commencement	 of	 a	 personal

project	by	Finnish	student	Linus	Torvalds	 to	create	a	new	free	operating	system

kernel.	Since	then,	the	resulting	Linux	kernel	has	been	marked	by	constant	growth

throughout	 its	 history.	 Since	 the	 initial	 release	 of	 its	 source	 code	 in	 1991,	 it	 has

grown	 from	 a	 small	 number	 of	 C	 files	 under	 a	 license	 prohibiting	 commercial

distribution	to	the	3.18	version	in	2015	with	more	than	18	million	lines	of	source

code	 under	 the	 GNU	 General	 Public	 License	 (GPL).	 He	 wrote	 the	 program

specifically	for	the	hardware	he	was	using	and	independent	of	an	operating	system

because	 he	 wanted	 to	 use	 the	 functions	 of	 his	 new	 PC	 with	 an	 Intel	 80386

processor.	Development	was	done	on	MINIX	using	the	GNU	C	compiler.	The	GNU

C	Compiler	 is	 still	 the	main	 choice	 for	 compiling	 Linux	 today.	 The	 code	 can	 be

built	with	other	compilers,	such	as	the	Intel	C	Compiler.	As	Torvalds	wrote	in	his

book	 ‘Just	 for	Fun,’	he	 eventually	 ended	up	writing	an	operating	 system	kernel.

On	25	August	1991	(age	21),	he	announced	this	new	system	in	a	Usenet	posting	to

the	newsgroup	“comp.os.minix.”

Torvalds	first	published	the	Linux	kernel	under	its	own	license,	which	had	a

restriction	 on	 commercial	 activity.	 The	 software	 used	 with	 the	 kernel	 was

developed	as	part	of	the	GNU	project	licensed	under	the	GNU	GPL,	a	free	software

license.	 The	 first	 release	 of	 the	 Linux	 kernel,	 Linux	 0.01,	 included	 a	 binary	 of

GNU’s	Bash	 shell.	 In	 the	 “Notes	 for	Linux	 release	0.01”,	Torvalds	 lists	 the	GNU

software	that	is	required	to	run	Linux:	Sadly,	a	kernel	by	itself	gets	you	nowhere.

To	 get	 a	 working	 system,	 you	 need	 a	 shell,	 compilers,	 a	 library,	 etc.	 These	 are

separate	parts	and	may	be	under	stricter	 (or	even	 looser)	copyright.	Most	of	 the

tools	used	with	Linux	are	GNU	software	and	are	under	the	GNU	copyright.	These

tools	 are	 not	 in	 the	 distribution	 -	 ask	me	 (or	 GNU)	 for	more	 info.	 In	 1992,	 he

suggested	 releasing	 the	 kernel	 under	 the	 GNU	 GPL.	 He	 first	 announced	 this

decision	in	the	release	notes	of	version	0.12.	In	the	middle	of	December	1992,	he

published	version	0.99	using	the	GNU	GPL.	Linux	and	GNU	developers	worked	to

integrate	GNU	components	with	Linux	 to	make	a	 fully	 functional	 free	operating

system.	Torvalds	has	stated,	“Making	Linux	GPL’d	was	definitely	the	best	thing	I

ever	did.”	Torvalds	initially	used	the	designation	“Linux”	only	for	the	Linux	kernel.

The	kernel	was,	however,	frequently	used	together	with	other	software,	especially

that	of	the	GNU	project.	This	quickly	became	the	most	popular	adoption	of	GNU

software.	In	June	1994	in	GNU’s	Bulletin,	Linux	was	referred	to	as	a	“free	UNIX

clone,”	 and	 the	Debian	project	 began	 calling	 its	 product	Debian	GNU/Linux.	 In

May	1996,	Richard	Stallman	published	the	editor	Emacs	19.31,	in	which	the	type

of	system	was	renamed	from	Linux	to	Lignux.	This	spelling	was	intended	to	refer

specifically	to	the	combination	of	GNU	and	Linux,	but	this	was	soon	abandoned	in

favor	 of	 “GNU/Linux.”	 This	 name	 garnered	 varying	 reactions.	 The	 GNU	 and

Debian	projects	use	the	name,	although	most	people	simply	use	the	term	“Linux”

to	refer	to	the	combination.

The	 largest	part	of	 the	work	on	Linux	 is	performed	by	 the	community:	 the

thousands	 of	 programmers	 around	 the	 world	 that	 use	 Linux	 to	 send	 their

suggested	improvements	to	the	maintainers.	Various	companies	have	also	helped

not	only	with	the	development	of	the	kernels	but	also	with	the	writing	the	body	of

auxiliary	software,	which	is	distributed	with	Linux.	As	of	February	2015,	over	80%

of	Linux	kernel	developers	are	paid.	It	is	released	both	by	organized	projects	such

as	Debian	and	by	projects	connected	directly	with	companies	such	as	Fedora	and

openSUSE.	The	members	of	these	respective	projects	meet	at	various	conferences

and	 fairs,	 in	 order	 to	 exchange	 ideas.	 One	 of	 the	 largest	 of	 these	 fairs	 is	 the

LinuxTag	in	Germany	(currently	in	Berlin),	where	about	10,000	people	assemble

annually,	in	order	to	discuss	Linux	and	the	projects	associated	with	it.	The	Open

Source	 Development	 Lab	 (OSDL)	 was	 created	 in	 the	 year	 2000,	 and	 is	 an

independent	nonprofit	organization,	which	pursues	 the	goal	of	optimizing	Linux

for	employment	 in	data	centers	and	 in	 the	carrier	 range.	 It	 served	as	 sponsored

working	 premises	 for	 Linus	 Torvalds	 and	 also	 for	 Andrew	 Morton	 (until	 the

middle	of	2006	when	Morton	 transferred	 to	Google).	Torvalds	worked	 full-time

on	behalf	of	OSDL,	developing	the	Linux	kernels.

	

Chronology

1991:						The	 Linux	 kernel	 is	 publicly	 announced	 on	 25	 August	 by	 21-year-old

Finnish	student	Linus	Benedict	Torvalds.

1992:						The	 Linux	 kernel	 is	 re-licensed	 under	 the	 GNU	 GPL.	 The	 first	 Linux

distributions	are	created.

1993:						Over	100	developers	work	on	the	Linux	kernel.	With	their	assistance,	the

kernel	 is	 adapted	 to	 the	 GNU	 environment,	 which	 creates	 a	 large

spectrum	of	application	types	for	Linux.	The	oldest	currently	(as	of	2015)

existing	Linux	distribution,	Slackware,	is	released	for	the	first	time.	Later

that	 same	year,	 the	Debian	project	 is	 established.	Today	 it	 is	 the	 largest

distribution	community.

1994:						Torvalds	 judges	 all	 components	 of	 the	 kernel	 to	 be	 fully	 matured:	 he

releases	version	1.0	of	Linux.	The	XFree86	project	contributes	a	graphical

user	interface	(GUI).	Commercial	Linux	distribution	makers	Red	Hat	and

SUSE	publish	version	1.0	of	their	Linux	distributions.

1995:						Linux	is	ported	to	the	DEC	Alpha	and	the	Sun	SPARC	systems.	Over	the

following	years,	it	is	ported	to	an	ever-greater	number	of	platforms.

1996:						Version	 2.0	 of	 the	 Linux	 kernel	 is	 released.	 The	 kernel	 can	 now	 serve

several	 processors	 at	 the	 same	 time	 using	 symmetric	 multi-processing

(SMP),	and	thereby	becomes	a	serious	alternative	for	many	companies.

1998:						Many	 major	 companies	 such	 as	 IBM,	 Compaq,	 and	 Oracle	 announce

their	support	for	Linux.	The	Cathedral	and	the	Bazaar	were	first	published

as	an	essay	(later	as	a	book),	resulting	in	Netscape	publicly	releasing	the

source	code	to	its	Netscape	Communicator	web	browser	suite.	Netscape’s

actions	and	crediting	of	the	essay	brings	Linux’s	open	source	development

model	to	the	attention	of	the	popular	technical	press.	In	addition,	a	group

of	programmers	began	developing	the	graphical	user	interface	KDE.

1999:						A	 group	 of	 developers	 began	 work	 on	 the	 graphical	 environment

GNOME,	 destined	 to	 become	 a	 free	 replacement	 for	 KDE,	which	 at	 the

time	depended	on	the	then	proprietary,	Qt	GUI	toolkit.	During	this	year,

IBM	announced	an	extensive	project	for	the	support	of	Linux.

2000:						Dell	announces	that	it	is	now	the	No.	2	provider	of	Linux-based	systems

worldwide	and	the	first	major	manufacturer	to	offer	Linux	across	its	 full

product	line.

2002:						The	media	reported,	“Microsoft	killed	Dell	Linux.”

2004:						The	 XFree86	 team	 splits	 up	 and	 joins	 with	 the	 existing	 X	 standards

body	to	form	the	X.Org	Foundation,	which	results	in	a	substantially	faster

development	of	the	X	server	for	Linux.

2005:						The	 project	 openSUSE	 begins	 free	 distribution	 from	 Novell’s

community.	 In	 addition,	 the	 project	 OpenOffice.org	 introduces	 version

2.0	which	then	started	supporting	OASIS	OpenDocument	standards.

2006:						Oracle	releases	its	own	distribution	of	Red	Hat	Enterprise	Linux.	Novell

and	 Microsoft	 announce	 cooperation	 for	 better	 interoperability	 and

mutual	patent	protection.

2007:						Dell	starts	distributing	laptops	with	Ubuntu	pre-installed.

2009:							Red	Hats	market	capitalization	equals	Suns,	interpreted	as	a	symbolic

moment	for	the	“Linux-based	economy.”

2011:						Version	3.0	of	the	Linux	kernel	is	released.

2012:							The	aggregate	Linux	server	market	 revenue	exceeds	 that	of	 the	rest	of

the	UNIX	market.

2013:						Google’s	 Linux-based	 Android	 claims	 75%	 of	 the	 Smartphone	 market

share,	in	terms	of	the	number	of	phones	shipped.

2014:						Ubuntu	claims	22,000,000	users.

2015:						Version	4.0	of	the	Linux	kernel	is	released.

	

	

	

Chapter	 Two:		LINUX	 DISTRIBUTION
(DISTRO)

Introduction
	

The	 bewildering	 choice	 and	 the	 ever	 increasing	 number	 of	 Linux

distributions	 can	be	 confusing	 for	 those	who	are	new	 to	Linux.	This	 is	why	 this

book	was	 created.	 It	 lists	 10	 Linux	 distributions	 (plus	 an	 honorable	mention	 of

FreeBSD,	by	 far	 the	most	popular	 of	 all	 of	 the	BSDs),	 it	 is	 considered	 to	be	 the

most	widely-used	by	Linux	users	around	the	world.	There	are	no	figures	to	back

up	 this	 claim,	 and	 there	 are	 many	 other	 distributions	 that	 might	 suit	 your

particular	purpose	better,	but	as	a	general	rule,	all	of	these	are	popular	and	have

very	active	 forums	or	mailing	 lists	where	you	can	ask	questions	 if	you	get	stuck.

Ubuntu,	Linux	Mint,	and	PCLinuxOS	are	considered	the	easiest	for	new	users	who

want	to	get	productive	in	Linux	as	soon	as	possible	without	having	to	master	all	of

its	complexities.	On	the	other	end	of	the	spectrum,	Slackware	Linux,	Arch	Linux,

and	 FreeBSD	 are	 more	 advanced	 distributions	 that	 require	 a	 deeper

understanding,	 before	 they	 can	 be	 used	 effectively.	 openSUSE,	 Fedora,	 Debian

GNU/Linux	 and	 Mageia	 can	 be	 classified	 as	 good	 “middle-road”	 distributions.

CentOS	 is	 an	 enterprise	 distribution,	 suitable	 for	 those	 who	 prefer	 stability,

reliability,	and	long-term	support	to	cutting-edge	features	and	software.

	

GUIDE	TO	CHOOSING	DISTRIBUTION

Linux	Mint

Linux	Mint,	a	distribution	based	on	Ubuntu,	was	first	 launched	in	2006	by

Clement	 Lefebvre,	 a	 French-born	 IT	 specialist	 living	 in	 Ireland.	 Originally

maintaining	a	Linux	web	site	dedicated	to	providing	help,	tips	and	documentation

to	 new	 Linux	 users,	 the	 author	 saw	 the	 potential	 of	 developing	 a	 Linux

distribution	that	would	address	the	many	usability	drawbacks	associated	with	the

generally	 more	 technical,	 mainstream	 products.	 Since	 its	 beginnings,	 the

developers	 have	 been	 adding	 a	 variety	 of	 graphical	 “mint”	 tools	 for	 enhanced

usability;	 this	 includes	 mintDesktop	 -	 a	 utility	 for	 configuring	 the	 desktop

environment,	mintMenu	-	a	new	and	elegant	menu	structure	for	easier	navigation,

mintInstall	 -	 an	 easy-to-use	 software	 installer,	 and	 mintUpdate	 -	 a	 software

updater.	 Mint’s	 reputation	 for	 ease	 of	 use	 has	 been	 further	 enhanced	 by	 the

inclusion	of	proprietary	and	patent-encumbered	multimedia	codecs	that	are	often

absent	from	larger	distributions	due	to	potential	legal	threats.	Perhaps	one	of	the

best	features	of	Linux	Mint	is	the	fact	that	the	developers	listen	to	the	users	and

are	always	fast	 in	 implementing	good	suggestions.	While	Linux	Mint	 is	available

as	 a	 free	 download,	 the	 project	 generates	 revenue	 from	 donations,	 advertising,

and	professional	support	services.

Pros:	Superb	collection	of	“minty”	tools	developed	in-house,	hundreds	of	user-

friendly	enhancements,	the	inclusion	of	multimedia	codecs,	open	to	users’

suggestions.

Cons:	The	alternative	“community”	editions	do	not	always	include	the	latest

features;	the	project	does	not	issue	security	advisories.

Ubuntu

The	launch	of	Ubuntu	was	first	announced	in	September	2004.	Although	a

relative	 newcomer	 to	 the	 Linux	 distribution	 scene,	 the	 project	 took	 off	 like	 no

other,	 with	 its	 mailing	 lists	 soon	 filled	 with	 discussions	 by	 eager	 users	 and

enthusiastic	 developers.	 In	 the	 years	 that	 followed,	Ubuntu	 grew	 to	 become	 the

most	 popular	 desktop	 Linux	 distribution	 and	 has	 contributed	 greatly	 toward

developing	 an	 easy-to-use	 and	 free	 desktop	 operating	 system	 that	 can	 compete

well	with	 any	 of	 the	 proprietary	 ones	 available	 on	 the	market.	On	 the	 technical

side	of	things,	Ubuntu	is	based	on	Debian	“Sid”	(unstable	branch),	but	with	some

prominent	packages,	such	as	GNOME,	Firefox,	and	LibreOffice,	updated	to	their

latest	versions.	It	uses	a	custom	user	interface	called	“Unity.”	It	has	a	predictable,

6-month	 release	 schedule,	with	 an	occasional	Long	Term	Support	 (LTS)	 release

that	 is	supports	security	updates	for	5	years,	depending	on	the	edition	(non-LTS

release	are	supported	for	9	months).	Other	special	features	of	Ubuntu	include	an

installable	 live	 DVD,	 creative	 artwork,	 desktop	 themes,	 migration	 assistant	 for

Windows	 users,	 support	 for	 the	 latest	 technologies,	 such	 as	 3D	 desktop	 effects,

easy	installation	of	proprietary	device	drivers	for	ATI	and	NVIDIA	graphics	cards,

wireless	networking,	and	on-demand	support	for	non-free	or	patent-encumbered

media	codecs.

Pros:	Fixed	 release	 cycle	and	 support	period;	 long-term	support	 (LTS)	variants

with	5	years	of	security	updates;	novice-friendly;	a	wealth	of	documentation,	both

official	and	user-contributed.

Cons:	 Lacks	 compatibility	 with	 Debian;	 frequent	 major	 changes	 tend	 to	 drive

some	 users	 away,	 the	 Unity	 user	 interface	 has	 been	 criticized	 as	 being	 more

suitable	 for	 mobile	 devices	 rather	 than	 desktop	 computers;	 non-LTS	 releases

come	with	only	9	months	of	security	support.

Debian	GNU/Linux

Debian	GNU/Linux	was	first	announced	in	1993.	Its	founder,	Ian	Murdock,

envisaged	 the	 creation	 of	 a	 completely	 non-commercial	 product	 developed	 by

hundreds	 of	 volunteer	 developers.	With	 skeptics	 far	 outnumbering	 optimists	 at

the	time,	it	seemed	destined	to	disintegrate	and	collapse,	but	the	reality	was	very

different.	Debian	not	only	survived,	it	thrived	and,	in	less	than	a	decade,	it	became

the	 largest	 Linux	 distribution	 and	 possibly	 the	 largest	 collaborative	 software

product	ever	created!	The	following	numbers	can	illustrate	the	success	of	Debian

GNU/Linux.	Over	1,000	volunteer	developers	develop	it,	its	software	repositories

contain	close	to	50,000	binary	packages	(compiled	for	8	processor	architectures)

and	is	responsible	for	inspiring	over	120	Debian-based	distributions	and	live	CDs.

These	 figures	 are	 unmatched	 by	 any	 other	 Linux-based	 operating	 system.	 The

actual	development	of	Debian	takes	place	 in	three	main	branches	(or	 four	 if	one

includes	the	bleeding-edge	“experimental”	branch)	of	increasing	levels	of	stability:

“unstable”	(also	known	as	“sid”),	“testing”	and	“stable.”	However,	this	lengthy	and

complex	development	style	has	some	drawbacks:	the	stable	releases	of	Debian	are

not	 particularly	 up-to-date,	 and	 they	 age	 rapidly,	 especially	 since	 new	 stable

releases	 are	 only	 published	 once	 every	 1	 -	 3	 years.	 Users	 who	 prefer	 the	 latest

packages	and	technologies	are	forced	to	use	the	potentially	buggy	Debian	testing

distributions	 or	 unstable	 branches.	 The	 highly	 democratic	 structures	 of	 Debian

have	 led	 to	 controversial	 decisions	 and	 have	 led	 to	 infighting	 among	 the

developers.	 This	 has	 contributed	 to	 stagnation	 and	 reluctance	 to	 make	 radical

decisions	that	would	take	the	project	forward.

Pros:	 Very	 stable;	 remarkable	 quality	 control;	 includes	 over	 30,000	 software

packages;	 supports	 more	 processor	 architectures	 than	 any	 other	 Linux

distribution.

Cons:	Conservative	-	due	to	its	support	for	many	processor	architectures,	newer

technologies	are	not	always	included;	slow	release	cycle	(one	stable	release	every	1

-	3	years);	discussions	on	developer	mailing	 lists	and	blogs	can	be	uncultured	at

times.

Mageia

Mageia

Mageia	may	be	 the	newest	distribution	on	this	 list,	but	 its	roots	go	back	to

July	1998	when	Gaël	Duval	 launched	Mandrake	Linux.	At	the	time,	 it	was	just	a

branch	 of	 Red	 Hat	 Linux	 with	 KDE	 as	 the	 default	 desktop,	 better	 hardware

detection,	and	some	user-friendly	features,	but	it	gained	instant	popularity	due	to

positive	 reviews	 in	 the	 media.	 Mandrake	 was	 later	 turned	 into	 a	 commercial

enterprise	 and	 renamed	 to	Mandriva	 (to	 avoid	 some	 trademark-related	 hassles

and	to	celebrate	its	merger	with	Brazil’s	Conectiva)	before	almost	going	bankrupt

in	2010.	A	Russian	venture	capital	firm	eventually	saved	it,	but	this	came	at	a	cost

when	 the	new	management	decided	 to	 lay	off	most	of	 the	 established	Mandriva

developers	in	the	company’s	Paris	headquarters.	Upon	finding	themselves	out	of

work,	 they	 decided	 to	 form	 Mageia,	 a	 community	 project	 that	 is	 a	 logical

continuation	of	Mandrake	and	Mandriva,	perhaps	more	so	 than	Mandriva	 itself.

Mageia	is	primarily	a	desktop	distribution.	Its	best-loved	features	are	cutting-edge

software,	 a	 superb	 system	 administration	 suite	 (Mageia	 Control	 Centre),	 the

ability	 to	 attract	 a	 large	 number	 of	 volunteer	 contributors,	 and	 extensive

internationalization	 support.	 It	 features	 one	 of	 the	 easiest,	 but	 more	 powerful

system	installers	on	its	installation	DVD,	while	it	also	releases	a	set	of	live	images

with	both	KDE	or	GNOME	desktops	and	comprehensive	 language	support,	with

the	ability	to	install	it	onto	a	hard	disk	directly	from	the	live	desktop	session.	The

distribution’s	 well-established	 package	 management	 features,	 with	 powerful

command-line	options	and	a	graphical	software	management	module,	allow	easy

access	 to	 thousands	 of	 software	 packages.	 The	 unique	 Mageia	 Control	 Center

continues	 to	 improve	with	 each	 release,	 offering	 a	powerful	 tool	 for	 configuring

just	about	any	aspect	of	their	computer	without	ever	reaching	for	the	terminal.

Pros:	Beginner-friendly;	excellent	central	configuration	utility;	very	good	out-of-

the-box	support	for	dozens	of	languages;	installable	live	media.

Cons:	Lacks	 reputation	and	mindshare	 following	 its	 split	 from	Mandriva,	 some

concern	over	 the	developers’	 ability	 to	maintain	 the	distribution	 long-term	on	 a

volunteer	basis.

Fedora

Although	Fedora	was	formally	only	unveiled	 in	September	2004,	 its	origins	date

back	 to	 1995	when	 it	was	 launched	 by	 two	Linux	 visionaries	—	Bob	Young	 and

Marc	Ewing	—	under	 the	name	of	Red	Hat	Linux.	The	 company’s	 first	 product,

Red	Hat	Linux	 1.0	 “Mother’s	Day,”	was	 released	 the	 same	year	and	was	quickly

followed	by	several	bug-fix	updates.	In	1997,	Red	Hat	introduced	its	revolutionary

RPM	 package	 management	 system	 with	 dependency	 resolution	 and	 other

advanced	 features	 which	 greatly	 contributed	 to	 the	 distribution’s	 rapid	 rise	 in

popularity	and	 its	overtaking	of	Slackware	Linux	as	 the	most	widely-used	Linux

distribution	 in	 the	world.	 In	 later	 years,	 Red	Hat	 standardized	 on	 a	 regular,	 6-

month	 release	 schedule.	 In	2003,	 just	 after	 the	 release	 of	Red	Hat	Linux	9,	 the

company	 introduced	some	radical	changes	 to	 its	product	 line-up.	 It	 retained	the

Red	 Hat	 trademark	 for	 its	 commercial	 products,	 notably	 Red	 Hat	 Enterprise

Linux,	 and	 introduced	 Fedora	 Core	 (later	 renamed	 to	 Fedora),	 a	 Red	 Hat

sponsored,	 but	 community-oriented	 distribution	 designed	 for	 the	 “Linux

hobbyist”.	After	the	initial	criticism	of	the	changes,	the	Linux	community	accepted

the	“new”	distribution	as	the	logical	continuation	of	Red	Hat	Linux.	A	few	quality

releases	was	all	 it	 took	 for	Fedora	 to	regain	 its	 former	status	as	one	of	 the	best-

loved	operating	systems	on	the	market.	At	the	same	time,	Red	Hat	quickly	became

the	biggest	and	most	profitable	Linux	company	 in	 the	world,	with	an	 innovative

product	line-up,	excellent	customer	support,	and	other	popular	initiatives,	such	as

its	Red	Hat	Certified	Engineer	 (RHCE)	certification	program.	Although	Fedora’s

direction	is	still	largely	controlled	by	Red	Hat,	Inc.	and	the	product	is	sometimes

seen	—	rightly	or	wrongly	—	as	a	test	bed	for	Red	Hat	Enterprise	Linux,	there	is	no

denying	that	Fedora	is	one	of	the	most	innovative	distributions	available	today.	Its

contributions	 to	 the	 Linux	 kernel,	 glibc	 and	 GCC	 are	 well-known	 and	 its	 more

recent	 integration	 of	 SELinux	 functionality,	 virtualization	 technologies,	 system

service	manager,	 cutting-edge	 journaled	 file	 systems,	 and	 other	 enterprise-level

features	 are	much	 appreciated	by	 the	 company’s	 customers.	On	 a	negative	 side,

Fedora	still	 lacks	a	clear	desktop-oriented	strategy	 that	would	make	 the	product

easier	to	use	for	those	beyond	the	“Linux	hobbyist”	target.

Pros:	 Highly	 innovative;	 outstanding	 security	 features;	 a	 large	 number	 of

supported	packages;	strict	adherence	to	the	free	software	philosophy;	availability

of	live	CDs	featuring	many	popular	desktop	environments.

Cons:	 Fedora’s	 priorities	 tend	 to	 lean	 towards	 enterprise	 features,	 rather	 than

desktop	usability;	some	bleeding	edge	features,	such	as	early	switch	to	KDE	4	and

GNOME	3,	occasionally	alienate	desktop	users.

openSUSE

The	 beginnings	 of	 openSUSE	 date	 back	 to	 1992	 when	 four	 German	 Linux

enthusiasts	 —	 Roland	 Dyroff,	 Thomas	 Fehr,	 Hubert	 Mantel	 and	 Burchard

Steinbild	—	launched	the	project	under	the	name	of	SUSE	(Software	und	System

Entwicklung)	Linux.	In	the	early	days,	the	young	company	sold	sets	of	floppy	disks

containing	a	German	edition	of	Slackware	Linux,	but	 it	wasn’t	 long	before	SUSE

Linux	became	an	independent	distribution	with	the	launch	of	version	4.2	in	May

1996.	 In	 the	 following	 years,	 the	 developers	 adopted	 the	 RPM	 package

management	 format	 and	 introduced	 YaST,	 an	 easy-to-use	 graphical	 system

administration	tool.	Frequent	releases,	excellent	printed	documentation,	and	easy

availability	of	SUSE	Linux	in	stores	across	Europe	and	North	America	resulted	in

growing	popularity	of	the	distribution.	SUSE	Linux	was	acquired	by	Novell,	Inc.	in

late	2003,	and	 then	 fell	 into	 the	hands	of	Attachmate	 in	November	2010.	Major

changes	 in	 the	 development,	 licensing	 and	 availability	 of	 SUSE	 Linux	 followed

shortly	 after	 the	 first	 acquisition	 -	 YaST	 was	 released	 under	 the	 GPL,	 the	 ISO

images	 were	 freely	 distributed	 from	 public	 download	 servers,	 and,	 most

significantly,	 the	 development	 of	 the	 distribution	 was	 opened	 to	 public

participation	for	the	first	time.	Since	the	launch	of	the	openSUSE	project	and	the

release	of	version	10.0	in	October	2005,	the	distribution	became	completely	free

in	 both	 senses	 of	 the	word.	 The	 openSUSE	 code	 has	 become	 a	 base	 system	 for

Novell’s	commercial	products,	 first	named	as	Novell	Linux,	but	 later	renamed	to

SUSE	 Linux	 Enterprise	 Desktop	 and	 SUSE	 Linux	 Enterprise	 Server.	 Today,

openSUSE	 has	 a	 large	 following	 of	 satisfied	 users.	 The	 principal	 reason	 for

openSUSE	receiving	high	marks	from	its	users	are	pleasant	and	polished	desktop

environments	 (KDE	 and	 GNOME),	 an	 excellent	 system	 administration	 utility

(YaST),	 and,	 for	 those	 who	 buy	 the	 boxed	 edition,	 some	 of	 the	 best-printed

documentation	 available.	 However,	 the	 infamous	 deal	 between	 Novell	 and

Microsoft,	 which	 apparently	 concedes	 to	 Microsoft’s	 argument	 that	 it	 has

intellectual	 property	 rights	 over	 Linux,	 has	 resulted	 in	 condemnation	 by	 many

Linux	 personalities	 and	 has	 prompted	 some	 users	 to	 switch	 distributions.

Although	Novell	has	downplayed	the	deal,	and	Microsoft	has	yet	 to	exercise	any

rights,	 this	 issue	 remains	 a	 thorn	 in	 the	 side	 of	 the	 otherwise	 very	 community-

friendly	Linux	Company.

Pros:	 Comprehensive	 and	 intuitive	 configuration	 tool;	 large	 repository	 of

software	packages,	excellent	web	site	infrastructure,	and	printed	documentation.

Cons:	 Novell’s	 patent	 deal	 with	 Microsoft	 in	 November	 2006	 seemingly

legitimized	Microsoft’s	intellectual	property	claims	over	Linux;	its	resource-heavy

desktop	set-up	and	graphical	utilities	are	sometimes	seen	as	“bloated	and	slow.”

Arch	Linux

The	 KISS	 (Keep	 It	 Simple,	 Stupid)	 philosophy	 of	 Arch	 Linux	 was	 devised

around	the	year	2002	by	Judd	Vinet,	a	Canadian	computer	science	graduate	who

launched	 the	distribution	 the	same	year.	For	several	years	 it	 lived	as	a	marginal

project	 designed	 for	 intermediate	 and	 advanced	 Linux	 users	 and	 only	 shot	 to

stardom	 when	 it	 began	 promoting	 itself	 as	 a	 “rolling-release”	 distribution	 that

only	needs	to	be	installed	once	and	is	then	kept	up-to-date	thanks	to	its	powerful

package	manager	and	an	always	fresh	software	repository.	As	a	result,	Arch	Linux

“releases”	are	few	and	far	between	and	are	now	limited	to	a	basic	installation	DVD

that	is	issued	only	when	considerable	changes	in	the	base	system	warrant	a	fresh

install.	 Besides	 featuring	 the	 much-loved	 “rolling-release”	 update	 mechanism,

Arch	 Linux	 is	 also	 renowned	 for	 its	 fast	 and	 powerful	 package	 manager	 called

“Pacman”,	the	ability	to	install	software	packages	from	source	code,	easy	creation

of	 binary	 packages	 thanks	 to	 its	 AUR	 infrastructure,	 and	 the	 ever	 increasing

software	 repository	 of	 well-tested	 packages.	 Its	 highly	 regarded	 documentation,

complemented	by	the	excellent	Arch	Linux	Handbook	makes	it	possible	for	even

less	 experienced	 Linux	 users	 to	 install	 and	 customize	 the	 distribution.	 The

powerful	 tools	 available	 at	 the	 user’s	 disposal	mean	 that	 the	 distro	 is	 infinitely

customizable	to	the	minutest	detail	and	that	no	two	installations	can	possibly	be

the	 same.	 On	 the	 negative	 side,	 any	 rolling-release	 update	 mechanism	 has	 its

dangers:	a	human	mistake	can	creep	in,	a	 library	or	dependency	goes	missing,	a

new	version	of	 an	application	already	 in	 the	 repository	has	 a	 yet-to-be-reported

critical	bug…	It	is	not	unheard	of	to	end	up	with	an	unbootable	system	following	a

Pacman	upgrade.	As	such,	Arch	Linux	is	the	kind	of	distribution	that	requires	its

users	 to	 be	 alert	 and	 to	 have	 enough	 knowledge	 to	 fix	 any	 such	 problems.	 In

addition,	the	infrequent	install	media	releases	mean	that	it	is	sometimes	no	longer

possible	 to	use	the	old	media	to	 install	 the	distribution	due	to	 important	system

changes	or	lack	of	hardware	support	in	the	older	Linux	kernel.

Pros:	Excellent	software	management	infrastructure;	unparalleled	customization

and	tweaking	options;	superb	online	documentation.

Cons:	Occasional	instability	and	risk	of	breakdown.

CentOS

Launched	 in	 late	 2003,	 CentOS	 is	 a	 community	 project	 with	 the	 goals	 of

rebuilding	 the	 source	 code	 for	 Red	 Hat	 Enterprise	 Linux	 (RHEL)	 into	 an

installable	 Linux	 distribution	 and	 to	 provide	 timely	 security	 updates	 for	 all

included	 software	 packages.	 To	 put	 in	more	 bluntly,	 CentOS	 is	 an	RHEL	 clone.

The	only	technical	difference	between	the	two	distributions	is	branding	-	CentOS

replaced	 all	 Red	 Hat	 trademarks	 and	 logos	 with	 its	 own.	 Nevertheless,	 the

relations	 between	 Red	 Hat	 and	 CentOS	 remain	 amicable,	 and	 many	 CentOS

developers	 are	 in	 active	 contact	 with,	 or	 even	 employed	 directly	 by,	 Red	 Hat.

CentOS	is	often	seen	as	a	reliable	server	distribution.	It	comes	with	the	same	well-

tested	and	stable	Linux	kernel	and	set	of	software	packages	that	form	the	basis	of

its	parent,	Red	Hat	Enterprise	Linux.	Despite	being	a	community	project	run	by

volunteers,	 it	 has	 gained	 a	 reputation	 for	 being	 a	 solid,	 free	 alternative	 to	more

costly	server	products	on	the	market,	especially	among	experienced	Linux	system

administrators.	 CentOS	 is	 also	 suitable	 as	 an	 enterprise	 desktop	 solution,

specifically	 where	 stability,	 reliability	 and	 long-term	 support	 are	 preferred	 over

latest	software	and	new	features,	like	RHEL,	CentOS	includes	approximately	7-10

years	 of	 security	 updates.	Despite	 its	 advantages,	CentOS	might	not	 be	 the	best

solution	 in	all	deployment	scenarios.	Those	users	who	prefer	a	distribution	with

the	latest	Linux	technologies	and	newest	software	packages	should	look	elsewhere.

Major	CentOS	versions,	which	follow	RHEL	versioning,	are	only	released	every	2	-

3	years,	while	“point”	releases	(e.g.	5.1)	tend	to	arrive	in	6	-	9	month	intervals.	The

point	 releases	 do	 not	 usually	 contain	 any	 major	 features	 (although	 they	 do

sometimes	 include	 support	 for	 more	 recent	 hardware),	 and	 only	 a	 handful	 of

software	packages	may	get	updated	to	newer	versions.	The	Linux	kernel,	the	base

system,	 and	 most	 application	 versions	 remain	 unchanged,	 but	 occasionally	 a

newer	version	of	an	important	software	package	(e.g.	LibreOffice	or	Firefox)	may

be	 provided	 on	 an	 experimental	 basis.	 As	 a	 side	 project,	 CentOS	 also	 builds

updated	packages	for	the	users	of	its	distributions,	but	the	repositories	containing

them	are	not	enabled	by	default	as	they	may	break	upstream	compatibility.

Pros:	Extremely	well	tested,	stable	and	reliable;	free	to	download	and	use;	comes

with	7+	years	of	free	security	updates.

Cons:	Lacks	latest	Linux	technologies;	occasionally	the	project	fails	to	live	up	its.

PCLinuxOS

Bill	 “Texstar”	 Reynolds	 first	 introduced	 PCLinuxOS	 in	 2003.	 Prior	 to

creating	his	own	distribution,	Texstar	was	already	a	well-known	developer	in	the

Mandrake	Linux	 community	 of	 users	 for	 building	 up-to-date	RPM	packages	 for

the	 popular	 distribution	 and	 providing	 them	 as	 a	 free	 download.	 In	 2003,	 he

decided	to	build	a	new	distribution,	 initially	based	on	Mandrake	Linux,	but	with

several	 significant	 usability	 improvements.	 The	 goals?	 It	 should	 be	 beginner-

friendly,	 have	 out-of-the	 box	 support	 for	 proprietary	 kernel	 modules,	 browser

plug-in	 and	media	 codecs,	 and	 should	 function	 as	 a	 live	 CD	with	 a	 simple	 and

intuitive	 graphical	 installer.	 Several	 years	 and	 development	 releases	 later,

PCLinuxOS	 is	 rapidly	 approaching	 its	 intended	 state.	 In	 terms	 of	 usability,	 the

project	offers	out-of-the-box	support	 for	many	technologies	that	most	Windows-

to-Linux	migrants	 would	 expect	 from	 a	 new	 operating	 system.	On	 the	 software

side	of	things,	PCLinuxOS	is	a	KDE-oriented	distribution,	with	a	customized	and

always	 up-to-date	 version	 of	 the	 popular	 desktop	 environment.	 Its	 growing

software	repository	contains	other	desktops	and	offers	a	great	variety	of	desktop

packages	 for	 many	 common	 tasks.	 For	 system	 configuration,	 PCLinuxOS	 has

retained	much	of	Mandriva’s	excellent	Control	Centre	but	has	replaced	its	package

management	 system	 with	 APT	 and	 Synaptic,	 a	 graphical	 package	 management

front-end.	On	the	negative	side,	PCLinuxOS	lacks	any	form	of	roadmap	or	release

goals.	Despite	growing	community	involvement,	most	development	and	decision-

making	 remains	 in	 the	 hands	 of	 Texstar,	 who	 tends	 to	 be	 conservative	 when

judging	 the	 stability	 of	 a	 release.	 As	 a	 result,	 the	 development	 process	 of

PCLinuxOS	 is	 often	 arduous.	 For	 example,	 despite	 frequent	 calls	 for	 a	 64-bit

edition,	 the	 developers	 held	 off	 producing	 a	 64-bit	 build	 until	 fairly	 recently.

Furthermore,	the	project	does	not	provide	any	security	advisories,	relying	instead

on	the	users’	willingness	to	keep	their	system	up-to-date	via	the	included	package

management	tools.

Pros:	Out-of-the-box	support	 for	graphics	drivers,	browser	plug-ins,	and	media

codecs;	rolling-release	update	mechanism;	up-to-date	software.

Cons:	 no	 out-of-the-box	 support	 for	 non-English	 languages;	 lacks	 release

planning	and	security	advisories.

Slackware	Linux

Slackware	 Linux,	 created	 by	 Patrick	 Volkerding	 in	 1992,	 is	 the	 oldest

surviving	Linux	 distribution.	 Separated	 from	 the	 now-discontinued	 SLS	project,

Slackware	 1.0	 came	 on	 24	 floppy	 disks	 and	 was	 built	 on	 top	 of	 Linux	 kernel

version	 0.99pl11-alpha.	 It	 quickly	 became	 the	most	 popular	 Linux	 distribution;

with	 some	 estimates	 putting	 its	 market	 share	 as	 much	 as	 80%	 of	 all	 Linux

installations	in	1995.	Its	popularity	decreased	dramatically	with	the	arrival	of	Red

Hat	 Linux	 and	 other,	 user-friendlier	 distributions,	 but	 Slackware	 Linux	 still

remains	 a	 much-appreciated	 operating	 system	 among	 the	 more	 technically

oriented	 system	 administrators	 and	 desktop	 users.	 Slackware	 Linux	 is	 a	 highly

technical,	 clean	 distribution,	 with	 only	 a	 limited	 number	 of	 custom	 utilities.	 It

uses	a	simple,	text-based	system	installer	and	a	comparatively	primitive	package

management	 system	 that	 does	 not	 resolve	 software	 dependencies.	 As	 a	 result,

Slackware	is	considered	one	of	the	cleanest	and	least	buggy	distributions	available

today	-	the	lack	of	Slackware-specific	enhancements	reduces	the	likelihood	of	new

bugs	 being	 introduced	 into	 the	 system.	 The	 entire	 system	 configuration	 is

completed	by	editing	 text	 files.	There	 is	a	saying	 in	 the	Linux	community	 that	 if

you	learn	Red	Hat,	you’ll	know	Red	Hat,	but	 if	you	learn	Slackware,	you’ll	know

Linux.	This	 is	particularly	 true	 today	when	many	other	Linux	distributions	keep

developing	heavily	customized	products	to	meet	the	needs	of	less	technical	Linux

users.	While	 this	philosophy	of	 simplicity	has	 its	 fans,	 the	 fact	 is	 that	 in	 today’s

world,	Slackware	Linux	is	increasingly	becoming	a	“core	system”	upon	which	new,

custom	solutions	are	built,	rather	than	a	complete	distribution	with	a	wide	variety

of	supported	software.	The	only	exception	is	the	server	market,	where	Slackware

remains	popular,	though	even	here,	the	distribution’s	complex	upgrade	procedure

and	 lack	 of	 officially	 supported	 automated	 tools	 for	 security	 updates	 make	 it

increasingly	 uncompetitive.	 Slackware’s	 conservative	 attitude	 towards	 the

system’s	base	components	means	 that	 it	 requires	much	manual	post-installation

work	before	it	can	be	turned	into	a	modern	desktop	system.

Pros:	 Considered	highly	 stable,	 clean	 and	 largely	 bug-free,	 strong	 adherence	 to

UNIX	principles.

Cons:	Limited	number	of	officially	supported	applications;	conservative	in	terms

of	base	package	selection;	complex	upgrade	procedure.

FreeBSD

FreeBSD,	an	 indirect	descendant	of	AT&T	UNIX	via	 the	Berkeley	Software

Distribution	(BSD),	has	a	long	and	turbulent	history	dating	back	to	1993.	Unlike

Linux	distributions,	which	are	defined	as	integrated	software	solutions	consisting

of	 the	Linux	kernel	and	thousands	of	software	applications,	FreeBSD	is	a	 tightly

integrated	operating	system	built	from	a	BSD	kernel	and	the	so-called	“userland”

(therefore	usable	even	without	extra	applications).	This	distinction	is	 largely	 lost

once	installed	on	the	average	computer	system	-	like	many	Linux	distributions,	a

large	collection	of	easily	installed,	(mostly)	open	source	applications	are	available

for	 extending	 the	 FreeBSD	 core,	 but	 these	 are	 usually	 provided	 by	 third-party

contributors	 and	 aren’t	 strictly	 part	 of	 FreeBSD.	 FreeBSD	 has	 developed	 a

reputation	 for	 being	 a	 fast,	 high-performance	 and	 extremely	 stable	 operating

system,	 especially	 suitable	 for	 web	 serving	 and	 similar	 tasks.	 Many	 large	 web

search	engines	and	organizations	with	mission-critical	computing	infrastructures

have	deployed	and	used	FreeBSD	on	their	computer	systems	for	years.	Compared

to	 Linux,	 FreeBSD	 is	 distributed	 under	 a	 much	 less	 restrictive	 license,	 which

allows	 virtually	 unrestricted	 use	 and	 modification	 of	 the	 source	 code	 for	 any

purpose.	Even	Apple’s	Mac	OS	X	 is	known	 to	have	been	derived	 from	FreeBSD.

Besides	the	core	operating	system,	the	project	also	provides	over	24,000	software

applications	 in	 binary	 and	 source	 code	 forms	 for	 easy	 installation	 on	 top	 of	 the

core	 FreeBSD.	 While	 FreeBSD	 can	 certainly	 be	 used	 as	 a	 desktop	 operating

system,	 although	 it	 does	not	 compare	well	 to	more	popular	Linux	distributions.

The	 text-mode	 system	 installer	 offers	 little	 in	 terms	 of	 hardware	 detection	 or

system	 configuration,	 leaving	 much	 of	 the	 dirty	 work	 to	 the	 user	 in	 a	 post-

installation	setup.	 In	 terms	of	 support	 for	modern	hardware,	FreeBSD	generally

lags	 behind	 Linux,	 especially	 in	 supporting	 cutting-edge	 desktop	 and	 laptop

gadgets,	such	as	wireless	network	cards	or	digital	cameras.	Those	users	seeking	to

exploit	 the	 speed	 and	 stability	 of	 FreeBSD	 on	 a	 desktop	 or	 workstation	 should

consider	 one	 of	 the	 available	 desktop	 FreeBSD	 projects,	 rather	 than	 FreeBSD

itself.

Pros:	 Fast	 and	 stable;	 availability	 of	 over	 24,000	 software	 applications	 (or

“ports”)	for	installation;	very	good	documentation.

Cons:	 Tends	 to	 lag	 behind	 Linux	 in	 terms	 of	 support	 for	 new	 and	 exotic

hardware,	 limited	 availability	 of	 commercial	 applications;	 lacks	 graphical

configuration	tools.

	

Chapter	Three:	LICENSING
	

Code	is	contributed	to	the	Linux	kernel	under	a	number	of	 licenses,	but	all

code	must	be	compatible	with	version	2	of	the	GNU	(GPLv2),	which	is	the	license

covering	the	kernel	distribution	as	a	whole.	In	practice,	 that	means	that	all	code

contributions	 are	 covered	 either	 by	 GPLv2	 (with,	 optionally,	 language	 allowing

distribution	under	later	versions	of	the	GPL)	or	the	three-clause	BSD	license.	Any

contributions,	which	are	not	covered	by	a	compatible	license,	will	not	be	accepted

into	 the	 kernel.	 Copyright	 assignments	 are	 not	 required	 (or	 requested)	 for	 code

contributed	 to	 the	 kernel.	 All	 code	 merged	 into	 the	 mainline	 kernel	 retains	 its

original	 ownership;	 as	 a	 result,	 the	 kernel	 now	 has	 thousands	 of	 owners.	 One

implication	of	this	ownership	structure	is	that	any	attempt	to	change	the	licensing

of	the	kernel	is	doomed	to	almost	certain	failure.	There	are	few	practical	scenarios

where	 the	 agreement	 of	 all	 copyright	 holders	 could	 be	 obtained	 (or	 their	 code

removed	 from	 the	 kernel).	 Therefore,	 there	 is	 no	 prospect	 of	 a	 migration	 to

version	 3	 of	 the	 GPL	 in	 the	 foreseeable	 future.	 It	 is	 imperative	 that	 all	 code

contributed	to	the	kernel	be	legitimately	free	software.	For	that	reason,	code	from

anonymous	(or	pseudonymous)	contributors	will	not	be	accepted.

All	contributors	are	required	to	“sign	off”	on	their	code,	stating	that	the	code

can	be	distributed	with	the	kernel	under	the	GPL.	Code	which	its	owner,	has	not

licensed	as	 free	 software,	 or	which	 risks	 creating	 copyright-related	problems	 for

the	 kernel	 (such	 as	 code	which	 derives	 from	 reverse-engineering	 efforts	 lacking

proper	 safeguards)	 cannot	 be	 contributed.	 Questions	 about	 copyright-related

issues	 are	 common	 on	 Linux	 development	 mailing	 lists.	 Such	 questions	 will

normally	 receive	 no	 shortage	 of	 answers,	 but	 one	 should	 bear	 in	mind	 that	 the

people	answering	those	questions	are	not	lawyers	and	cannot	provide	legal	advice.

If	you	have	legal	questions	relating	to	Linux	source	code,	there	is	no	substitute	for

talking	with	a	lawyer	who	understands	this	field.	Relying	on	answers	obtained	on

technical	mailing	lists	is	a	risky	affair.

COMMUNITY

Linux	communities	come	in	two	basic	forms:	developer	and	user.

One	of	the	most	compelling	features	of	Linux	is	that	it	is	accessible	to	developers;

anybody	with	the	requisite	skills	can	improve	Linux	and	influence	the	direction	of

its	development.	Proprietary	products	cannot	offer	this	kind	of	openness,	which	is

a	characteristic	of	the	free	software	process.	Developer	communities	can	volunteer

to	 maintain	 and	 support	 whole	 distributions,	 such	 as	 the	 Debian	 or	 Gentoo

Projects.	 Novell	 and	 Red	 Hat	 also	 support	 community-driven	 versions	 of	 their

products,	 openSUSE	 and	 Fedora,	 respectively.	 The	 improvements	 to	 these

community	distros	are	then	incorporated	into	the	commercial	server	and	desktop

products.	 The	 Linux	 kernel	 itself	 is	 primarily	 supported	 by	 its	 developer

community	 and	 is	 one	 of	 the	 largest	 and	 most	 active	 free	 software	 projects	 in

existence.	A	typical	three-month	kernel	development	cycle	can	involve	over	1000

developers	working	for	more	than	100	different	companies	(or	for	no	company	at

all).

With	the	growth	of	Linux	has	come	an	increase	in	the	number	of	developers

(and	 companies)	 wishing	 to	 participate	 in	 its	 development.	 Hardware	 vendors

want	 to	 ensure	 that	 Linux	 supports	 their	 products	 well,	 making	 their	 products

attractive	 to	 Linux	 users.	 Embedded	 systems	 vendors,	 who	 use	 Linux	 as	 a

component	in	an	integrated	product,	want	Linux	to	be	as	capable	and	well	suited

to	the	task	at	hand	as	possible.	Distributors	and	other	software	vendors	who	base

their	products	on	Linux	have	a	clear	interest	in	the	capabilities,	performance,	and

reliability	 of	 the	 Linux	 kernel.	 Other	 developer	 communities	 focus	 on	 different

applications	 and	 environments	 that	 run	 on	 Linux,	 such	 as	 Firefox,	 OpenOffice,

GNOME,	 and	 KDE.	 End	 users,	 too,	 can	 make	 valuable	 contributions	 to	 the

development	 of	 Linux.	 With	 online	 communities	 such	 as	 Linux.com,

LinuxQuestions,	 and	 the	many	 and	 varied	 communities	 hosted	 by	 distributions

and	 applications,	 the	 Linux	 user	 base	 is	 often	 a	 very	 vocal,	 but	 usually	 positive

advocate	and	guide	for	the	Linux	operating	system.	The	Linux	community	is	not

just	a	online	presence.	Local	groups	known	as	Linux	Users	Groups	(LUGs)	often

meet	 to	 discuss	 issues	 regarding	 the	Linux	 operating	 system,	 and	provide	 other

local	users	with	free	demonstrations,	training,	technical	support,	and	install-fests.

DEVELOPMENT

Linux	 is	 an	 operating	 system	 comprised	 of	 many	 different	 development

languages.	A	very	 large	percentage	of	 the	distributions’	 code	 is	written	 in	 either

the	C	 (52.86%)	or	C++	 (25.56%)	 languages.	All	 of	 the	 rest	of	 the	 code	 falls	 into

single-digit	 percentages,	 with	 Java,	 Perl,	 and	 Lisp	 rounding	 out	 the	 top	 5

languages.	The	Linux	kernel	 itself	has	an	even	more	dominant	C	presence,	with

over	 95	 percent	 of	 the	 kernel’s	 code	 written	 in	 that	 language.	 However,	 other

languages	make	up	the	kernel	as	well,	making	it	more	heterogeneous	than	other

operating	 systems.	 The	 kernel	 community	 has	 evolved	 its	 own	 distinct	 way	 of

operating	 which	 allows	 it	 to	 function	 smoothly	 (and	 produce	 a	 high-quality

product)	 in	an	environment	where	thousands	of	 lines	of	code	are	being	changed

every	day.	This	means	the	Linux	kernel	development	process	differs	greatly	from

proprietary	development	methods.

The	 kernel’s	 development	 process	 may	 come	 across	 as	 strange	 and

intimidating	 to	new	developers,	but	 there	are	good	reasons	and	solid	experience

behind	it.	A	developer	who	does	not	understand	the	kernel	community’s	ways	(or,

worse,	who	 tries	 to	 flout	 or	 circumvent	 them)	will	 become	very	 frustrated	 .	The

development	community,	while	being	helpful	to	those	who	are	trying	to	learn,	has

little	 time	 for	 those	 who	 will	 not	 listen	 or	 who	 does	 not	 care	 about	 the

development	process.	While	many	Linux	developers,	still	use	text-based	tools	such

as	Emacs	or	Vim	to	develop	their	code,	Eclipse,	Anjuta,	and	Netbeans	all	provide

more	robust	integrated	development	environments.

	

	

	

	

	

	

	

	

Chapter	Four:	INSTALLING	DEBIAN	8						
	

What	is	Debian

Debian	is	an	all-volunteer	organization	dedicated	to	developing	free	software

and	 promoting	 the	 ideals	 of	 the	 Free	 Software	 community.	 The	 Debian	 Project

began	 in	 1993,	 when	 Ian	 Murdock	 issued	 an	 open	 invitation	 to	 software

developers	 to	contribute	 to	a	complete	and	coherent	software	distribution	based

on	 the	 relatively	 new	 Linux	 kernel.	 That	 relatively	 small	 band	 of	 dedicated

enthusiasts,	originally	funded	by	the	Free	Software	Foundation	and	influenced	by

the	GNU	 philosophy,	 has	 grown	 over	 the	 years	 into	 an	 organization	 of	 around

1026	Debian	Developers.

Debian	GNU/Linux

The	 combination	 of	 Debian’s	 philosophy,	 methodology,	 GNU	 tools,	 the

Linux	 kernel,	 and	 other	 important	 free	 software,	 form	 a	 unique	 software

distribution	 called	 Debian	 GNU/Linux.	 This	 distribution	 is	 made	 up	 of	 a	 large

number	 of	 software	 packages.	 Each	 package	 in	 the	 distribution	 contains

executables,	 scripts,	 documentation,	 and	 configuration	 information,	 and	 has

a	maintainer	 who	 is	 primarily	 responsible	 for	 keeping	 the	 package	 up-to-date,

tracking	 bug	 reports,	 and	 communicating	 with	 the	 upstream	 author(s)	 of	 the

packaged	software.	The	extremely	large	user	base,	combined	with	a	bug	tracking

system	ensures	 that	problems	are	 found	and	 fixed	quickly.	Debian’s	attention	 to

detail	 allows	 them	 to	 produce	 a	 high-quality,	 stable,	 and	 scalable	 distribution.

Installations	 can	 be	 easily	 configured	 to	 serve	many	 roles,	 from	 stripped-down

firewalls	to	scientific	desktop	workstations	to	high-end	network	servers.	Debian	is

especially	popular	amongst	advanced	users	because	of	its	technical	excellence	and

its	 deep	 commitment	 to	 the	 needs	 and	 expectations	 of	 the	 Linux	 community.

Debian	also	 introduced	many	 features	 to	Linux	 that	 are	now	commonplace.	For

example,	 Debian	 was	 the	 first	 Linux	 distribution	 to	 include	 a	 package

management	system	for	the	easy	installation	and	removal	of	software.	It	was	also

the	 first	 Linux	 distribution	 that	 could	 be	 upgraded	 without	 requiring	 re-

installation.	 Debian	 continues	 to	 be	 a	 leader	 in	 Linux	 development.	 Its

development	process	is	an	example	of	just	how	well	the	Open	Source	development

model	can	work	—	even	for	very	complex	tasks	such	as	building	and	maintaining	a

http://www.fsf.org/
http://www.gnu.org/gnu/the-gnu-project.html

complete	operating	system.

The	feature	that	most	distinguishes	Debian	from	other	Linux	distributions	is

its	package	management	system.	These	tools	gives	the	administrator	of	a	Debian

system	complete	control	over	the	packages	installed,	including	the	ability	to	install

a	single	package	or	automatically	update	 the	entire	operating	system.	Individual

packages	can	also	be	protected	from	being	updated.	You	can	even	tell	the	package

management	 system	 about	 software	 you	 have	 compiled	 yourself	 and	 what

dependencies	it	fulfills.	To	protect	your	system	against	“Trojan	horses”	and	other

malevolent	 software,	Debian’s	 servers	 verify	 that	 uploaded	 packages	 come	 from

registered	Debian	maintainers.	Debian	packagers	also	take	great	care	to	configure

their	packages	in	a	secure	manner.	When	security	problems	in	shipped	packages

do	appear,	fixes	are	usually	available	very	quickly.

Installing	Debian	8	as	a	Virtual	Machine.

First,	you	will	need	to	download	and	install	VirtualBox,	the	Oracle	software	

that	allows	you	to	run	any	OS	on…	any	other	OS,	as	a	virtual	environment.	This	

procedure	is	a	lot	safer	than	a	dual	boot:	no	need	to	fool	around	with	boot	sector	

or	disk	partitions,	all	is	virtually	created.	The	counterpart	is	that	the	two	OS’s	

share	your	computer	resources.	To	avoid	any	performance	issue,	we	will	choose	a	

lightweight	but	efficient	desktop	environment.	This	book	will	use	the	XFCE	

Debian	edition,	that	you	can	download	using	this	link	below:			

https://www.debian.org/CD/torrent-cd/

XFCE	is	not	the	newest	desktop	environment,	however	it	is	among	the	most

powerful,	 lightweight,	 and	 customizable,	while	 being	 easy	 to	 use	with	 its	 classic

desktop	metaphor.	Imagine	an	improved	version	of	Windows	XP,	a	great	way	to

get	started	with	Linux.

	

Create	your	Virtual	System

Once	 installed,	 start	Virtual	Box	 and	 follow	 these	 steps.	We	will	 begin	 the

VM	configuration:

New	>	Name,	Type	(debian),	Version	64

General	>	Advanced	>	Activate	clipboard	and	Drag’n’drop

System	>	check	memory,	deactivate	Floppy,	check	the	nb	of	CPU	(2)

Display	>	max	video	memory,	enable	3D	acceleration

Storage	>	select	your	Debian	ISO	under	“Controller	IDE”

Shared	Folders	>	choose	which	folder	to	share	between	the	systems.	We

will	get	back	to	this	function	later.

We	are	now	ready	to	run	the	distribution	installation.

	

Run	Debian	installer

Select	your	virtual	machine	and	click	the	‘Start’	icon.	The	Debian	graphic
installer	is	straightforward:	just	follow	the	steps,	when	asked	enter	a	root
password;	create	your	user	(name,	username,	and	password).	Once	you	get	to	the
partitioning,	select	‘Guided,	use	entire	disk,	all	in	one	partition.’	If	you	wish	to	modify	the	size
of	the	swap	partition,	you	may	select	the	manual	partitioning,	or	proceed	later	with
Parted,	the	partitioning	utility	tool.

Proxy,	part	#1:	select	your	network	mirror.	If	you	need	to	configure	a	proxy,	use
the	following	syntax	in	the	required	field:	http://user:pass@host:port/.

Proceed	to	the	installation.	Once	it	has	finished,	you	will	have	to	choose	where	to
install	Grub	(the	boot	loader	package):	because	this	is	a	VM	install,	choose
/dev/sda	(ata-VBOX_HARDDISK).	This	would	be	the	tricky	part	if	you	were
installing	on	a	dual-boot,	system	so	enjoy	the	comfort	of	a	VM!

Now	reboot	the	VM.

First	Boot	and	Updates

At	startup	the	Grub	menu	is	displayed,	stick	with	the	default	entry	and	wait	for
your	system	to	initialize.	At	XFCE	first	start,	you	will	be	asked	to	choose	between
two	panel	setups,	select	the	default	config.

Check	 your	 time	 configuration.	 If	 incorrect,	 launch	 as	 root	 a	 dpkg-

reconfigure	tzdata	and	select	your	country.

Proxy,	 part	 #2	 (if	 needed):	 during	 install,	 you	 entered	 your	 proxy	 address
for	apt	connection	(repositories	connection).	It	is	has	been	written	inside	the	file
/etc/apt/apt.conf,	 and	 can	 be	modified	 any	 time.	 I	 use	nano	as	 command	 line
text	editor,	change	at	will.

Now	add	the	proxy	setting	for	the	entire	system:

Congratulations,	 you	are	now	a	 confirmed	Linux	user!	Now	we	can	update

and	install	some	useful	 tools,	 then	we	will	modify	the	default	UI.	To	use	the	full

capacity	 of	 your	 VM	 you	 need	 to	 install	 a	 complementary	 VirtualBox	 extension

called	Guest	Additions.	To	do	so,	some	dependencies	are	required.

	

Check	your	sources,	remove	the	CD	entries,	add	the	contrib	and	non-free	repos:

https://mralphaville.files.wordpress.com/2015/04/13.jpg

	

Update	your	system:

Install	the	Guest	Additions	requirements

Insert	the	Guest	Additions	CD	image	(Host	+	D),	go	to	the	root	of	the	mounted	drive	and	execute	the

program:

	

Customizing	your	System
…	to	get	something	that	looks	a	little	more	modern.

Terminal

The	terminal	is	one	of	the	most	useful	tools	on	a	Linux	system.	Spend	some	time

making	 it	 pleasant	 to	 look	 at:	 enable	 your	 prompt	 color	 ink	 .bashrc,	 add	 your

aliases,	and	enable	colors	and	auto	completion	in	root	bash.

uncomment	the	“force_colored_prompt=yes”	line

[root]	$	nano	.bashrc

#	set	a	fancy	red	prompt

PS1=’${debian_chroot:+($debian_chroot)}\[33[01;31m\]\u@\h\[33[00m\]:\
[33[01;34m\]\w\[33[00m\]	\$	‘

#	enable	auto-completion

if

		[-f	/etc/bash_completion]	&&	!	shopt	-oq	posix;

		then	.	/etc/bash_completion

fi
	

Fonts

Enable	font	hinting	 in	the	Appearance	Panel	 to	get	the	best	 font	rendering	for

your	 system.	 Settings	 >	 Appearance	 >	 Fonts	 >	 Enable	 anti-aliasing	 +	 Hinting

Slight	+	Sub-pixel	order	RGB.	This	should	be	enough	in	Jessie,	no	need	to	create	a

fonts.conf	file	or	install	the	Infinality	engine.

I	
Themes	and	icons

GTK	 Themes,	 windows	 decoration	 and	 iconsets	 are	 the	 most	 important

elements	to	customizing	your	desktop.	Start	with	installing	some	complementary

gtk	engines	that	are	needed	by	some	themes:

[root]	$	apt-get	install	gtk2-engines-murrine	gtk2-engines-pixbuf	dmz-cursor-theme
	

Install	sudo

Debian	doesn’t	come	with	sudo	out	of	the	box,	this	is	a	handy	little	tool	for

temporarily	giving	you	root	access.

Replace	 USERNAME	 with	 your	 username.	 The	 NOPASSWD	 flag	 removes	 the

requirement	to	enter	a	password	every	time	you	use	sudo.	This	is	not	a	good	idea

on	a	production	server!

Reboot	your	machine	to	make	the	changes	take	effect:	$	reboot

From	now	on	all	operations	that	require	root	should	be	run	with	the	sudo	prefix,

without	having	to	enter	the	password	each	time.

Set	up	the	network

Log	in	to	your	new	VM	using	the	username	and	password	you	chose	during

installation.	We’re	going	to	add	a	network	connection	to	your	VM	that	will	allow

you	too	easily	SSH	into	the	server.

	

Hit	CTRL	+	X,	then	Y	and	ENTER	to	save	changes.
Shutdown	the	VM.

At	the	main	Virtual	Box	screen,	hit	the	Settings	button.	Then	select	Network	from	the
list	 on	 the	 left,	 choose	Adapter	 2	 from	 the	 tabs,	 check	 ‘Enable	 Network	 Adapter’	 and
choose	‘Host-only	Adapter’	from	the	dropdown,	then	click	OK.

What	we	have	done	is	set	up	your	VM	to	use	a	static	IP	address.	This	is	a	good	idea

because	it	allows	us	to	always	access	our	VM	using	a	single	IP	address/hostname

without	having	to	look	it	up	each	time	we	boot.

By	default,	Virtual	Box	utilizes	 the	 192.168.56.1	 address	 in	 your	network,	 and	 it
assigns	IP	addresses	in	the	192.168.56.1xx	range	to	all	your	VMs.

By	editing	/etc/network/interfaces	we	told	the	OS	that	it	should	expect	a	network
resource	to	be	available	at	that	address.

Setup	your	hosts	file

Now	your	server	is	configured	lets	add	the	hostname	to	your	hosts	file!

Simply	add	the	following	entry	 into	your	hosts	file.	This	should	be	done	on	your

host	machine	–	be	it	Windows	or	Mac	OS	X	or	Linux,	not	the	VM	itself.

Keep	in	mind	that	for	every	domain	you	setup	on	your	VM,	you	will	need	to	add	it

to	your	hosts	file.

Log	in	via	SSH!

Now	that	you	have	setup	the	network	adapter	in	Virtual	Box,	and	added	the

correct	 settings	 to	 the	VM	 interfaces	 file,	 you’re	 ready	 to	actually	SSH	 into	your

server	 and	begin	 installing	 everything!	You	may	be	wondering	why	 you	need	 to

SSH	and	not	simply	use	 the	VM	window.	The	reason	I	do	 it	 this	way	 is	 that	 the

server	does	not	support	copy/paste!	There’s	a	lot	of	typing	ahead	and	having	the

ability	to	simply	copy/paste	into	your	terminal	is	going	to	speed	things	up	quite	a

bit!

For	SSH	on	Windows,	I	use	KiTTy.	It’s	an	SSH	client	that	adds	some	nifty	features

to	 PuTTY.	 There	 is	 also	 Poderosa.	 For	 Mac/Linux	 just	 use	 the	 terminal!	 Since

http://kitty.9bis.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://en.poderosa.org/

you’ve	already	added	the	correct	lines	to	your	hosts	file,	you	can	set	the	address	to

connect	 to	 as	 debian-vm	 (or	 whatever	 you	 chose	 during	 setup).	 Make	 sure	 to

actually	 start	 the	 VM	 from	 VirtualBox	 before	 attempting	 to	 login.	 Just	 start	 it,

there	is	no	need	to	login	from	the	VirtualBox	server	window.

Installing	the	basics

First	things	first,	we’re	going	to	install	the	basic	necessities,	like	make,	curl,

wget,	as	well	as	the	Apache	Server,	Mercurial,	Git	and	Subversion:

Edit	the	new	Apache2	config	file,	$	sudo	nano
/etc/apache2/httpd.conf	and	add

You	now	have	the	Apache	server	up	and	running!	Just	point	your	browser	to

http://debian-vm	and	behold	the	magic.

Now	lets	enable	Apache’s	ModRewrite	module:

Installing	MySQL

We	will	be	installing	MySQL	5.1	from	repo,	as	this	is	the	easiest	way	and	works
fairly	well.

On	 the	 screens	 asking	 for	 a	MySQL	 password,	 leave	 it	 blank	 and	 hit	 Enter.
Since	this	is	only	for	a	local	server	there	is	no	point	in	setting	up	a	password.	Do
NOT	use	a	blank	password	in	production	environments.

Setting	up	MySQL

We	need	to	update	the	IP	address	that	MySQL	will	listen	to	for	connections	by

editing	the	my.cnf	file.

	$	sudo	nano	/etc/mysql/my.cnf

Do	a	search	for	bind-address	(CTRL	+	W)	and	change	the	setting	to:

http://debian-vm/

Now	let’s	grant	root	MySQL	user	all	permissions:

	

Chapter	Five:	INSTALLING	CENTOS	7
	

This	 is	 a	 community-supported	 distribution	 derived	 from	 sources	 freely

provided	to	the	public	by	Red	Hat	for	Red	Hat	Enterprise	Linux	(RHEL).	As	such,

CentOS	 Linux	 aims	 to	 be	 functionally	 and	 compatible	 with	 RHEL.	 The	 CentOS

Project	 mainly	 changes	 packages	 to	 remove	 upstream	 vendor	 branding	 and

artwork.	 CentOS	 Linux	 is	 free	 and	 free	 to	 redistribute.	 Each	 CentOS	 version	 is

maintained	for	up	to	10	years	(by	means	of	security	updates	—	the	duration	of	the

support	 interval	 by	 Red	 Hat	 has	 varied	 over	 time	 with	 respect	 to	 Sources

released).	A	new	CentOS	version	is	released	approximately	every	2	years	and	each

CentOS	version	is	periodically	updated	(roughly	every	6	months)	to	support	newer

hardware.	 This	 results	 in	 a	 secure,	 low-maintenance,	 reliable,	 predictable	 and

reproducible	Linux	environment.

Installation	of	CenOS7

Finally,	the	much-awaited	CentOS	7	is	out.	CentOS	(Community	Enterprise

Operating	System)	are	forked	from	Red	Hat	Linux,	a	Linux	Distro	fine	tuned	for

servers.	You	will	learn	how	to	install	Centos	7	in	a	few	easy	steps.

Step	1:	Download	the	ISO	Image

To	get	a	copy	of	CentOS	7	download	from	the	link	below:

http://mirror.centos.org/centos/7/

CentOS	7	 is	only	available	 for	64-bit	platforms;	 currently	 there	 is	no	32-bit	 ISO

image.	This	is	primarily	due	to	the	fact	that	most	production	servers	are	64-bit.

Step	2:	Make	a	bootable	Drive

After	you	download	the	ISO	image,	make	a	bootable	USB	drive	using	Unetbootin.

Alternatively,	 you	 can	 burn	 a	 DVD	 using	 Brasero	 or	 your	 favorite	 CD/DVD

burning	software.

Step	3:	Begin	Installation

To	begin	installation,	click	on	the	Install	to	Hard	Drive	icon	on	the	desktop.

Step	4:	Select	Language	and	Keyboard

Select	your	preferred	language.	

	

Step	5:	Change	the	Installation	Destination

By	 default,	 the	 Anaconda	 installer	 will	 choose	 automatic	 partitioning	 for
your	 hard	 disk.	 Click	 on	 the	 INSTALLATION	 DESTINATION	 icon	 to	 change	 to	 custom
partitioning.

Select	 the	hard	drive	where	 you	want	 to	 install	CentOS	7	 and	under	Other	 Storage
Options,	choose	‘I	will	configure	partitioning’	then	click	Done.

	

Step	6:	Select	the	Partitioning	Scheme

Next,	 select	 the	 partitioning	 scheme	 to	 use	 for	 the	 mountpoints.	 In	 this	 case,
choose	Standard	Partition.

	

Step	7:	Create	a	Swap	Space

You	 can	 create	 a	 swap	 space	 in	 one	 of	 the	 partitions	 and	 set	 the	 desired
capacity,	which	is	dependent	on	how	much	RAM,	the	system	has.	Choose	the	File
System	 for	 swap	 space	as	 swap,	 and	 select	 the	Reformat	 option.	You	can	also	name
your	 swap	 space	 to	 whatever	 name	 you	 like	 but	 a	 name	 like	 swap	 is	 more
descriptive.

	

Step	8:	Create	a	Mountpoint

The	 next	 step	 is	 to	 create	 the	mountpoint	where	 the	 root	 partition	will	 be

installed.	Depending	on	your	requirements,	you	might	need	to	put	the	boot,	home

and	root	partitions	on	different	mountpoints.	In	this	instance,	we	shall	only	create

one	mountpoint	/.

Next,	set	the	Label	and	Desired	Capacity	to	whatever	you	wish.	A	rule	of	thumb	is	to	use
descriptive	 names	 for	 the	 label	 especially	 if	 the	 computer	 is	 to	 be	managed	 by
different	 system	 administrators.	 Choose	 the	 file	 system	 as	 ext4	 and	 select	 the
Reformat	option.

	

Step	9:	Accept	Changes

After	 Steps	 7	 and	 8	 have	 successfully	 completed	 click	 on	 Done	 button.	 A
prompt	window	will	appear	with	a	summary	of	the	changes	that	will	take	place.	If
you	are	satisfied	with	them	click	Accept	Changes.

Step	10:	Set	Date	and	Time

Click	 on	 the	Clock	 icon	 under	 the	 localization	menu	 and	 select	 your	 time	 zone
from	the	map	of	the	world,	then	click	Done.

	

Step	11:	Begin	Installation

Click	on	the	Begin	Installation	button.

Installation	will	 begin	 immediately	 and	 as	 it	 proceeds	 you	will	 need	 to	 set	 up	 a
user	account	as	well	as	the	root	password.

	Set
	

Step	12:	Set	Up	Root	Password

Click	on	the	ROOT	PASSWORD	option	and	enter	a	password	and	confirmation	of
the	same	then	click	Done.

	

Step	13:	Create	a	User	Account

The	next	step	 is	 to	create	a	user	account.	Enter	 the	details	and	 if	 this	 is	an

administrator	 account,	 check	 Make	 this	 user	 administrator	 and	 Require	 a
password	to	use	this	account	for	security	purposes.

	

Step	14:	Complete	Installation

The	installer	should	finish	installing	the	software	and	boot	loader.

Hopefully,	once	the	install	is	complete	you	will	get	a	success	message,	after	which

you	 can	 click	 Quit.	 Now	 logout	 from	 the	 live	 system	 and	 login	 to	 your	 new
installation.	Finally,	once	you	login	to	your	CentOS	7	accept	the	EULA	agreement

and	enjoy!

Change	and	Set	Hostname	Command

On	a	CentOS	Linux	7	server,	you	can	use	any	one	of	the	following	tools	to	manage

hostnames:

hostnamectl:	Control	the	system	hostname.	This	is	the	recommended

method.

nmtui:	Control	the	system	hostname	using	text	user	interface	(TUI).

nmcli:	Control	the	system	hostname	using	CLI	part	of	NetworkManager.

Method	#1:	hostnamectl

Let	us	see	how	to	use	the	hostnamectl	command.

How	do	I	see	the	host	names?

Sample	outputs:
Static	hostname:	server1.cyberciti.biz

			Pretty	hostname:	Senator	Padmé	Amidala’s	Laptop

Transient	hostname:	r2-d2

									Icon	name:	computer

											Chassis:	n/a

								Machine	ID:	b5470b10ccfd49ed8e4a3b0e953a53c3

											Boot	ID:	f79de79e2dac4670bddfe528e826b61f

				Virtualization:	oracle

		Operating	System:	CentOS	Linux	7	(Core)

							CPE	OS	Name:	cpe:/o:centos:centos:7

												Kernel:	Linux	3.10.0-229.1.2.el7.x86_64

						Architecture:	x86_64

	

How	do	I	delete	a	particular	host	name?

The	syntax	is:
#	hostnamectl	set-hostname	””

#	hostnamectl	set-hostname	””	—static

#	hostnamectl	set-hostname	””	–pretty

	

How	do	I	change	host	name	remotely?

Use	any	of	the	following	syntax:
#	ssh	root@server-ip-here	hostnamectl	set-hostname	server1

OR	set	server1	as	host	name	on	a	remote	server	called	192.168.1.42	using	ssh:
#	hostnamectl	set-hostname	server1	-H	root@192.168.1.42

Method	#2:	nmtui

You	can	set	host	name	using	the	nmtui	command,	which	has	text	user	interface	for
new	users:
#	nmtui

Sample	outputs:

Use	the	Down	arrow	key	>	select	the	‘Set	system	hostname’	menu	option	>	Click

the	OK	button:

You	will	see	the	confirmation	box	as	follows:

Finally,	restart	the	hostnamed	service	by	typing	the	following	command:

	

#	systemctl	restart	systemd-hostnamed

To	verify	the	changes,	enter:

#	hostnamectl	status

Method	#3:	nmcli

The	nmcli	is	a	command‐line	tool	for	controlling	Network	Manager	and	reporting
network	status.

To	view	the	host	name	using	nmcli:

The	syntax	is:
#	nmcli	general	hostname

To	set	the	host	name	using	nmcli:

The	syntax	is:
#	nmcli	general	hostname	R2-D2

#	nmcli	general	hostname	server42.cyberciti.biz

Finally,	restart	the	systemd-hostnamed	service:
#	systemctl	restart	systemd-hostnamed

Chapter	 Six:	 LINUX	 AND	 UNIXMAN
COMMAND

	

On	Linux	and	other	Unix-like	operating	systems,	man	is	the	interface	used	to	view

the	system’s	reference	manuals.

Syntax
man	[-C	file]	[-d]	[-D]	[—warnings[=warnings]]	[-R	encoding]	[-L	locale]

				[-m	system[,…]]	[-M	path]	[-S	list]	[-e	extension]	[-i|-I]

				[—regex|—wildcard]	[—names-only]	[-a]	[-u]	[—no-subpages]	[-P	pager]

				[-r	prompt]	[-7]	[-E	encoding]	[—no-hyphenation]	[—no-justification]

				[-p	string]	[-t]	[-T[device]]	[-H[browser]]	[-X[dpi]]	[-Z]

				[[section]	page	…]	…

man	-k	[apropos	options]	regexp	…

man	-K	[-w|-W]	[-S	list]	[-i|-I]	[—regex]	[section]	term	…

man	-f	[whatis	options]	page	…

man	-l	[-C	file]	[-d]	[-D]	[—warnings[=warnings]]	[-R	encoding]

				[-L	locale]	[-P	pager]	[-r	prompt]	[-7]	[-E	encoding]	[-p	string]	[-t]

				[-T[device]]	[-H[browser]]	[-X[dpi]]	[-Z]	file	…

man	-w|-W	[-C	file]	[-d]	[-D]	page	…

man	-c	[-C	file]	[-d]	[-D]	page	…

man	[-hV]

Description

Man	is	the	system’s	manual	viewer;	it	can	be	used	to	display	manual	pages,

scroll	 up	 and	 down,	 search	 for	 occurrences	 of	 specific	 text,	 and	 other	 useful

functions.	Each	argument	given	to	man	is	normally	the	name	of	a	program,	utility

or	 function.	 The	 pages	 associated	with	 each	 of	 these	 arguments	 are	 then	 found

and	displayed.	A	section	number,	if	provided,	will	direct	man	to	look	only	in	that

section	 of	 the	 manual.	 The	 default	 action	 is	 to	 search	 in	 all	 of	 the	 available

sections,	following	a	pre-defined	order	and	to	show	only	the	first	page	found,	even

if	pages	exist	in	several	sections.

General	Options

-h,	—help Print	a	help	message	and	exit.

-V,	—version Display	version	information	and	exit.

-C	file,	—config- Use	configuration	file	file	rather	than	the

http://www.computerhope.com/jargon/l/linux.htm
http://www.computerhope.com/jargon/u/unix.htm
http://www.computerhope.com/os.htm

file=file default	of	~/.manpath.

-d,	—debug Print	debugging	information.

-D,	—default This	option,	when	used,	is	normally

specified	as	the	first	option;	it

resetsman‘s	behaviour	to	its	default.	Its

use	is	to	reset	those	options	that	may	have

been	set	in	$MANOPT.	Any	options	that

follow	-D	will	have	their	usual	effect.

—

warnings[=warnings]

Enable	warnings	from	the	groff	text

formatter.	This	may	be	used	to	perform

sanity	checks	on	the	source	text	of	manual

pages.	warnings	is	a	comma-separated

list	of	warning	names;	if	it	is	not	supplied,

the	default	is	“mac“.	See	the	“Warnings”

node	in	the	groff	info	page	for	a	list	of

available	warning	names.

Main	Modes	of	Operation

-f,	—whatis Equivalent	to	the	whatis	command;	displays	a	short
description	from	the	manual	page,	if	available.

-k,	—apropos Equivalent	to	the	apropos	command;	Search	the	short
manual	page	descriptions	for	keywords	and	display	any
matches.

-K,	—global-
apropos

Search	for	text	in	all	manual	pages.	This	is	a	brute-force
search,	and	is	likely	to	take	some	time;	if	you	can,	you
should	specify	a	section	to	reduce	the	number	of	pages
that	need	to	be	searched.	Search	terms	may	be
simple	strings	(the	default),	or	regular	expressions	if
the	—regex	option	is	used.

-l,	—local-file Activate	‘local’	mode.	Format	and	display	local	manual
files	instead	of	searching	through	the	system’s	manual
collection.	Each	manual	page	argument	will	be
interpreted	as	an	nroff	source	file	in	the	correct	format.
No	cat	file	is	produced.	If	a	dash	(‘-‘)	is	listed	as	one	of
the	arguments,	input	will	be	taken	from	stdin.	When
this	option	is	not	used,	and	man	fails	to	find	the	page
required,	before	displaying	the	error	message	it	attempts
to	act	as	if	this	option	was	supplied,	using	the	name	as	a
filename	and	looking	for	an	exact	match.

http://www.computerhope.com/jargon/d/debug.htm
http://www.computerhope.com/unix/info.htm
http://www.computerhope.com/unix/whatis.htm
http://www.computerhope.com/unix/apropos.htm
http://www.computerhope.com/jargon/s/string.htm
http://www.computerhope.com/jargon/r/regex.htm
http://www.computerhope.com/unix/unroff.htm
http://www.computerhope.com/unix/ucat.htm
http://www.computerhope.com/jargon/s/stdin.htm

-w,	—where,	—
location

Don’t	actually	display	the	manual	pages;	instead	print
the	location(s)	of	the	source	nroff	files	that	would	be
formatted.

-W,	—where-
cat,	—location-
cat

Don’t	actually	display	the	manual	pages,	but	do	print
the	location(s)	of	the	catfiles	that	would	be	displayed.
If	-w	and	-W	are	both	specified,	print	both,	separated
by	a	space.

-c,	—catman This	option	is	not	for	general	use	and	should	only	be
used	by	the	catmanprogram.

-R	encoding,	—
recode=encoding

Instead	of	formatting	the	manual	page	in	the	usual	way,
output	its	source	converted	to	the	specified	encoding.	If
you	already	know	the	encoding	of	the	source	file,	you
can	also	use	manconv	directly.	However,	this	option
allows	you	to	convert	several	manual	pages	to	a	single
encoding	without	having	to	explicitly	state	the	encoding
of	each,	provided	that	they	were	already	installed	in	a
structure	similar	to	a	manual	page	hierarchy.

Finding	Manual	Pages

-L	locale,	—

locale=locale

man	will	normally	determine	your

current	locale	by	a	call	to	the	C

functionsetlocale	which	checks	the

values	of	various	environment

variables,	possibly

including	$LC_MESSAGES	and	$LANG.

To	temporarily	override	the

determined	value,	use	this	option	to

supply	a	locale	string	directly	to	man.

Note	that	it	will	not	take	effect	until	the

search	for	pages	actually	begins.

Output	such	as	the	help	message	will

always	be	displayed	in	the	initially

determined	locale.

-m	system[,…],	—

systems=system[,

…]

If	this	system	has	access	to	other	operating

system’s	manual	pages,	they	can	be	accessed

using	this	option.	To	search	for	a	manual	page

from	(for	example)	the	“NewOS”	manual	page

collection,	use	the	option	-m	NewOS.

The	system	specified	can	be	a	combination	of

comma	delimited	operating	system	names.	To

include	a	search	of	the	native	operating

http://www.computerhope.com/jargon/e/envivari.htm

system’s	manual	pages,	include	the	system

name	man	in	the	argument	string.	This

option	will	override

the	$SYSTEM	environment	variable.

-M	path,	—

manpath=path

Specify	an	alternate	manpath	to	use.	This

option	overrides	the	$MANPATH

environment	variable	and	causes	option	-m	to

be	ignored.

A	path	specified	as	a	manpath	must	be	the

root	of	a	manual	page	hierarchy	structured

into	sections	as	described	in	the	man-db

manual	(under	“The	manual	page	system”).

To	view	manual	pages	outside	such

hierarchies,	see	the	-l	option.

-S	list,	-s	list,	—

sections=list

list	is	a	colon-	or	comma-separated	list	of

`order	specific’	manual	sections	to	search.

This	option	overrides

the	$MANSECT	environment	variable.

(The	–s	spelling	is	for	compatibility

with	System	V.)

-e	sub-

extension,	—

extension=sub-

extension

Some	systems	incorporate	large	packages	of

manual	pages,	such	as	those	that	accompany

the	Tcl	package,	into	the	main	manual	page

hierarchy.	To	get	around	the	problem	of

having	two	manual	pages	with	the	same	name

such	as	exit,	the	Tcl	pages	were	usually	all

assigned	to	section	l	(lowercase	L).	However,

it	is	now	possible	to	put	the	pages	in	the

correct	section,	and	to	assign	a	specific

“extension”	to	them,	in	this	case,	exit	(3tcl).

Under	normal	operation,	man	will

display	exit	in	preference	to	exit	(3tcl).	To

negotiate	this	situation	and	to	avoid	having	to

know	which	section	the	page	you	require

resides	in,	it	is	now	possible	to	give	man	a

sub-extension	string	indicating	which	package

the	page	must	belong	to.	Using	the	above

example,	supplying	the	option	-e

tcl	to	man	will	restrict	the	search	to	pages

having	an	extension	of	*tcl.

-i,	—ignore-case Ignore	case	when	searching	for	manual	pages.

This	is	the	default.

http://man-db.nongnu.org/
http://www.computerhope.com/jargon/s/system-v.htm
http://www.computerhope.com/jargon/t/tcl.htm
http://www.computerhope.com/unix/uexit.htm
http://www.computerhope.com/jargon/c/case.htm

-I,	—match-case Search	for	manual	pages	case-sensitively.

—regex Show	all	pages	with	any	part	of	either	their

names	or	their	descriptions	matching	each

page	argument	as	a	regular	expression,	as

with	apropos.	Since	there	is	usually	no

reasonable	way	to	pick	a	“best”	page	when

searching	for	a	regular	expression,	this	option

implies	-a.

—wildcard Show	all	pages	with	any	part	of	either	their

names	or	their	descriptions	matching	each

page	argument	using	shell-style	wildcards,	as

with	apropos	—wildcard.	The	page

argument	must	match	the	entire	name	or

description,	or	match	on	word	boundaries	in

the	description.	Since	there	is	usually	no

reasonable	way	to	pick	a	“best”	page	when

searching	for	a	wildcard,	this	option	implies	-

a.

—names-only If	the	—regex	or	—wildcard	option	is	used,

match	only	page	names,	not	page

descriptions,	as	with	whatis.	Otherwise,	this

option	has	no	effect.

-a,	—all By	default,	man	will	exit	after	displaying	the

most	suitable	manual	page	it	finds.	Using	this

option	forces	man	to	display	all	the	manual

pages	with	names	that	match	the	search

criteria.

-u,	—update This	option	causes	man	to	perform	an	inode-

level	consistency	check	on	its	database	caches

to	ensure	that	they	are	an	accurate

representation	of	the	filesystem.	It	will	only

have	a	useful	effect	if	man	is	installed	with

the	setuidbit	set.

—no-subpages By	default,	man	will	try	to	interpret	pairs	of

manual	page	names	given	on	the	command

line	as	equivalent	to	a	single	manual	page

name	containing	a	hyphen	or	an	underscore.

This	supports	the	common	pattern	of

programs	that	implement	a	number	of

subcommands,	allowing	them	to	provide

manual	pages	for	each	that	can	be	accessed

http://www.computerhope.com/jargon/c/casesens.htm
http://www.computerhope.com/jargon/s/shell.htm
http://www.computerhope.com/jargon/w/wildcard.htm
http://www.computerhope.com/unix/whatis.htm
http://www.computerhope.com/jargon/i/inode.htm
http://www.computerhope.com/jargon/d/database.htm
http://www.computerhope.com/jargon/f/filesyst.htm
http://www.computerhope.com/jargon/s/suid.htm
http://www.computerhope.com/jargon/b/bit.htm
http://www.computerhope.com/jargon/c/commandi.htm

using	similar	syntax	as	would	be	used	to

invoke	the	subcommands	themselves.	For

example,	the	command:

	

man	-aw	git	diff

displays	the	manual	page:

	

/usr/share/man/man1/git-diff.1.gz

To	disable	this	behavior,	use	the	—no-

subpages	option.

For	example:

	

man	-aw	—no-subpages	git	diff

Will	instead	show	the	manual	pages	for

both	git	and	diff:

	

/usr/share/man/man1/git.1.gz

/usr/share/man/man3/Git.3pm.gz

/usr/share/man/man1/diff.1.gz

Controlling	Formatted	Output

-P	pager,	—
pager=pager

Specify	which	output	pager	to	use.	By
default,	man	uses	pager	-s.	This	option
overrides	the	$MANPAGER	environment
variable,	which	in	turn	overrides
the	$PAGER	environment	variable.	It	is	not
used	in	conjunction	with	-f	or	-k.

The	value	may	be	a	simple	command	name
or	a	command	with	arguments,	and	may	use
shell	quoting	(backslashes,	single	quotes,	or
double	quotes).	It	may	not	use	pipes	to
connect	multiple	commands;	if	you	need
that,	use	a	wrapper	script,	which	may	take
the	file	to	display	either	as	an	argument	or
on	standard	input.

-r	prompt,	—
prompt=prompt

If	a	recent	version	of	less	is	used	as	the
pager,	man	will	attempt	to	set	its	prompt	and

http://www.computerhope.com/jargon/p/pipe.htm
http://www.computerhope.com/jargon/s/stdin.htm
http://www.computerhope.com/unix/uless.htm

some	sensible	options.	The	default	prompt
looks	like:

Manual	page	name(sec)	line	x

where	name	denotes	the	manual	page
name,	sec	denotes	the	section	it	was	found
under	and	x	the	current	line	number.	This	is
achieved	by	using	the	$LESS	environment
variable.

Supplying	-r	with	a	string	will	override	this
default.	The	string	may	contain	the
text	$MAN_PN	which	will	be	expanded	to	the
name	of	the	current	manual	page	and	its	section
name	surrounded	by	“(”	and	“)”.	The	string
used	to	produce	the	default	could	be	expressed
as;
	

\	Manual\	page\	\$MAN_PN\	?
ltline\	%lt?L/%L.:

byte\	%bB?s/%s..?\	(END):?pB\
%pB\%..

(press	h	for	help	or	q	to	quit)

It	is	broken	into	three	lines	here	for	the	sake	of
readability	only.	For	its	meaning	see	the	man
page	for	less.

The	shell	first	evaluates	the	prompt	string.	All
double	quotes,	back-quotes	and	backslashes	in
the	prompt	must	be	escaped	by	a	preceding
backslash.	The	prompt	string	may	end	in	an
escaped	$	which	may	be	followed	by	further
options	for	less.	By	default,	man	sets	the	-
ix8	options.

If	you	want	to	override	man’s	prompt	string
processing	completely,	use	the
$MANLESS	environment	variable	described
below.

-7,	—ascii When	viewing	a	pure	ASCII	manual	page	on	a
7-bit	terminal	or	terminal	emulator,
some	characters	may	not	display	correctly
when	using	the	latin1device	description
with	GNU	nroff.	This	option	allows	pure
ASCII	man	pages	to	be	displayed	in	ASCII
with	the	latin1	device.	It	will	not	translate

http://www.computerhope.com/unix/uless.htm
http://www.computerhope.com/jargon/a/ascii.htm
http://www.computerhope.com/jargon/t/terminal.htm
http://www.computerhope.com/jargon/e/emulator.htm
http://www.computerhope.com/jargon/c/charact.htm
http://www.computerhope.com/jargon/g/gnu.htm
http://www.computerhope.com/unix/unroff.htm

any	latin1	text.	The	following	table	shows	the
translations	performed:	some	parts	of	it	may
only	be	displayed	properly	when	using
GNU	nroff’s	latin1device.	This	option	is
ignored	when	using	options	-t,	-H,	-T,	or	-Z	and
may	be	useless	for	versions	of	nroff	other	than
GNU’s.

-E	encoding,	—
encoding=encoding

Generate	output	for	a	character	encoding	other
than	the	default.	For	backward	compatibility,
encoding	may	be	an	nroff	device	such	as	ascii,
latin1,	or	utf8	as	well	as	a	true	character
encoding	such	as	UTF-8.

—no-
hyphenation,	—nh

Normally,	nroff	will	automatically	hyphenate
text	at	line	breaks	even	in	words	that	do	not
contain	hyphens,	if	it	is	necessary	to	do	lay	out
thre	words	on	a	line	without	excessive	spacing.
This	option	disables	automatic	hyphenation,	so
words	will	only	be	hyphenated	if	they	already
contain	hyphens.	If	you	are	writing	a	man	page
and	simply	want	to	prevent	nroff	from
hyphenating	a	word	at	an	inappropriate	point,
do	not	use	this	option,	but	consult
the	nroff	documentation	instead;	for	instance,
you	can	put	“\%”	inside	a	word	to	indicate	that
it	may	be	hyphenated	at	that	point,	or	put	“\%”
at	the	start	of	a	word	to	prevent	it	from	being
hyphenated.

—no-
justification,	—nj

Normally,	nroff	will	automatically	justify	text
to	both	margins.	This	option	disables	full
justification,	leaving	justified	only	to	the	left
margin,	sometimes	called	“ragged-right”	text.

If	you	are	writing	a	man	page	and	simply	want
to	prevent	nroff	from	justifying	certain
paragraphs,	do	not	use	this	option,	but	consult
the	nroff	documentation;	for	instance,	you	can
use	the	“.na”,	“.nf”,	“.fi”,	and	“.ad”	requests	to
temporarily	disable	adjusting	and	filling.

-p	string,	—
preprocessor=string

Specify	the	sequence	of	preprocessors	to	run
before	nroff	or	troff/groff.	Not	all	installations
will	have	a	full	set	of	preprocessors.	Some	of
the	preprocessors	and	the	letters	used	to
designate	them	are:	eqn	(e),	grap	(g),	pic	(p),

http://www.computerhope.com/unix/ueqn.htm

tbl	(t),	vgrind	(v),	refer	(r).	This	option
overrides	the	$MANROFFSEQ	environment
variable.	zsoelim	is	always	run	as	the	first
preprocessor.

-t,	—troff Use	groff	-mandoc	to	format	the	man	page	to
standard	output.	This	option	is	not	required	in
conjunction	with	-H,	-T,	or	-Z.

-T[device],	—troff-
device[=device]

This	option	is	used	to	change	groff	(or
possibly	troff’s)	output	to	be	suitable	for	a
device	other	than	the	default.	It	implies	-t.
Examples	include	dvi,
latin1,	ps,	utf8,	X75	and	X100.

-H[browser],	—
html[=browser]

This	option	will	cause	groff	to
produce	HTML	output,	and	will	display	the
output	in	a	web	browser.	The	choice	of	browser
is	determined	by	the	optional	browser	argument
if	one	is	provided,	by	the	$BROWSER
environment	variable,	or	by	a	compile-time
default	if	that	is	unset	(usually	lynx).	This
option	implies	-t,	and	will	only	work	with
GNU	troff.

-X[dpi],	—
gxditview[=dpi]

This	option	displays	the	output	of	groff	in	a
graphical	window	using	thegxditview	program.
The	dpi	(dots	per	inch)	may	be	75,	75-12,	100,
or	100-12,	defaulting	to	75;	the	-12	variants	use
a	12-point	base	font.	This	option	implies	-
T	with	the	X75,	X75-12,	X100,	or	X100-12
devices,	respectively.

-Z,	—ditroff groff	will	run	troff	and	then	use	an	appropriate
post-processor	to	produce	output	suitable	for
the	chosen	device.	If	groff	-mandoc	is	groff,
this	option	is	passed	to	groff	and	will	suppress
the	use	of	a	post-processor.	It	implies	-t.

Section	Numbers

The	 section	 numbers	 of	 the	 manual	 are	 listed	 below.	 While	 reading

documentation,	if	you	see	a	command	name	followed	by	a	number	in	parentheses,

the	 number	 refers	 to	 one	 of	 these	 sections.	 For	 example,	 man	 is	 the

documentation	 of	 man	 found	 in	 section	 number1.	 Some	 commands	 may	 have

documentation	 in	 more	 than	 one	 section,	 so	 the	 numbers	 after	 the	 command

http://www.computerhope.com/jargon/h/html.htm
http://www.computerhope.com/jargon/b/browser.htm
http://www.computerhope.com/jargon/l/lynx.htm
http://www.computerhope.com/jargon/d/dpi.htm
http://www.computerhope.com/jargon/f/font.htm

name	may	direct	you	to	the	correct	section	to	find	a	specific	type	of	information.

	

The	section	numbers,	and	the	topics	they	cover,	are	as	follows:

section	# Topic

1 Executable	programs	or	shell	commands

2 System	calls	(functions	provided	by	the	kernel)

3 Library	calls	(functions	within	program	libraries)

4 Special	files	(usually	found	in	/dev)

5 File	formats	and	conventions	eg	/etc/passwd

6 Games

7 Miscellaneous	(including	macro	packages	and

conventions),	e.g.	man,	groff

8 System	administration	commands	(usually	only

for	root)

9 Kernel	routines	[Non	standard]

Exit	Status

When	it	terminates,	man	will	return	one	of	the	following	exit	status:

	

0 Returned	upon	successful	program	execution.

1 Returned	if	there	was	a	usage,	syntax,	or	configuration	file

error.

2 Returned	if	there	was	an	operational	error.

3 Returned	if	a	child	process	returned	a	non-zero	exit	status.

16 Returned	if	one	or	more	of	the	pages,	files,	or	keywords

searched	for	did	not	exist	or	was	not	matched.

Environment

man	makes	use	of	the	following	environment	variables:

MANPATH If	$MANPATH	is	set,	its	value	is

used	as	the	path	to	search	for

manual	pages.

MANROFFOPT The	contents	of	$MANROFFOPT	are

added	to	the	command	line	every

time	man	invokes	the	formatter

(nroff,	troff,	or	groff).

MANROFFSEQ If	$MANROFFSEQ	is	set,	its	value	is

used	to	determine	the	set	of

preprocessors	to	pass	each	manual

page	through.	The	default

preprocessor	list	is	system-dependent.

MANSECT If	$MANSECT	is	set,	its	value	is	a

colon-delimited	list	of	sections	and	it	is

used	to	determine	which	man	sections

to	search	and	in	what	order.

MANPAGER,	PAGER If	$MANPAGER	or	$PAGER	is	set

($MANPAGER	is	used	in

preference),	its	value	is	used	as	the

name	of	the	program	used	to	display

the	man	page.	By	default,	pager	-s	is

used.	The	value	may	be	a	simple

command	name	or	a	command	with

arguments,	and	may	use	shell	quoting

(backslashes,	single	quotes,	or	double

quotes).	It	may	not	use	pipes	to

connect	multiple	commands;	if	you

need	that,	use	a	wrapper	script,	which

may	take	the	file	to	display	either	as	an

argument	or	on	standard	input.

MANLESS If	$MANLESS	is	set,	man	will	not

perform	any	of	its	usual	processing	to

set	up	a	prompt	string	for

the	less	pager.	Instead,	the	value	of

$MANLESS	will	be	copied	verbatim

into	$LESS.	For	example,	if	you	want

to	set	the	prompt	string

unconditionally	to	“my	prompt	string”,

set	$MANLESS	to	‘-Psmy	prompt

string’.

http://www.computerhope.com/jargon/e/envivari.htm
http://www.computerhope.com/unix/unroff.htm
http://www.computerhope.com/unix/utroff.htm
http://www.computerhope.com/jargon/s/stdin.htm
http://www.computerhope.com/unix/uless.htm

BROWSER If	$BROWSER	is	set,	its	value	is	a

colon-delimited	list	of	commands,	each

of	which	in	turn	is	used	to	try	to	start	a

web	browser	for	man	—html.	In	each

command,	%s	is	replaced	by	a

filename	containing	the	HTML	output

from	groff,	%%	is	replaced	by	a	single

percent	sign	(%),	and	%c	is	replaced

by	a	colon	(:).

SYSTEM If	$SYSTEM	is	set,	it	will	have	the

same	effect	as	if	it	had	been	specified

as	the	argument	to	the	-m	option.

MANOPT If	$MANOPT	is	set,	it	will	be	parsed

prior	to	mans	command	line	and	is

expected	to	be	in	a	similar	format.	As

all	of	the	other	man	specific

environment	variables	can	be

expressed	as	command	line	options,

and	are	thus	candidates	for	being

included	in	$MANOPT	it	is	expected

that	they	will	become	obsolete.	Note:

all	spaces	that	should	be	interpreted	as

part	of	an	option’s	argument	must	be

escaped	(preceded	with	a	backslash).

MANWIDTH If	$MANWIDTH	is	set,	its	value	is

used	as	the	line	length	for	which

manual	pages	should	be	formatted.	If	it

is	not	set,	manual	pages	will	be

formatted	with	a	line	length

appropriate	to	the	current	terminal

(using	an	ioctl	if	available,	the	value

of	$COLUMNS,	or	falling	back	to	80

characters	if	neither	is

available).	cat	pages	will	only	be	saved

when	the	default	formatting	can	be

used,	that	is	when	the	terminal	line

length	is	between	66	and	80

characters.

MAN_KEEP_FORMATTING Normally,	when	output	is	not	being

directed	to	a	terminal	(such	as	to	a	file

or	a	pipe),	formatting	characters	are

discarded	to	make	it	easier	to	read	the

result	without	special	tools.	However,

if	$MAN_KEEP_FORMATTING	is

set	to	any	non-empty	value,	these

formatting	characters	are	retained.

This	may	be	useful	for	wrappers

around	man	that	can	interpret

formatting	characters.

MAN_KEEP_STDERR Normally,	when	output	is	being

directed	to	a	terminal	(usually	a

pager),	any	error	output	from	the

command	used	to	produce	formatted

versions	of	man	pages	is	discarded	to

avoid	interfering	with	the	pager’s

display.	Programs	such	as	groff	often

produce	relatively	minor	error

messages	about	typographical

problems	such	as	poor	alignment,

which	are	unsightly	and	generally

confusing	when	displayed	along	with

the	man	page.	However,	you	might

want	to	see	them	anyway,	so

if	$MAN_KEEP_STDERR	is	set	to	a

non-empty	value,	error	output	will	be

displayed	as	usual.

LANG,	LC_MESSAGES Depending	on	the	system	and

implementation,	either	or	both

of	$LANGand	$LC_MESSAGES	will

be	interrogated	for	the	current

message	locale,	man	will	display	its

messages	in	that	locale	(if	available).

	

Files

These	files	are	used	by	man:

	

/etc/manpath.config The	man-

db	configuration

file.

/usr/share/man A	global	manual

page	hierarchy.

/usr/share/man/index.

(bt|db|dir|pag)

A	traditional	global

index	database

cache.

/var/cache/man/index.

(bt|db|dir|pag)

An	FHS	compliant

global	index

database	cache.

Examples

man	man

View	the	man	page	for	the	man	command.

man	—nh	—nj	man

Chapter	 Seven:	 LINUX	 DIRECTORY
COMMAND

	

Linux	or	UNIX-like	systems	use	 the	 ls	 command	 to	 list	 files	and	directories.
However,	 ls	 does	 not	 have	 an	 option	 to	 list	 only	 directories.	 You	 can	 use
combination	 of	 ls	 and	 grep	 to	 list	 directory	 names	 only.	 You	 can	 use	 the	 find
command	too.	In	this	quick	tutorial,	you	will	learn	how	to	list	only	directories	in

Linux	or	UNIX.

List	all	directories	in	Unix

Type	the	following	command:

$	ls	-l	|	grep	`^d’
ls	-l	|	egrep	`^d’

Try	the	following	ls	command	to	list	directories	in	the	current
directory:

$	ls	-d	*/

sample	outputs																																																																																				

List	only	files	in	Unix

Type	the	following	command:
$	ls	-l	|	egrep	-v	‘^d’

$	ls	-l	|	egrep	-v	‘^d’

The	grep	command	is	used	to	searches	input.	It	will	filter	out	directory	names

by	matching	first	character	‘d’.	To	reverse	the	effect	i.e.	just	to	display

files	you	need	to	pass	the	-v	option.	It	inverts	the	sense	of	matching,	to

select	non-matching	lines.

Task:	Create	aliases	to	save	time

You	can	create	two	aliases	to	list	only	directories	and	files.
alias	lf=“ls	-l	|	egrep	-v	‘^d’”

alias	ldir=“ls	-l	|	egrep	‘^d’”

Put	above	two	aliases	in	your	bash	shell	startup	file:
$	cd

$	vi	.bash_profile

Append	two	lines:
alias	lf=“ls	-l	|	egrep	-v	‘^d’”

alias	ldir=“ls	-l	|	egrep	‘^d’”

Save	and	close	the	file.

Now	just	type	lf	-	to	list	files	and	ldir	-	to	list	directories	only:
$	cd	/etc

$	lf

Sample	output:

-rw-r—r—			1	root	root						2149	2006-09-04	23:25	adduser.conf

-rw-r—r—			1	root	root								44	2006-09-29	05:11	adjtime

-rw-r—r—			1	root	root							197	2006-09-04	23:48	aliases

-rw––-			1	root	root							144	2002-01-18	13:43	at.deny

-rw-r—r—			1	root	root							162	2006-09-22	23:24	aumixrc

-rw-r—r—			1	root	root								28	2006-09-22	23:24	aumixrc1

List	directory	names	only:
$	cd	/etc

$	ldir

Sample	output:
drwxr-xr-x			4	root	root						4096	2006-09-22	16:41	alsa

drwxr-xr-x			2	root	root						4096	2006-09-20	20:59	alternatives

drwxr-xr-x			6	root	root						4096	2006-09-22	16:41	apm

drwxr-xr-x			3	root	root						4096	2006-09-07	02:51	apt

drwxr-xr-x			2	root	root						4096	2006-09-08	01:46	bash_completion.dUse	find
command	to	list	either	files	or	directories

The	find	command	can	be	used	as	follows:	to	list	all	directories	in	/nas,	enter:
find	/nas	-type	d

find	/nas	-type	d	-ls

find	.	-type	d	-ls

Sample	output:
1070785				8	drwxrwxrwt			8	root					root									4096	Jul		5	07:12	.

1070797				8	drwx––			2	root					root									4096	Jul		4	07:22	./orbit-root

1070843				8	drwxr-xr-x			2	root					root									4096	Jun	16	18:55	./w

1070789				8	drwxr-xr-x		10	root					root									4096	Jun	17	14:54	./b

1071340				8	drwxr-xr-x			2	root					root									4096	Jun	16	18:55	./b/init.d

1071581				8	drwxr-xr-x			3	root					root									4096	Jun	16	18:55	./b/bind

1071584				8	drwxr-xr-x			2	root					root									4096	Jun	16	18:55	./b/bind/bak

1071617				8	drwxr-xr-x			2	root					root									4096	Jun	16	18:55	./b/fw

1071628				8	drwxr-xr-x			8	root					root									4096	Jun	16	18:55	./b/scripts

	

	

Chapter	Eight:	WORKING	WITH	FILES
	

This	chapter	will	first	describe	general	characteristics	of	Unix	commands.	It	will

then	discuss	commands,	which	are	commonly	used	to	create	and	manipulate	files.

A	summary	of	some	of	the	most	commonly	used	UNIX	commands	is	presented	in

Command	Comparisons.

UNIX	File	Names

It	is	important	to	understand	the	rules	for	creating	UNIX	files:	UNIX	is	case

sensitive!	 For	 example,	 “fileName”	 is	 different	 from	 “filename.”	 It	 is

recommended	 that	 you	 limit	 names	 to	 the	 alphabetic	 characters,	 numbers,

underscore	(_),	and	dot	(.).	Dots	(.)	used	in	UNIX	filenames	are	simply	characters

and	not	delimiters	between	filename	components;	you	may	include	more	than	one

dot	in	a	filename.	Including	a	dot	as	the	first	character	of	a	filename	makes	the	file

invisible	(hidden)	to	the	normal	ls	command;	use	the	-a	flag	of	the	ls	command	to

display	hidden	 files.	Although	many	 systems	will	 allow	more,	 the	 recommended

length	 is	 14	 characters	 per	 file	 name.	 Unix	 shells	 typically	 include	 several

important	 wildcard	 characters.	 The	 asterisk	 (*)	 is	 used	 to	 match	 0	 or	 more

character	 (e.g.,	 abc*	 will	 match	 any	 file	 beginning	 with	 the	 letters	 abc),	 the

question	mark	(?)	is	used	to	match	any	single	character,	and	the	left	([)	and	right

(])	square	brackets	are	used	to	enclose	a	string	of	characters,	any	one	of	which	is

to	match.	Execute	the	following	commands	and	observe	the	results:

		ls	m*

		ls	*.f

		ls	*.?

		ls	[a-d]*

	

Notes	for	PC	users:	Unix	uses	forward	slashes	(/)	instead	of	backslashes	(\)	for	directories

Looking	at	the	Contents	of	Files

You	 can	 examine	 the	 contents	 of	 files	 using	 a	 variety	 of
commands.	cat,	more,	pg,	head,	and	tail	are	described	here.	Of	 course,	 you
can	always	use	an	editor;	to	use	vi	in	“read-only”	mode	to	examine	the	contents
of	the	file	“argtest”,	enter:

		vi		-R			argtest	

You	can	now	use	 the	 standard	vi	 commands	 to	move	 through	 the	 file;	however,

you	will	not	be	able	to	make	any	changes	to	the	contents	of	the	file.	This	option	is

useful	when	you	simply	want	to	look	at	a	file	and	want	to	guarantee	that	you	make

no	changes	while	doing	so.

Use	the	vi	“””	command	to	exit	from	the	file.

Cat	Command

cat	 is	 a	 utility	 used	 to	 conCATenate	 files.	 Thus,	 it	 can	 be	 used	 to	 join	 files
together,	but	it	is	perhaps	more	commonly	used	to	display	the	contents	of	a	file	on
the	screen.

Observe	the	output	produced	by	each	of	the	following	commands:

		cd;				cd		xmp

		cat								cars

		cat		-vet		cars

		cat		-n				cars

The	 semicolon	 (;)	 in	 the	 first	 line	 of	 this	 example	 is	 a	 command	 separator
which	 enables	 entry	 of	 more	 than	 one	 command	 on	 a	 line.	 When
the	<Return>	key	is	pressed	following	this	line,	the	command	cd	is	issued	which
changes	to	your	home	directory.	Then	the	command	“cd	xmp”	is	issued	to	change
into	 the	 subdirectory	 “xmp.”	 Entering	 this	 line	 is	 equivalent	 to	 having	 entered
these	 commands	 sequentially	 on	 separate	 lines.	 These	 two	 commands	 are
included	in	the	example	to	guarantee	that	you	are	in	the	subdirectory	containing
“cars”	and	the	other	example	files.	You	need	not	enter	these	commands	if	you	are
already	in	the	“xmp”	directory	created	when	you	copied	the	example	file.

The	 “-vet”	 option	 enables	 display	 of	 tab,	 end-of-line,	 and	 other	 non-printable
characters	within	a	file;	the	“-n”	option	numbers	each	line	as	it	is	displayed.

You	can	also	use	the	cat	command	to	join	files	together:

		cat		page1

		cat		page2

		cat		page1		page2	>	document

		cat		document

Note:	 If	 the	 file	 “document”	 had	 previously	 existed,	 it	 will	 be	 replaced	 by	 the

contents	of	files	“page1”	and	“page2.”

Cautions	to	using	the	cat	command:	The	cat	command	should	only	be	used
with	 “text”	 files;	 it	 should	 not	 be	 used	 to	 display	 the	 contents	 of	 binary	 (e.g.,
compiled	C	or	FORTRAN	programs).	Unpredictable	results	may	occur,	including
the	termination	of	your	logon	session.	Use	the	command	“file	*”	to	display	the
characteristics	of	files	within	a	directory	prior	to	using	the	cat	command	with	any
unknown	file.	You	can	use	the	od(enter	“man	od”	for	details	on	use	of	Octal	Dump)	command	to
display	the	contents	of	non-text	files.	For	example,	to	display	the	contents	of	“a.out”	in	both	hexadecimal	and

character	representation,	enter:

		od		-xc		a.out

Warning:	cat	(and	other	Unix	commands)	can	destroy	files	if	not	used	correctly.
For	example,	as	illustrated	in	the	Sobell	book,	the	cat	(also	cp	and	mv)	command
can	 overwrite	 and	 thus	 destroy	 files.	 Observe	 the	 results	 of	 the	 following
command:

		cat		letter	page1	>		letter

Typically,	 UNIX	 does	 not	 return	 a	 message	 when	 a	 command	 executes

successfully.	 Here	 the	 UNIX	 operating	 system	 will	 attempt	 to	 complete	 the

requested	 command	 by	 first	 initializing	 the	 file	 “letter”	 and	 then	 writing	 the

current	contents	of	“letter”	(now	nothing)	and	“page1”	into	this	file.	Since	“letter”

has	 been	 reinitialized	 and	 is	 also	 named	 as	 a	 source	 file,	 an	 error	 diagnostic	 is

generated.	 Part	 of	 the	 UNIX	 philosophy	 is	 “No	 news	 is	 good	 news.”	 Thus,	 the

appearance	 of	 a	 message	 is	 a	 warning	 that	 the	 command	 was	 not	 completed

successfully.

Now	 use	 the	 “cat”	 command	 to	 individually	 examine	 the	 contents	 of	 the	 files
“letter”	 and	 “page1.”	 Observe	 that	 the	 file	 “letter”	 does	 not	 contain	 the	 original
contents	of	the	files	“letter”	and	“page1”	as	was	intended.

Use	the	following	command	to	restore	the	original	file	“letter”:

		cp		~aixstu00/xmp/letter.

	

More	Command

You	 may	 type	 or	 browse	 files	 using	 the	 more	 command.	 The	 “more”
command	is	useful	when	examining	a	large	file	as	it	displays	the	file	contents	one
page	 at	 a	 time,	 allowing	 each	 page	 to	 be	 examined	 at	 will.	 As	 with
the	man	command,	you	must	press	the	space	bar	to	proceed	to	the	next	screen	of
the	file.	On	many	systems,	pressing	the		key	will	enable	you	to	page	backwards
in	the	file.	To	terminate	more	at	any	time,	press	<q>.

To	examine	a	file	with	the	more	command,	simply	enter:

		more		file_name

The	man	command	uses	 the	more	command	 to	display	 the	manual	pages;	 thus,
the	commands	you	are	familiar	with	using	man	will	also	work	with	more.
Not	 all	 Unix	 systems	 include	 the	 more	 command;	 some	 implement
the	 pg	 command	 instead.	 VTAIX	 includes	 both	 the	 more	 and	 pg	 commands.
When	 using	 the	 pg	 command,	 press	 <Return>	 to	 page	 down	 through	 a	 file
instead	of	using	the	space	bar.

Observe	the	results	of	entering	the	following	commands:

		more		argtest

		pg				argtest

Head	Command

The	head	command	is	used	to	display	the	first	 few	lines	of	a	file.	This	command

can	be	useful	when	you	wish	to	look	for	specific	information,	in	the	beginning	of

the	file.	For	example,	enter:

		head		argtest

Tail	Command

The	tail	command	is	used	to	display	the	last	lines	of	a	file.	This	command	can	be
useful	to	monitor	the	status	of	a	program,	which	appends	output	to	the	end	of	a
file.	For	example,	enter:

		tail		argtest

Copying,	Erasing,	Renaming

Warning:	The	typical	Unix	operating	system	provides	no	‘unerase’	or	 ‘undelete’
command.	If	you	mistakenly	delete	a	file	you	are	dependent	upon	the	backups	you

or	the	system	administrator	have	maintained	in	order	to	recover	the	file.	You	need

to	 be	 careful	 when	 using	 commands	 like	 copy	 and	 move,	 which	 may	 result	 in

overwriting	existing	 files.	 If	 you	are	using	 the	C	or	Korn	Shell,	 you	 can	 create	a

command	 alias	 ,	 which	 will	 prompt	 you	 for	 verification	 before	 overwriting	 files
with	these	commands.

Copying	Files

The	cp	command	is	used	to	copy	a	file	or	group	of	files.	You	have	already	seen	an
example	application	of	the	cp	command	when	you	copied	the	sample	files	to	your
userid.	Now	 let’s	make	a	 copy	of	one	of	 these	 files.	Recall	 that	you	can	obtain	a

https://secure.hosting.vt.edu/www.dev.arc.vt.edu/?page_id=646

listing	of	 the	 files	 in	 the	 current	directory	using	 the	ls	 command.	Observe	 the
results	from	the	following	commands:

	

		ls		l*

		cp		letter		letter.2

		ls		l*

Note:	Unlike	many	other	operating	systems,	such	as	PC/DOS,	you	must	specify

the	target	with	the	copy	command;	it	does	not	assume	the	current	directory	if	no

“copy-to”	target	is	specified.

Erasing	Files

Unix	uses	the	command	rm	(ReMove)	to	delete	unwanted	files.	To	remove	the	file
“letter.2”	which	we	have	just	created,	enter:

		rm		letter.2

Enter	the	command	“ls	l*”	to	display	a	list	of	all	files	beginning	with	the	letter
“l.”	Note	 that	 letter.2	 is	 no	 longer	 present	 in	 the	 current	 directory.	 The	 remove
command	 can	 be	 used	 with	 wildcards	 in	 filenames;	 however,	 this	 can	 be
dangerous	 as	 you	 might	 end	 up	 erasing	 files	 you	 had	 wanted	 to	 keep.	 It	 is
recommended	that	you	use	the	“-i”	(interactive)	option	of	rm	for	wildcard	deletes
—	you	will	then	be	prompted	to	respond	with	a	“y”	or	“Y”	for	each	file	you	wish	to
delete.

Renaming	a	File

The	 typical	 Unix	 operating	 system	 utilities	 do	 not	 include	 a	 rename
command;	however,	we	can	use	the	mv	(MoVe)	command	(see	for	additional	uses
of	 this	 command)	 to	 “move”	Working	with	Directories)	 a	 file	 from	one	name	 to
another.	Observe	the	results	of	the	following	commands:

		ls		[d,l]*

		mv		letter		document

		ls		[d,l]*

		mv		document	letter

		ls		[d,l]*

	

Note:	 The	 first	 mv	 command	 overwrites	 the	 file	 “document”	 which	 you	 had
created	in	an	earlier	exercise	by	concatenating	“page1”	and	“page2.”	No	warning	is

issued	when	the	mv	command	is	used	to	move	a	file	into	the	name	of	an	existing
file.	If	you	would	like	to	be	prompted	for	confirmation	if	the	mv	command	were	to
overwrite	an	existing	 file,	use	 the	 “-i”	 (interactive)	 option	of	 the	mv	 command,
e.g.:

		mv		-i		page1		letter

You	will	now	be	told	that	the	file	“letter”	already	exists	and	you	will	be	asked	if	you
wish	 to	proceed	with	 the	mv	command.	Answer	anything	but	 “y”	or	 “Y”	 and	 the
file	“letter”	will	not	be	overwritten.

	

Using	the	Command	Line

The	 command	 interpreter	 (shell)	 provides	 the	 mechanism	 by	 which	 input

commands	are	 interpreted	and	passed	 to	 the	Unix	kernel	or	other	programs	 for

processing.	Observe	the	results	of	entering	the	following	commands:

		./filesize

		./hobbit

		./add2

		ls	-F

Observe	that	“filesize”	is	an	executable	shell	script,	which	displays	the	size	of	files.

Also	 note	 that	 “./hobbit”	 and	 “./add2”	 generate	 error	 diagnostics	 as	 there	 is	 no

command	 or	 file	 with	 the	 name	 “hobbit”	 and	 the	 file	 “add2”	 lacks	 execute

permission.

Standard	Input	and	Standard	Output

As	you	have	can	see,	Unix	expects	standard	input	to	come	from	the	keyboard,	e.g.,

enter:

		cat

		my_text

		<Ctrl-D>

Standard	output	is	typically	displayed	on	the	terminal	screen,	e.g.,	enter:

		cat	cars

Standard	 error	 (a	 listing	 of	 program	 execution	 error	 diagnostics)	 is	 typically

displayed	on	the	terminal	screen,	e.g.,	enter:

		ls	xyzpqrz

Redirection

As	 illustrated	 above,	 many	 Unix	 commands	 read	 from	 standard	 input

(typically	 the	 keyboard)	 and	 write	 to	 standard	 output	 (typically	 the	 terminal

screen).	The	redirection	operators	enable	you	to	read	input	from	a	file	(<)	or	write

program	 output	 to	 a	 file	 (>).	When	 output	 is	 redirected	 to	 a	 file,	 the	 program

output	replaces	the	original	contents	of	the	file	if	it	already	exists;	to	add	program

output	to	the	end	of	an	existing	file,	use	the	append	redirection	operator	(>>).

Observe	the	results	of	the	following	command:

		./a.out

You	will	be	prompted	to	enter	a	Fahrenheit	temperature.	After	entering	a	numeric

value,	a	message	will	be	displayed	on	the	screen	informing	you	of	the	equivalent

Centigrade	temperature.	In	this	example,	you	entered	a	numeric	value	as	standard

input	 via	 the	 keyboard	 and	 the	 output	 of	 the	 program	 was	 displayed	 on	 the

terminal	screen.

In	the	next	example,	you	will	read	data	from	a	file	and	have	the	result	displayed	on

the	screen	(standard	output):

		cat		data.in

		./a.out		<		data.in

Now	you	will	read	from	standard	input	(keyboard)	and	write	to	a	file:

		./a.out		>		data.two

		35

		cat		data.two

Now	read	from	standard	input	and	append	the	result	to	the	existing	file:

./a.out		<		data.in		>>		data.two

As	 another	 example	 of	 redirection,	 observe	 the	 result	 of	 the	 following	 two

commands:

		ls		-la		/etc		>		temp

		more		temp

Here	we	have	redirected	the	output	of	the	ls	command	to	the	file	“temp”	and	then
used	the	more	command	to	display	the	contents	of	this	file	a	page	at	a	time.	In	the
next	section,	we	will	see	how	the	use	of	pipes	could	simplify	this	operation.

Using	Pipes	and	Filters

A	filter	is	a	Unix	program,	which	accepts	input	from	standard	input	and	places	its

output	in	standard	output.	Filters	add	power	to	the	UNIX	system	as	programs	can

be	written	to	use	the	output	of	another	program	as	input	and	create	output,	which

can	be	used	by	yet	another	program.	A	pipe	(indicated	by	the	symbol	“|”	—	vertical

bar)	is	used	between	UNIX	commands	to	indicate	that	the	output	from	the	first	is

to	 be	 used	 as	 input	 by	 the	 second.	 Compare	 the	 output	 from	 the	 following	 two

commands:

		ls	-la	/etc

		ls	-la	/etc	|	more

	

The	 first	 command	displays	 of	 all	 the	 files	 in	 the	 in	 the	 “/etc”	 directory	 in	 long
format.	It	is	difficult	to	make	use	of	this	information	since	it	scrolls	rapidly	across
the	 screen.	 In	 the	 second	 line,	 the	 results	 of	 the	 ls	 command	 are	 piped	 into
the	more	command.	We	can	now	examine	this	information	one	screen	at	a	time
and	can	even	back	up	to	a	prior	screen	of	information	if	we	wish	to.	As	you	became
more	familiar	with	UNIX,	you	will	find	that	piping	output	to	the	more	command
can	be	very	useful	in	a	variety	of	applications.

The	sort	command	can	be	used	to	sort	the	lines	in	a	file	in	a	desired	order.	Now
enter	the	following	commands	and	observe	the	results:

		who

		sort	cars

		who		|		sort

The	who	command	displays	 a	 list	 of	 users	 currently	 logged	 onto	 the	 system	 the
sort	 command	 enables	 us	 to	 sort	 the	 information.	 The	 second	 command	 sorts
the	 lines	 in	 the	 file	 cars	 alphabetically	 by	 first	 field	 and	 displays	 the	 result	 in
standard	 output.	 The	 third	 command	 illustrates	 how	 the	 result	 of	 the	 who
command	can	be	passed	to	the	sort	command	prior	to	being	displayed.	The	result
is	a	listing	of	logged	on	users	in	alphabetical	order.

The	 following	 example	 uses	 the	 “awk”	 and	 “sort”	 commands	 to	 select	 and
reorganize	the	output	generated	by	the	“ls”	command:

		ls	-l	|	awk	‘/:/	{print	$5,$9}’	|	sort	-nr

Note:	Curly	braces	do	not	necessarily	display	correctly	on	all	output	devices.	 In

the	above	example,	there	should	be	a	left	curly	brace	in	front	of	the	word	print	and

a	right	curly	brace	following	the	number	9.

Observe	that	 the	output	displays	the	 filesize	and	filename	in	decreasing	order	of
size.	 Here	 the	 ls	 command	 first	 generates	 a	 “long”	 listing	 of	 the	 files	 in	 the
current	directory,	which	is	piped	to	the	“awk”	utility,	whose	output	is	then	piped
to	the	“sort”	command.

“awk”	 is	 a	 powerful	 utility	 which	 processes	 one	 or	 more	 program	 lines	 to	 find
patterns	within	a	file	and	perform	selective	actions	based	on	what	is	found.	Slash
(/)	 characters	 are	 used	 as	 delimiters	 around	 the	 pattern	 to	 be	matched	 and	 the
action	to	be	taken	is	enclosed	in	curly	braces.	If	no	pattern	is	specified,	all	lines	in
the	file	are	processed	and	if	no	action	is	specified,	all	lines	matching	the	specified
pattern	 are	 output.	 Since	 a	 colon	 (:)	 is	 used	 here,	 all	 lines	 containing	 file
information	 (the	 time	 column	 corresponding	 to	 each	 file	 contains	 a	 colon)	 are
selected	and	the	information	contained	in	the	5th	and	9th	columns	are	output	to
the	sort	command.

Note:	If	the	ls	command	on	your	system	does	not	include	a	column	listing	group
membership,	 use	{print	$4,$8}	 instead	 of	 the	 “print”	 command	 option	 of
awk	listed	above.

Here	the	“sort”	command	options	“-nr”	specify	 that	 the	output	 from	“awk”	be
sorted	in	reverse	numeric	order,	i.e.,	from	largest	to	smallest.

The	preceding	command	is	somewhat	complex	and	it	is	easy	to	make	a	mistake	in

entering	it.	If	this	were	a	command	you	would	use	frequently,	we	could	include	it

in	a	shell	script	as	in	sample	file	“filesize”.	To	use	this	shell	script,	simply	enter	the

command:

		./filesize
						or

		sh		filesize

If	you	examine	the	contents	of	 this	 file	with	the	cat	or	vi	commands,	you	will
see	that	it	contains	nothing	more	the	piping	of	the	ls	command	to	awk	and	then
piping	the	output	to	sort.
The	tee	utility	is	used	to	send	output	to	both	a	file	and	the	screen:

		who	|	tee	who.out	|	sort

		cat	who.out

Here	you	should	have	observed	that	a	list	of	logged	on	users	was	displayed	on	the

screen	 in	 alphabetical	 order	 and	 that	 the	 file	 “who.out”	 contained	 an	 unsorted

http://www.arc.vt.edu/resources/software/unix/shells.php

listing	of	the	same	userids.

	

Some	Additional	File	Handling	Commands

Word	Count

The	command	wc	displays	the	number	of	lines,	words,	and	characters	in	a	file.

To	display	the	number	of	lines,	words,	and	characters	in	the	file	file_name,	enter:	

wc	file_name

Comparing	the	Contents	of	Two	Files:	the	cmp	and	diff	Commands

The	cmp	and	diff	commands	are	used	to	compare	files;	the	“comp”	command	is
not	used	to	compare	files,	but	to	“compose	a	message.”

The	cmp	 command	 can	 be	 used	 for	 both	 binary	 and	 text	 files.	 It	 indicates	 the
location	(byte	and	line)	where	the	first	difference	between	the	two	files	appears.

The	diff	command	can	be	used	to	compare	text	 files	and	its	output	shows	the
lines	which	are	different	in	the	two	files:	a	less	than	sign	(“<“)	appears	in	front	of
lines	 from	the	 first	 file	which	differ	 from	those	 in	 the	second	file,	a	greater	 than
symbol	(“>”)	precedes	lines	from	the	second	file.	Matching	lines	are	not	displayed.

Observe	the	results	of	the	following	commands:

		cmp			page1		page2

		diff		page1		page2

Lines	1	and	2	of	these	two	files	are	identical,	 lines	3	differ	by	one	character,	and

page	one	contains	a	blank	line	following	line	three,	while	page2	does	not.

	

	

	

	

	

	

	

	

	

Chapter	Nine:	NAVIGATION	AND	FILE
MANAGEMENT

	

If	you	do	not	have	much	experience	working	with	Linux	systems,	you	may	be

overwhelmed	 by	 the	 prospect	 of	 controlling	 an	 operating	 system	 from	 the

command	line.	In	this	book,	we	will	attempt	to	get	you	up	to	speed	with	the	basics.

Prerequisites	and	Goals

In	 order	 to	 follow	 along	with	 this	 book,	 you	will	 need	 to	 have	 access	 to	 a

Linux	server.	You	will	also	want	to	have	a	basic	understanding	of	how	the	terminal

works	and	what	Linux	commands	look	like.	This	book	covers	terminal	basics,	so

you	should	check	it	out	if	you	are	new	to	using	terminals.	All	of	the	material	in	this

book	 can	 be	 accomplished	 with	 a	 regular,	 non-root	 (non-administrative)	 user

account.	 You	 can	 learn	 how	 to	 configure	 this	 type	 of	 user	 account	 by	 following

your	distribution’s	initial	server	setup	guide	(Ubuntu	14.04,	CentOS	7).	When	you

are	ready	to	begin,	connect	to	your	Linux	server	using	SSH	and	continue	below.

Navigation	and	Exploration

The	 most	 fundamental	 skills	 you	 need	 to	 master	 are	 navigating	 the

filesystem.	We	will	discuss	the	tools	that	allow	you	to	do	this	in	this	section.

Finding	where	you	are	with	the	“pwd”	command

When	 you	 log	 onto	 your	 server,	 you	 are	 typically	 dropped	 into	 your	 user
accounts	home	directory.	A	home	directory	 is	 the	directory	 set	 aside	 for	 your
account	 to	 store	 files	 and	 create	 directories.	 It	 is	 the	 location	 in	 the	 filesystem
where	 you	 have	 full	 dominion.	 To	 find	 out	 where	 your	 home	 directory	 is	 in
relationship	 to	 the	 rest	 of	 the	 filesystem,	 you	 can	 use	 the	 pwd	 command.	 This
command	displays	the	directory	that	we	are	currently	in:
pwd

You	should	get	back	some	information	that	looks	like	this:

/home/demo

The	home	directory	is	named	after	the	user	account,	so	the	above	example	is
what	 the	 value	 would	 be	 if	 you	 were	 logged	 into	 the	 server	 with	 an	 account
called	 demo.	 This	 directory	 is	 within	 a	 directory	 called/home,	 which	 is	 itself
within	the	top-level	directory,	which	is	called	“root”	represented	by	a	single	slash
“/”.

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-centos-7

Looking	at	the	Contents	of	Directories	with	“ls”

Now	that	you	know	how	to	display	the	directory	that	you	are	in,	we	can	show

you	how	to	look	at	the	contents	of	a	directory.

Currently,	your	home	directory	does	contain	much,	so	we	will	go	to	another,
more	 populated	 directory	 to	 explore.	 Type	 the	 following	 command	 in	 your
terminal	to	change	directory	(we	will	explain	the	details	of	moving	directories	in
the	 next	 section).	 Afterward,	 we	 will	 use	 pwd	 to	 confirm	 that	 we	 successfully
moved:
cd	/usr/share

pwd

/usr/share

Now	that	we	are	in	a	new	directory,	let	us	look	at	what’s	inside.	To	do	this,	we	can
use	the	ls	command:
ls

adduser												groff																										pam-configs

applications							grub																											perl

apport													grub-gfxpayload-lists										perl5

apps															hal																												pixmaps

apt																i18n																											pkgconfig

aptitude											icons																										polkit-1

apt-xapian-index			info																											popularity-contest

…

As	you	can	see,	there	are	many	items	in	this	directory.	We	can	add	some	optional
flags	to	the	command	to	modify	the	default	behavior.	For	instance,	to	list	all	of	the
contents	in	an	extended	form,	we	can	use	the	-l	flag	(for	“long”	output):
ls	-l

total	440

drwxr-xr-x			2	root	root		4096	Apr	17		2014	adduser

drwxr-xr-x			2	root	root		4096	Sep	24	19:11	applications

drwxr-xr-x			6	root	root		4096	Oct		9	18:16	apport

drwxr-xr-x			3	root	root		4096	Apr	17		2014	apps

drwxr-xr-x			2	root	root		4096	Oct		9	18:15	apt

drwxr-xr-x			2	root	root		4096	Apr	17		2014	aptitude

drwxr-xr-x			4	root	root		4096	Apr	17		2014	apt-xapian-index

drwxr-xr-x			2	root	root		4096	Apr	17		2014	awk

…

This	view	gives	us	plenty	of	information,	most	of	which	looks	rather	unusual.	The
first	block	describes	the	file	type	(if	the	first	column	is	a	“d”	the	item	is	a	directory,
if	 it	 is	 a	 “-“,	 it	 is	 a	 normal	 file)	 and	 permissions.	 Each	 subsequent	 column,
separated	by	white	 space,	describes	 the	number	of	hard	 links,	 the	owner,	 group
owner,	 item	 size,	 last	 modification	 time,	 and	 the	 name	 of	 the	 item.	 We	 will
describe	some	of	these	at	another	time,	but	for	now,	just	know	that	you	can	view
this	information	with	the	-l	flag	of	ls.
To	get	a	listing	of	all	files,	including	hidden	files	and	directories,	you	can	add	the	-
a	flag.	Since	there	are	no	real	hidden	files	in	the	/usr/share	directory,	 let’s	go
back	to	our	home	directory	and	try	that	command.	You	can	get	back	to	the	home
directory	by	typing	cd	with	no	arguments:
cd

ls	-a

.		..		.bash_logout		.bashrc		.profile

As	 you	 can	 see,	 there	 are	 three	 hidden	 files	 in	 this	 demonstration,	 along
with	 .	and	 ..,	which	are	special	 indicators.	You	will	 find	that	often,	configuration
files	are	stored	as	hidden	files.

The	dot	and	double	dot	entries,	are	built-in	methods	of	referring	to	related

directories.	The	single	dot	indicates	the	current	directory,	and	the	double	dot

indicates	this	directory’s	parent	directory.	This	will	come	in	handy	in	the	next

section.

Moving	Around	the	Filesystem	with	“cd”

We	have	already	changed	directories	twice	to	demonstrate	some	properties	of	ls.
Let’s	take	a	better	look	at	the	command	here.

Begin	by	going	back	to	the	/usr/share	directory	by	typing	this:

cd	/usr/share

This	 is	an	example	of	changing	a	directory	by	giving	an	absolute	path.	In	Linux,

every	file	and	directory	is	under	the	top-most	directory,	which	is	called	the	“root”

directory,	but	referred	to	by	a	single	leading	slash	“/”.	An	absolute	path	indicates

the	location	of	a	directory	in	relation	to	this	top-level	directory.	This	lets	us	refer

to	 directories	 in	 an	 unambiguous	 way	 from	 any	 place	 in	 the	 filesystem.	 Every

absolute	path	must	begin	with	a	slash.

The	 alternative	 is	 to	 use	 relative	 paths.	 Relative	 paths	 refer	 to	 directories	 in

relation	to	the	current	directory.	For	directories	close	to	the	current	directory	 in

the	hierarchy,	this	is	usually	easier	and	shorter.	Any	directory	within	the	current

directory	 can	be	 referenced	by	name	without	 a	 leading	 slash.	We	 can	 change	 to

the	locale	directory	within	/usr/share	from	our	current	location	by	typing:

cd	locale

We	can	likewise	change	multiple	directory	levels	with	relative	paths	by	providing
the	portion	of	 the	path	that	comes	after	 the	current	directory’s	path.	From	here,
we	can	get	to	the	LC_MESSAGES	directory	within	the	en	directory	by	typing:

cd	en/LC_MESSAGES

To	move	up	one	directory	level,	we	use	the	special	double	dot	indicator	we	talked
about	earlier.	For	instance,	we	are	now	in	the
/usr/share/locale/en/LC_MESSAGES	directory.	To	move	up	one	level,	we
can	type:
cd	..

This	takes	us	to	the	/usr/share/locale/en	directory.
A	shortcut	that	you	saw	earlier	that	will	always	take	you	back	to	your	home

directory	is	to	use	cd	without	providing	a	directory:
cd

pwd

/home/demo

	

Viewing	Files

In	the	last	section,	we	learned	how	to	navigate	the	filesystem.	In	this	section,
we	will	discuss	different	ways	to	view	files.	In	contrast	to	some	operating	systems,
Linux	 and	 other	 Unix-like	 operating	 systems	 rely	 on	 plain	 text	 files	 for	 vast
portions	 of	 the	 system.	 The	 main	 way	 that	 we	 will	 view	 files	 is	 with
the	less	command.	This	is	what	we	call	a	“pager,”	because	it	allows	us	to	scroll
through	pages	of	a	file.	While	the	previous	commands	immediately	executed	and
returned	you	 to	 the	 command	 line,	less	 is	 an	 application	 that	will	 continue	 to
run	and	occupy	the	screen	until	you	exit.

We	will	open	the	/etc/services	file,	which	is	a	configuration	file	that	contains
the	systems	services	information:
less	/etc/services

The	file	will	be	opened	in	less,	allowing	you	to	see	the	portion	of	the	document
that	fits	in	the	terminal	window:
#	Network	services,	Internet	style

#

#	Note	that	it	is	presently	the	policy	of	IANA	to	assign	a	single	well-known

#	port	number	for	both	TCP	and	UDP;	hence,	officially	ports	have	two	entries

#	even	if	the	protocol	doesn’t	support	UDP	operations.

#

#	Updated	from	http://www.iana.org/assignments/port-numbers	and	other

#	sources	like	http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/services	.

#	New	ports	will	be	added	on	request	if	they	have	been	officially	assigned

#	by	IANA	and	used	in	the	real-world	or	are	needed	by	a	debian	package.

#	If	you	need	a	huge	list	of	used	numbers	please	install	the	nmap	package.

	

tcpmux										1/tcp																											#	TCP	port	service	multiplexer

echo												7/tcp

…

To	scroll,	you	can	use	the	up	and	down	arrow	keys	on	your	keyboard.	To	page
down	one	whole	screens-worth	of	information,	you	can	use	either	the	space	bar,
the	“Page	Down”	button	on	your	keyboard,	or	the	CTRL-f	shortcut.
To	scroll	back	up,	you	can	use	either	the	“Page	Up”	button,	or	the	CTRL-
b	keyboard	shortcut.	To	search	for	some	text	in	the	document,	you	can	type	a
forward	slash	“/”	followed	by	the	search	term.	For	instance,	to	search	for	“mail”,
we	would	type:	/mail	This	will	search	forward	through	the	document	and	stop	at
the	first	result.	To	get	to	another	result,	you	can	type	the	lower-case	n	key:
n

To	move	backwards	to	the	previous	result,	use	a	capital	N	instead:
N

When	you	wish	to	exit	the	less	program,	you	can	type	q	to	quit:
q

While	we	focused	on	the	less	tool	 in	this	section,	 there	are	many	other	ways	of
viewing	a	file.	The	cat	command	displays	a	file’s	contents	and	returns	you	to	the
prompt	immediately.	The	head	command,	by	default,	shows	the	first	10	lines	of	a
file.	 Likewise,	 the	 tail	 command	 shows	 the	 last	 10	 lines.	 These	 commands
display	file	contents	in	a	way	that	is	useful	for	“piping”	to	other	programs.	We	will
discuss	this	concept	in	a	future	guide.

Feel	free	to	see	how	these	commands	display	the	/etc/services	file	differently.

File	and	Directory	Manipulation

We	 learned	 in	 the	 last	 section	 how	 to	 view	 a	 file.	 In	 this	 section,	 we	 will

demonstrate	how	to	create	and	manipulate	files	and	directories.

Create	a	File	with	“touch”

Many	commands	and	programs	can	create	 files.	The	most	basic	method	of
creating	a	 file	 is	with	the	touch	command.	This	will	create	an	empty	 file	using
the	name	and	location	specified.

First,	we	should	make	sure	we	are	in	our	home	directory,	since	this	 is	a	 location
where	we	have	permission	to	save	files.	Then,	we	can	create	a	file	called	file1	by
typing:
cd

touch	file1

Now,	if	we	view	the	files	in	our	directory,	we	can	see	our	newly	created	file:

ls

file1

If	we	use	this	command	on	an	existing	file,	the	command	simply	updates	the	data

our	filesystem	stores	on	the	time	when	the	file	was	last	accessed	and	modified.

We	can	also	create	multiple	files	at	the	same	time.	We	can	use	absolute	paths	as
well.	For	instance,	if	our	user	account	is	called	demo,	we	could	type:
touch	/home/demo/file2	/home/demo/file3

ls

file1		file2		file3

Create	a	Directory	with	“mkdir”

Similar	to	the	touch	command,	the	mkdir	command	allows	us	to	create	empty
directories.

For	 instance,	 to	 create	 a	 directory	 within	 our	 home	 directory	 called	 test,	we
could	type:
cd

mkdir	test

We	can	make	a	directory	within	the	test	directory	called	example	by	typing:
mkdir	test/example

For	 the	 above	 command	 to	 work,	 the	 test	 directory	 must	 already	 exist.	 To
tell	 mkdir	 that	 it	 should	 create	 any	 directories	 necessary	 to	 construct	 a	 given
directory	 path,	 you	 can	 use	 the	 -p	 option.	 This	 allows	 you	 to	 create	 nested
directories	 in	 one	 step.	 We	 can	 create	 a	 directory	 structure	 that	 looks	 like
some/other/directories	by	typing:
mkdir	-p	some/other/directories

The	 command	 will	 make	 the	 some	 directory	 first,	 then	 it	 will	 create
the	 other	 directory	 in	 the	 some	 directory.	 Finally,	 it	 will	 create
the	directories	directory	in	the	other	directory.

Moving	and	Renaming	Files	and	Directories	with	“mv”

We	can	move	a	file	to	a	new	location	using	the	mv	command.	For	instance,	we	can
move	file1	into	the	test	directory	by	typing:
mv	file1	test

For	 this	 command,	we	 list	 all	 items	 that	we	want	 to	move,	with	 the	 location	 to

move	 them	 to.	We	 can	move	 that	 file	back	 to	 our	 home	 directory	 by	 using	 the

special	dot	reference	to	refer	to	our	current	directory.	We	should	make	sure	we	are

in	our	home	directory,	and	then	execute	the	command:

cd

mv	test/file1	.

This	 may	 seem	 unintuitive	 at	 first,	 but	 the	 mv	 command	 is	 also	 used
to	rename	 files	 and	 directories.	 In	 essence,	moving	 and	 renaming	 are	 both	 just
adjusting	the	location	and	name	for	an	existing	item.

So	to	rename	the	test	directory	to	testing,	we	could	type:
mv	test	testing

Note:	It	is	important	to	realize	that	your	Linux	system	will	not	prevent	you	from

certain	 destructive	 actions.	 If	 you	 are	 renaming	 a	 file	 and	 choose	 a	 name

that	 already	 exists,	 the	 previous	 file	 will	 be	 overwritten	 by	 the	 file	 you	 are

moving.	There	is	no	way	to	recover	the	previous	file	if	you	accidentally	overwrite

it.

Copying	Files	and	Directories	with	“cp”

With	the	mv	command,	we	could	move	or	rename	a	file	or	directory,	but	we	could
not	duplicate	it.	The	cp	command	can	make	a	new	copy	of	an	existing	item.

For	instance,	we	can	copy	file3	to	a	new	file	called	file4:

cp	file3	file4

Unlike	the	mv	operation,	after	which	file3	would	no	 longer	exist,	we	now	have
both	file3	and	file4.

Note:	As	with	 the	mv	command,	 it	 is	possible	 to	overwrite	 a	 file	 if	 you	are	not
careful	 about	 the	 filename	 you	 are	 using	 as	 the	 target	 of	 the	 operation.	 For
instance,	 if	 file4	 already	 existed	 in	 the	 above	 example,	 its	 contents	 would	 be
completely	replaced	by	the	contents	of	file3.
In	order	to	copy	directories,	you	must	include	the	-r	option	in	the	command.	This
stands	for	“recursive,”	as	it	copies	the	directory,	plus	all	of	the	directory’s	contents.

This	 option	 is	 necessary	with	 directories,	 regardless	 of	 whether	 the	 directory	 is
empty.	 For	 instance,	 to	 copy	 the	 some	 directory	 structure	 to	 a	 new	 structure
called	again,	we	could	type:

cp	-r	some	again

Unlike	with	files,	with	which	an	existing	destination	would	lead	to	an	overwrite,	if

the	target	is	an	existing	directory,	the	file	or	directory	is	copied	into	the	target:

cp	file1	again

This	will	create	a	new	copy	of	file1	and	place	it	inside	of	the	again	directory.

Removing	Files	and	Directories	with	“rm”	and	“rmdir”

To	delete	a	file,	you	can	use	the	rm	command.

Note:	Be	extremely	careful	when	using	any	destructive	command	like	rm.	There	is
no	 “undo”	 command	 for	 these	 actions	 so	 it	 is	 possible	 to	 accidentally	 destroy

important	files	permanently.

To	remove	a	regular	file,	just	pass	it	to	the	rm	command:

cd

rm	file4

Likewise,	to	remove	empty	directories,	we	can	use	the	rmdir	command.	This	will
only	 succeed	 if	 there	 is	 nothing	 in	 the	 directory	 in	 question.	 For	 instance,	 to

remove	the	example	directory	within	the	testing	directory,	we	can	type:

rmdir	testing/example

If	 you	 wish	 to	 remove	 a	 non-empty	 directory,	 you	 will	 have	 to	 use

the	rm	 command	 again.	 This	 time,	 you	 will	 have	 to	 pass	 the	-r	option,	 which
removes	all	of	the	directory’s	contents	recursively,	plus	the	directory	itself.

For	 instance,	 to	 remove	 the	 again	 directory	 and	 everything	 within	 it,	 we	 can
type:

rm	-r	again

Once	again,	 it	 is	worth	 reiterating	 that	 these	are	permanent	 actions.	Be	 entirely

sure	that	the	command	you	typed	is	the	one	that	you	wish	to	execute.

Editing	Files

Currently,	 we	 know	 how	 to	 manipulate	 files	 as	 objects,	 but	 we	 have	 not

learned	how	to	actually	edit	and	add	content	to	them.	The	nano	command	is	one
of	the	simplest	command-line	Linux	text	editors,	and	is	a	great	starting	point	for

beginners.	 It	 operates	 somewhat	 similarly	 to	 the	 less	 program	 we	 discussed
earlier,	 in	 that	 it	 occupies	 the	 entire	 terminal	 for	 the	 duration	 of	 its	 use.

The	nano	editor	can	open	existing	files,	or	create	a	file.	If	you	want	to	create	a	new
file,	you	can	give	it	a	name	when	you	call	the	nano	editor,	or	later	on,	when	you
wish	to	save	your	content.

We	can	open	the	file1	file	for	editing	by	typing:

cd

nano	file1

The	nano	application	will	open	the	 file	 (which	 is	currently	blank).	The	 interface
looks	something	like	this:

		GNU	nano	2.2.6																	File:	file1																																									

	

																																		[Read	0	lines]

^G	Get	Help			^O	WriteOut			^R	Read	File		^Y	Prev	Page		^K	
Cut	Text			^C	Cur	Pos

^X	Exit							^J	Justify				^W	Where	Is			^V	Next	Page		^U
UnCut	Text	^T	To	Spell

Along	the	top,	we	have	the	name	of	the	application	and	the	name	of	the	file	we	are

editing.	In	the	middle,	the	content	of	the	file,	currently	blank,	is	displayed.	Along

the	 bottom,	 we	 have	 a	 number	 of	 key	 combinations	 that	 indicate	 some	 basic

controls	for	the	editor.	For	each	of	these,	the	^	character	means	the	CTRL	key.

To	get	help	from	within	the	editor,	type:

CTRL-G

When	 you	 are	 finished	 browsing	 the	 help,	 type	 CTRL-X	 to	 get	 back	 to	 your
document.

Type	in	or	modify	any	text	you	would	like.	For	this	example,	we	will	just	type	these

two	sentences:

Hello	there.

	

Here	is	some	text.

To	save	type:

CTRL-O

This	is	the	letter	“o,”	not	a	zero.	It	will	ask	you	to	confirm	the	name	of	the	file	you
wish	to	save	to:

File	Name	to	Write:	file1																																																												

^G	Get	Help										M-D	DOS	Format							M-A	Append											
M-B	Backup	File

^C	Cancel												M-M	Mac	Format							M-P	Prepend

As	you	can	see,	the	options	at	the	bottom	have	also	changed.	These	are	contextual,

meaning	they	will	change	depending	on	what	you	are	trying	to	do.	If	 file1	 is	still

the	file	you	wish	to	write	to,	hit	“ENTER.”

If	we	make	additional	changes	and	wish	to	save	the	file	and	exit	the	program,	we

will	 see	 a	 similar	 prompt.	 Add	 a	 new	 line,	 and	 then	 try	 to	 exit	 the	 program	 by

typing:

CTRL-X

If	you	have	not	saved	after	making	your	modification,	you	will	be	asked	whether
you	wish	to	save	the	modifications	you	made:

Save	modified	buffer	(ANSWERING	“No”	WILL	DESTROY	CHANGES)	?																									

Y	Yes

	N	No											^C	Cancel

You	can	 type	 “Y”	 to	 save	your	changes,	 “N”	 to	discard	your	 changes	and	exit,	 or
“CTRL-C”	to	cancel	the	exit	operation.	If	you	choose	to	save,	you	will	be	given	the
same	file	prompt	 that	you	received	before,	confirming	that	you	want	 to	save	 the
changes	to	the	same	file.	Press	ENTER	to	save	the	file	and	exit	the	editor.

You	can	see	the	contents	of	the	file	you	created	using	either	the	cat	command	to
display	 the	 contents,	 or	 the	less	 command	 to	 open	 the	 file	 for	 viewing.	 After
viewing	with	less,	remember	that	you	should	hit	q	to	get	back	to	the	terminal.
less	file1

Hello	there.

	

Here	is	some	text.

	

Another	line.

	

Chapter	Ten:	UNIX	SHELL	SCRIPTING
	

	

Time	 is	precious.	 It	does	not	make	sense	 to	waste	 time	 typing	a	 frequently
used	 sequence	 of	 commands	 at	 a	 command	prompt,	more	 especially	 if	 they	 are
abnormally	 long	 or	 complex.	 Scripting	 is	 a	 way	 by	which	 one	 can	 alleviate	 this
problem	 by	 automating	 these	 command	 sequences	 in	 order	 to	make	 life	 at	 the
shell	easier	and	more	productive.	Scripting	is	all	about	making	the	computer,	the
tool,	do	the	work.	By	the	end	of	this	tutorial	you	will	have	a	good	understanding	of
the	kind	of	scripting	languages	available	for	Unix	and	how	to	apply	them	to	your
problems.	 UNIX	 contains	 many	 wonderful	 and	 strange	 commands	 that	 can	 be
very	useful	in	the	world	of	scripting,	the	more	tools	you	know	and	the	better	you
know	them,	the	more	use	you	will	find	for	them.	Most	of	the	Unix	commands	and
many	 of	 the	 built-in	 commands	 have	man	 pages;	man	pages	 contain	 the	 usage
instructions	pertaining	to	the	parent	tool.	They	are	not	always	very	clear	and	may
require	reading	several	times.	In	order	to	access	a	man	page	in	Unix	the	following
command	sequence	is	applied:

man	command

If	a	man	page	exists	for	the	command	specified	the	internal	viewer	will	be	invoked

and	you	will	be	able	to	read	about	the	various	options	and	usage	instructions.

Shell	Scripting	Introduction

UNIX	uses	 shells	 to	 accept	 commands	given	by	 the	user;	 there	 are	quite	 a

few	 different	 shells	 available.	 The	 most	 commonly	 used	 shells	 are	 SH	 (Bourne

SHell)	 CSH	 (C	 SHell)	 and	 KSH	 (Korn	 SHell),	 most	 of	 the	 other	 shells	 you

encounter	will	be	variants	of	these	shells	and	will	share	the	same	syntax,	KSH	is

based	on	SH	as	is	BASH	(Bourne	again	shell).	TCSH	(Extended	C	SHell)	is	based

on	CSH.

The	various	shells	all	have	built	in	functions	which	allow	for	the	creation	of	shell

scripts,	 that	 is,	 the	 stringing	 together	 of	 shell	 commands	 and	 constructs	 to

automate	repetitive	tasks	in	order	to	make	life	easier	for	the	user.

With	 all	 these	 different	 shells	 available,	 what	 shell	 should	 we	 use?	 This	 is

debatable.	 For	 the	 purpose	 of	 this	 tutorial	 we	 will	 be	 using	 SH	 because	 it	 is

practically	guaranteed	to	be	available	on	most	Unix	systems	and	be	supported	by

the	SH	based	shells.	Your	default	shell	may	not	be	SH.	Fortunately	we	do	not	have

to	be	using	a	specific	shell	 in	order	to	exploit	 its	features	because	we	can	specify

the	shell	we	want	to	interpret	our	shell	script	within	the	script	itself	by	including

the	following	in	the	first	line.

#!/path/to/shell

						

Usually	anything	following	(#)	 is	 interpreted	as	a	comment	and	 ignored	but	 if	 it

occurs	on	 the	 first	 line	with	a	 (!)	 following	 it	 is	 treated	as	being	 special	 and	 the

filename	 following	 the	 (!)	 is	 considered	 to	point	 to	 the	 location	of	 the	 shell	 that

should	interpret	the	script.

When	a	 script	 is	 “executed”,	 it	 is	being	 interpreted	by	an	 invocation	of	 the	 shell

that	 is	 running	 it.	Hence,	 the	shell	 is	said	 to	be	running	non-interactively,	when

the	shell	is	used	“normally”	it	is	said	to	be	running	interactively.

Note:	 There	 are	many	 variations	 of	 the	 basic	 commands	 and	 extra	 information

which	 is	 too	 specific	 to	be	mentioned	 in	 this	 short	 tutorial,	 you	 should	 read	 the

man	page	for	your	shell	to	get	a	more	comprehensive	idea	of	the	options	available

to	 you.	 This	 tutorial	 will	 concentrate	 on	 highlighting	 the	 most	 often	 used	 and

useful	commands	and	constructs.

Command	Redirection	and	Pipelines

By	 default	 a	 normal	 command	 accepts	 input	 from	 standard	 input,	 which	 we

abbreviate	to	stdin,	standard	input	is	the	command	line	in	the	form	of	arguments

passed	 to	 the	 command.	 By	 default	 a	 normal	 command	 directs	 its	 output	 to

standard	 output,	 which	 we	 abbreviate	 to	 stdout,	 standard	 output	 is	 usually	 the

console	 display.	 For	 some	 commands	 this	may	 be	 the	 desired	 action	 but	 other

times	we	may	wish	to	get	our	 input	 for	a	command	from	somewhere	other	 than

stdin	 and	 direct	 our	 output	 to	 somewhere	 other	 than	 stdout.	 This	 is	 done	 by

redirection:

We	 use	>	 to	 redirect	 stdout	 to	 a	 file,	 for	 instance,	 if	 we	 wanted	 to	 redirect	 a

directory	listing	generated	by	the	ls	we	could	do	the	following:

ls	>	file

We	use	<	to	specify	that	we	want	the	command	immediately	before	the	redirection
symbol	to	get	its	input	from	the	source	specified	immediately	after	the	symbol,	for
instance,	we	could	redirect	 the	 input	 to	grep	(which	searches	 for	strings	within
files)	so	that	it	comes	from	a	file	like	this:

grep	searchterm	<	file

We	use	>>	to	append	stdout	to	a	file,	for	example,	if	we	wanted	to	append	the	date
to	the	end	of	a	file	we	would	redirect	the	output	from	date	like	so:

date	>>	file

One	 can	 redirect	 standard	 error	 (stderr)	 to	 a	 file	 by	 using	2>,	 if	 we	 wanted	 to

redirect	the	standard	error	from	commandA	to	a	file	we	would	use:

commmandA	2>

Pipes	 are	 another	 form	 of	 redirection	 that	 are	 used	 to	 chain	 commands	 so	 that

powerful	composite	commands	can	be	constructed,	 the	pipe	symbol	 ’|’	 takes	 the

stdout	from	the	command	preceding	it	and	redirects	it	to	the	command	following

it:

										ls	-l	|	grep	searchword	|	sort	-r

								

The	 example	 above	 firsts	 requests	 a	 long	 (-l	 directory	 listing	 of	 the	 current
directory	 using	 the	 ls	 command,	 the	 output	 from	 this	 is	 then	 piped
to	 grep	which	 filters	 out	 all	 the	 listings	 containing	 the	 searchword	 and	 then
finally	 pipes	 this	 through	 to	 sort	which	 then	 sorts	 the	 output	 in	 reverse	 (-
r,	sort	then	passes	the	output	on	normally	to	stdout.

Variables

When	 a	 script	 starts,	 all	 environment	 variables	 are	 turned	 into	 shell	 variables.

New	variables	can	be	instantiated	like	this:

name=value

											

You	must	do	it	exactly	like	that,	with	no	spaces,	the	name	must	only	be	made	up	of

alphabetic	characters,	numeric	characters	and	underscores;	it	cannot	begin	with	a

numeric	character.	You	should	avoid	using	keywords	like	for	or	anything	like	that,

the	interpreter	will	let	you	use	them	but	doing	so	can	lead	to	obfuscated	code	;)

Variables	are	referenced	like	this:	$name,	here	is	an	example:
#!/bin/sh

msg1=Hello

msg2=There!

echo	$msg1	$msg2

											

This	 would	 echo	 “Hello	 There!”	 to	 the	 console	 display,	 if	 you	 want	 to	 assign	 a

string	to	a	variable	and	the	string	contains	spaces	you	should	enclose	the	string	in

double	quotes	(“),	the	double	quotes	tell	the	shell	to	take	the	contents	literally	and

ignore	 keywords,	 however,	 a	 few	 keywords	 are	 still	 processed.	 You	 can	 still

use	$	within	a	(“)	quoted	string	to	include	variables:

#!/bin/sh

msg1=“one”

msg2=”$msg1	two”

msg3=”$msg2	three”

echo	$msg3

											

Would	echo	“one	two	three”	to	the	screen.	The	escape	character	can	also	be	used

within	a	double	quoted	section	to	output	special	characters,	the	escape	character

is	”",	it	outputs	the	character	immediately	following	it	literally	so	\	would	output	\.

A	 special	 case	 is	 when	 the	 escape	 character	 is	 followed	 by	 a	 newline;	 the	 shell

ignores	the	newline	character,	which	allows	the	spreading	of	long	commands	that

must	be	executed	on	a	single	 line	 in	reality	over	multiple	 lines	within	the	script.

The	escape	character	can	be	used	anywhere,	except	within	single	quotes.

Surrounding	anything	with	single	quotes	causes	it	to	be	treated	as	literal	text	that

will	 be	 passed	 on	 exactly	 as	 intended,	 this	 can	 be	 useful	 for	 sending	 command

sequences	to	other	files	in	order	to	create	new	scripts	because	the	text	between	the

single	quotes	will	remain	untouched.	For	example:

#!/bin/sh

echo	‘msg=“Hello	World!”’	>	hello

echo	‘echo	$msg’	>>	hello

chmod	700	hello

./hello

											

This	would	cause	“msg=“Hello	World!”	to	be	echoed	and	redirected	to	the	file	hello,
“echo	 $msg”	would	 then	 be	 echoed	 and	 redirected	 to	 the	 file	 hello	 but	 this	 time
appended	to	the	end.	The	chmod	line	changes	the	file	permissions	of	hello	so	that
we	can	execute	it.	The	final	line	executes	hello	causing	it	output	“Hello	World.”	If
we	had	not	used	literal	quotes	we	would	not	have	had	to	use	escape	characters	to
ensure	that	($)	and	(“)	were	echoed	to	the	file,	this	makes	the	code	a	little	clearer.

A	variable	may	be	referenced	like	so	${VARIABLENAME},	this	allows	one	to	place

characters	 immediately	 preceding	 the	 variable

like	${VARIABLENAME}aaa	without	 the	 shell	 interpreting	 aaa	 as	being	part	 of

the	variable	name.

Command	Line	Arguments

Command	 line	 arguments	 are	 treated	 as	 special	 variables	 within	 the	 script,	 the

reason	 I	 am	 calling	 them	 variables	 is	 because	 they	 can	 be	 changed	 with

the	 shift	 command.	 The	 command	 line	 arguments	 are	 enumerated	 in	 the

following	manner	$0,	$1,	$2,	$3,	$4,	$5,	$6,	$7,	$8	and	$9.	$0	is	special	in	that	it

corresponds	 to	 the	 name	 of	 the	 script	 itself.	$1	 is	 the	 first	 argument,	$2	 is	 the

second	 argument	 and	 so	 on.	 To	 reference	 after	 the	 ninth	 argument	 you	 must

enclose	the	number	in	brackets	like	this	${nn}.	You	can	use	the	shift	command	to

shift	the	arguments	1	variable	to	the	left	so	that	$2	becomes	$1,	$1	becomes$0	and

so	on,	$0	gets	scrapped	because	it	has	nowhere	to	go,	this	can	be	useful	to	process

all	the	arguments	using	a	loop,	using	one	variable	to	reference	the	first	argument

and	shifting	until	you	have	exhausted	the	arguments	list.

As	well	as	the	command	line	arguments	there	are	some	special	built-in	variables:

$#	represents	the	parameter	count.	Useful	for	controlling	loop

constructs	that	need	to	process	each	parameter.

$@	expands	to	all	the	parameters	separated	by	spaces.	Useful	for

passing	all	the	parameters	to	some	other	function	or	program.

$-	expands	to	the	flags(options)	the	shell	was	invoked	with.	Useful	for

controlling	program	flow	based	on	the	flags	set.

$$	expands	to	the	process	id	of	the	shell	innovated	to	run	the	script.

Useful	for	creating	unique	temporary	filenames	relative	to	this

instantiation	of	the	script.

Note:	The	command	 line	arguments	will	be	 referred	 to	as	parameters	 from	now

on,	 this	 is	 because	 SH	 also	 allows	 the	 definition	 of	 functions	 which	 can	 take

parameters	and	when	called	the	$nfamily	will	be	redefined,	hence	these	variables

are	always	parameters,	its	just	that	in	the	case	of	the	parent	script	the	parameters

are	passed	via	 the	command	 line.	One	exception	 is	$0which	 is	always	set	 to	 the

name	of	the	parent	script	regardless	of	whether	it	is	inside	a	function	or	not.

Command	Substitution

In	 the	words	 of	 the	 SH	manual	 “Command	 substitution	 allows	 the	 output	 of	 a

command	to	be	substituted	in	place	of	the	command	name	itself”.	There	are	two

ways	this	can	be	done.	The	first	is	to	enclose	the	command	like	this:

$(command)

											

The	second	is	to	enclose	the	command	in	back	quotes	like	this:

`command`

											

The	 command	 will	 be	 executed	 in	 a	 sub-shell	 environment	 and	 the	 standard

output	 of	 the	 shell	 will	 replace	 the	 command	 substitution	 when	 the	 command

finishes.

Arithmetic	Expansion

Arithmetic	expansion	is	also	allowed	and	comes	in	the	form:

$((expression))

											

The	value	of	the	expression	will	replace	the	substitution.	Eg:

!#/bin/sh

echo	$((1	+	3	+	4))

											

Will	echo	“8”	to	stdout

Control	Constructs

The	flow	of	control	within	SH	scripts	is	done	via	four	main	constructs;	if…	then…

elif…,	else…,	do…,	while…,	for…	and	case….

If..	Then..	Elif..	Else

This	construct	takes	the	following	generic	form;	the	parts	enclosed	within	([)	and

(])	are	optional:

if	list

then	list

[elif	list

then	list]	…

[else	list]

fi

										

When	 a	Unix	 command	 exits	 it	 exits	with	what	 is	 known	 as	 an	 exit	 status,	 this

indicates	to	anyone	who	wants	to	know	the	degree	of	success	a	command,	usually

when	a	command	executes	without	error	it	terminates	with	an	exit	status	of	zero.

An	exit	status	of	some	other	value	would	indicates	that	an	error	has	occurred,	the

details	 of	which	 are	 specific	 to	 the	 command.	The	 commands’	man	pages	detail

the	exit	status	messages.

A	list	is	defined	in	the	SH	as	“a	sequence	of	zero	or	more	commands	separated	by
newlines,	semicolons,	or	ampersands,	and	optionally	terminated	by	one	of	these
three	 characters.”	 Hence	 in	 the	 generic	 definition	 of	 the	 if	 above	 the	 list	 will
determine	which	of	 the	execution	paths	 the	script	 takes.	For	example,	 there	 is	a
command	called	test	on	UNIX,	which	evaluates	an	expression	and	if	it	evaluates
true	 will	 return	 zero	 and	 will	 return	 one	 otherwise,	 this	 is	 how	 we	 can	 test
conditions	in	the	list	part(s)	of	the	if	construct	because	test	is	a	command.

We	do	not	actually	have	to	type	the	test	command	directly	into	the	list	to	use	it;
it	 can	 be	 implied	 by	 encasing	 the	 test	 case	 within	 ([)	 and	 (])	 characters,	 as
illustrated	by	the	following	(silly)	example:

#!/bin/sh

if	[“$1”	=	“1”]

then

			echo	“The	first	choice	is	nice”

elif	[“$1”	=	“2”]

then

			echo	“The	second	choice	is	just	as	nice”

elif	[“$1”	=	“3”]

then

			echo	“The	third	choice	is	excellent”

else

			echo	“I	see	you	were	wise	enough	not	to	choose”

			echo	“You	win”

fi

										

What	this	example	does	is	compare	the	first	parameter	(command	line	argument

in	this	case)	with	the	strings	“1”,	“2”	and	“3”	using	tests’	(=)	test	which	compares

two	 strings	 for	 equality,	 if	 any	 of	 them	 match	 it	 prints	 out	 the	 corresponding

message.	If	none	of	them	match	it	prints	out	the	final	case.	OK	the	example	is	silly

and	actually	flawed	(the	user	still	wins	even	if	they	type	in	(4)	or	something)	but	it

illustrates	how	the	if	statement	works.

Notice	that	there	are	spaces	between	(if)	and	([),	([)	and	the	test	and	the	test	and

(]),	 these	 spaces	must	 be	 present	 otherwise	 the	 shell	will	 complain.	 There	must

also	be	spaces	between	the	operator	and	operands	of	the	test	otherwise	it	will	not

work	properly.	Notice	how	 it	 starts	with	 (if)	and	ends	with	 (fi),	also,	notice	how

(then)	is	on	a	separate	line	to	the	test	above	it	and	that	(else)	does	not	require	a

(then)	statement.	You	must	construct	this	construct	exactly	like	this	for	it	to	work

properly.

It	 is	also	possible	to	integrate	logical	AND	and	OR	into	the	testing,	by	using	two

tests	separated	by	either	“&&”	or	“||”	respectively.	For	example,	we	could	replace

the	third	test	case	in	the	example	above	with:

elif	[“$1”	=	“3”]	||	[“$1”	=	“4”]

then	echo	“The	third	choi…

										

The	script	would	print	out	“The	third	choice	is	excellent”	if	the	first	parameter	was

either	“3”	OR	“4”.	To	illustrate	the	use	of	“&&”	we	could	replace	the	third	test	case

with:

elif	[“$1”	=	“3”]	||	[“$2”	=	“4”]

then	echo	“The	third	choi…

										

The	 script	would	print	 out	 “The	 third	 choice	 is	 excellent”	 if	 and	only	 if	 the	 first

parameter	was	“3”	AND	the	second	parameter	was	“4”.

“&&”	and	“||”	are	both	lazily	evaluating	which	means	that	 in	the	case	of	“&&”,	 if
the	first	test	fails	it	won’t	bother	evaluating	the	second	because	the	list	will	only	be
true	if	they	BOTH	pass	and	since	one	has	already	failed	there	is	no	point	wasting
time	evaluating	the	second.	In	the	case	of	“||”	if	the	first	test	passes	it	won’t	bother
evaluating	the	second	test	because	we	only	need	ONE	of	the	tests	to	pass	for	the
whole	list	to	pass.	See	the	test	man	page	for	the	list	of	tests	possible	(other	than
the	string	equality	test	mentioned	here).

Do…While

The	Do…While	takes	the	following	generic	form:

while	list												

do	list												

done												

										

In	the	words	of	 the	SH	manual	“The	two	lists	are	executed	repeatedly	while	the

exit	status	of	the	first	list	is	zero.”	There	is	a	variation	on	this	that	uses	until	in
place	of	while	which	executes	until	the	exit	status	of	the	first	list	is	zero.	Here	is
an	example	use	of	the	while	statement:

#!/bin/sh

count=$1																																			#	Initialise	count	to	first	
parameter	

while	[$count	-gt	0]																					#	while	count	is	greater	than	
10	do

do

			echo	$count	seconds	till	supper	time!

			count=$(expr	$count	-1)																	#	decrement	count	by	1

			sleep	1																																	#	sleep	for	a	second	using	
the	Unix	sleep	command

done

echo	Supper	time!!,	YEAH!!																	#	were	finished

										

If	called	from	the	command	line	with	an	argument	of	4	this	script	will	output

4	seconds	till	supper	time!

3	seconds	till	supper	time!

2	seconds	till	supper	time!

1	seconds	till	supper	time!

Supper	time!!,	YEAH!!

										

You	can	see	that	this	time	we	have	used	the	-gt	of	the	test	command	implicitly
called	by	‘[‘	and	‘]’,	which	stands	for	greater	than.	Pay	careful	attention	to	the
formatting	and	spacing.

For

The	syntax	of	the	for	command	is:

												for	variable	in	word	…

												do	list

												done

										

The	 SH	manual	 states	 “The	words	 are	 expanded,	 and	 then	 the	 list	 is	 executed

repeatedly	with	the	variable	set	to	each	word	in	turn.”	A	word	is	essentially	some

other	variable	that	contains	a	list	of	values	of	some	sort,	the	for	construct	assigns

each	of	the	values	in	the	word	to	variable	and	then	variable	can	be	used	within	the

body	of	the	construct,	upon	completion	of	the	body	variable	will	be	assigned	the

next	value	 in	word	until	 there	are	no	more	values	 in	word.	This	example	should

make	this	clearer:

#!/bin/sh

fruitlist=“Apple	Pear	Tomato	Peach	Grape”

for	fruit	in	$fruitlist

do

			if	[“$fruit”	=	“Tomato”]	||	[“$fruit”	=	“Peach”]

			then

						echo	“I	like	${fruit}es”

			else	

						echo	“I	like	${fruit}s”

			fi

done

										

In	this	example,	 fruitlist	 is	word,	 fruit	 is	variable	and	 the	body	of	 the	 statement

outputs	 how	 much	 this	 person	 loves	 various	 fruits	 but	 includes	 an	 if…	 then…

else	 statement	 to	 deal	with	 the	 correct	 addition	 of	 letters	 to	 describe	 the	 plural

version	 of	 the	 fruit,	 notice	 that	 the	 variable	 fruit	 was	 expressed

like	 ${fruit}	 because	 otherwise	 the	 shell	 would	 have	 interpreted	 the	 preceding

letter(s)	 as	 being	 part	 of	 the	 variable	 and	 echoed	 nothing	 because	 we	 have	 not

defined	the	variables	fruits	and	fruites	When	executed	this	script	will	output:

I	like	Apples

I	like	Pears

I	like	Tomatoes

I	like	Peachs

I	like	Grapes

										

Within	the	for	construct,	do	and	done	may	be	replaced	by	’{‘	and	’}’.

Case

The	case	construct	has	the	following	syntax:

case	word	in

pattern)	list	;;

…

	

esac

										

An	example	of	this	should	make	things	clearer:

!#/bin/sh

case	$1

in

1)	echo	‘First	Choice’;;

2)	echo	‘Second	Choice’;;

*)	echo	‘Other	Choice’;;

esac

										

“1”,	“2”	and	“*”	are	patterns,	word	is	compared	to	each	pattern	and	if	a	match	is

found	 the	 body	 of	 the	 corresponding	 pattern	 is	 executed,	 we	 have	 used	 “*”	 to

represent	 everything,	 since	 this	 is	 checked	 last	 we	 will	 still	 catch	 “1”	 and	 “2”

because	they	are	checked	first.	 In	our	example	word	 is	“$1”,	 the	 first	parameter,

hence	 if	 the	script	 is	 ran	with	 the	argument	 “1”	 it	will	output	 “First	Choice”,	 “2”

“Second	Choice”	and	anything	else	“Other	Choice”.	In	this	example	we	compared

against	 numbers	 (essentially	 still	 a	 string	 comparison	 however)	 but	 the	 pattern

can	be	more	complex,	see	the	SH	man	page	for	more	information.

Functions

The	syntax	of	an	SH	function	is	defined	as	follows:

name	()	command

								

It	is	usually	laid	out	like	this:

name()	{

commands

}

								

A	function	will	return	with	a	default	exit	status	of	zero,	one	can	return	different

exit	statuses	by	using	the	notation	return	exit	status.	Variables	can	be	defined

locally	within	a	function	using	local	name=value.	The	example	below	shows	the

use	of	a	user	defined	increment	function:

Increment	Function	Example
#!/bin/sh

inc()	{	 																										#	The	increment	is	defined	first	so	we	can	
use	it

			echo	$(($1	+	$2))														#	We	echo	the	result	of	the	first	parameter	
plus	the	second	parameter

}

	

																																		#	We	check	to	see	that	all	the	command	line
arguments	are	present

if	[“$1”	””]	||	[“$2”	=	””]	||	[“$3”	=	””]

then

			echo	USAGE:

			echo	”			counter	startvalue	incrementvalue	endvalue”

else

			count=$1																							#	Rename	are	variables	with	clearer	names	

			value=$2

			end=$3

			while	[$count	-lt	$end]						#	Loop	while	count	is	less	than	end

			do

						echo	$count

						count=$(inc	$count	$value)		 #	Call	increment	with	count	and	value	as
parameters

			done																											#	so	that	count	is	incremented	by	value

fi

	

	

inc()	{

			echo	$(($1	+	$2))

}												

									

	

The	function	 is	defined	and	opened	with	 inc()	{,	 the	 line	echo	$(($1	+	$2))	uses

the	 notation	 for	 arithmetic	 expression	 substitution	 which	 is	 $((expression))	 to

enclose	 the	 expression,	 $1	 +	 $2	 which	 adds	 the	 first	 and	 second	 parameters

passed	to	the	function	together,	the	echo	bit	at	the	start	echoes	them	to	standard

output,	we	can	catch	 this	value	by	assigning	 the	 function	call	 to	a	variable,	as	 is

illustrated	by	the	function	call.

count=$(inc	$count	$value)

												

	

We	 use	 command	 substitution	 which	 substitutes	 the	 value	 of	 a	 command	 to

substitute	 the	 value	 of	 the	 function	 call	 whereupon	 it	 is	 assigned	 to

the	count	 variable.	The	 command	within	 the	 command	 substitution	block	 is	 inc

$count	 $value,	 the	 last	 two	 values	 being	 its	 parameters.	 Which	 are	 then

referenced	 from	 within	 the	 function	 using	 $1	 and	 $2.	We	 could	 have	 used	 the

other	command	substitution	notation	to	call	the	function	if	we	had	wanted:

count=`inc	$count	$value`

												

Here	is	another	example	illustrating	the	scope	of	variables:

Variable	Scope,	Example

#!/bin/sh

inc()	{

			local	value=4		

			echo	“value	is	$value	within	the	function\n”

			echo	“\b\$1	is	$1	within	the	function”

}

	

value=5

echo	value	is	$value	before	the	function

echo	“\$1	is	$1	before	the	function”

echo

echo	-e	$(inc	$value)

echo

echo	value	is	$value	after	the	function

echo	“\$1	is	$1	after	the	function”

	

	

inc()	{

			local	value=4

			echo	“value	is	$value	within	the	function\n”

			echo	“\b\$1	is	$1	within	the	function”

}

									

	

We	assign	a	 local	value	to	the	variable	value	of	4.	The	next	three	 lines	construct

the	output,	remember	that	this	is	being	echoed	to	a	buffer	and	will	be	replace	the

function	 call	 with	 all	 that	 was	 passed	 to	 stdout	 within	 the	 function	 when	 the

function	 exits.	 So,	 the	 calling	 code	 will	 be	 replaced	 with	 whatever	 we	 direct	 to

standard	output	within	the	function.	The	function	is	called	like	this:

echo	-e	$(inc	$value)

												

We	have	passed	the	option	-e	to	the	echo	command	which	causes	it	to	process	C-
style	 backslash	 escape	 characters,	 so	 we	 can	 process	 any	 backslash	 escape
characters	which	the	string	generated	by	the	function	call	contains.	If	we	just	echo
the	 lines	 we	 want	 to	 be	 returned	 by	 the	 function	 it	 will	 not	 pass	 the	 newline
character	onto	the	buffer	even	if	we	explicitly	include	it	with	an	escape	character
reference	 so	what	we	 do	 is	 actually	 include	 the	 sequence	 of	 characters	 that	will

produce	a	new	line	within	the	string	so	that	when	it	is	echoed	by	the	calling	code
with	 the	 -e	 the	 escape	 characters	 will	 be	 processed	 and	 the	 newlines	 will	 be
placed	where	we	want	them.
echo	“value	is	$value	within	the	function\n”

												

	

Notice	 how	 the	 newline	 has	 been	 inserted	 with	 \n,	 the	 first	 two	 backslashes
indicate	 that	 we	 want	 to	 echo	 a	 backslash	 because	 within	 double	 quotes	 a
backslash	 indicates	 to	 process	 the	 next	 character	 literally,	 we	 have	 to	 do	 this
because	we	are	only	between	double	quotes	and	not	the	literal-text	single	quotes.
If	we	had	used	single	quotes	we	would	had	have	to	echo	the	bit	with	the	newline	in
separately	 from	 the	 bit	 that	 contains	 $value	 otherwise	 $value	 would	 not	 be
expanded.
echo	“\b\$1	is	$1	within	the	function”														

												

This	 is	 our	 second	 line,	 and	 is	 contained	 within	 double	 quotes	 so	 that	 the
variable	 $1	 will	 be	 expanded,	 \b	 is	 included	 so	 that	 \b	 will	 be	 placed	 in	 the
echoed	line	and	our	calling	code	processes	this	as	a	backspace	character.	If	we	do
not	do	 that	 the	 shell	prefixes	a	 space	 to	 the	 second	 line,	 the	backspace	 removes
this	space.

The	output	from	this	script	called	with	2	as	the	first	argument	is:

value	is	5	before	the	function

$1	is	2	before	the	function

	

value	is	4	within	the	function

$1	is	5	within	the	function

	

value	is	5	after	the	function

$1	is	2	after	the	function

												

Tip:	You	can	use	“.	DIRECTORY/common.sh”	to	import	functions	from	a	script
called	 common.sh	 in	 DIRECTORY,	 a	 quick	 example	 is	 shown	 below,	 first	 is
test.sh:
#!/bin/sh

.	./common.sh

if	[“$1”	=	””];	then

			echo	USAGE:

			echo	“sh	test.sh	type”

			exit

fi

	

if	`validtype	$1`;	then

			echo	Valid	type

else

			echo	Invalid	type

fi

	

Here	is	common.sh:
#!/bin/sh

validtype()	{

			if	[“$1”	=	“TYPEA”]	||

						[“$1”	=	“TYPEB”]	||

						[“$1”	=	“TYPEC”]	||

						[“$1”	=	“TYPED”]	||

						[“$1”	=	“TYPEE”];

			then

						exit	0

			else

						exit	1

			fi

}

Chapter	Eleven:	SHELL	BASIC	OPERATOR
	

Each	 shell	 supports	 various	 operators.	 This	 chapter	 is	 based	 on	 default	 shell

(Bourne)	so	we	are	going	to	cover	all	the	important	Bourne	Shell	operators	in	this

tutorial.

We	will	discuss	the	following	operators	−

Arithmetic	Operators.

Relational	Operators.

Boolean	Operators.

String	Operators.

File	Test	Operators.

The	 Bourne	 shell	 did	 not	 originally	 have	 any	 mechanism	 to	 perform	 simple
arithmetic	but	it	uses	external	programs,	either	awk	or	the	must	simpler	program
expr.

Here	is	simple	example	to	add	two	numbers	–

#!/bin/sh

	

val=`expr	2	+	2`

echo	“Total	value	:	$val”

This	produces	the	following	result	−
Total	value	:	4

Note:

There	must	be	spaces	between	operators	and	expressions	for	example

2+2	is	not	correct,	it	should	be	written	as	2	+	2.

Complete	expressions	should	be	enclosed	between	“,	inverted	commas.

Arithmetic	Operators

The	following	are	arithmetic	operators	supported	by	the	Bourne	Shell.

Assume	variable	‘a’	holds	10	and	variable	‘b’	holds	20	then	−

Example,	using	all	the	arithmetic	operators	−

#!/bin/sh

	

a=10

b=20

val=`expr	$a	+	$b`

echo	“a	+	b	:	$val”

	

val=`expr	$a	-	$b`

echo	“a	-	b	:	$val”

	

val=`expr	$a	*	$b`

echo	“a	*	b	:	$val”

	

val=`expr	$b	/	$a`

echo	“b	/	a	:	$val”

	

val=`expr	$b	%	$a`

echo	“b	%	a	:	$val”

	

if	[$a	==	$b]

then

			echo	“a	is	equal	to	b”

fi

	

if	[$a	!=	$b]

then

			echo	“a	is	not	equal	to	b”

fi

	

This	produces	the	following	result	−
a	+	b	:	30

a	-	b	:	-10

a	*	b	:	200

b	/	a	:	2

b	%	a	:	0

a	is	not	equal	to	b

Note:

There	must	be	spaces	between	operators	and	expressions	for	example
2+2	is	not	correct,	whereas	it	should	be	written	as	2	+	2.

Complete	expression	should	be	enclosed	between	“,	inverted	commas.

You	should	use	\	on	the	*	symbol	for	multiplication.

The	if…then…fi	statement	is	a	decision-making	statement,	which	will
be	explained	in	the	next	chapter.

Operator Description Example

+ Addition	-	Adds	values	on	either
side	of	the	operator

`expr	$a	+
$b`	will	give
30

- Subtraction	-	Subtracts	right
hand	operand	from	left	hand
operand

`expr	$a	-	$b`
will	give	-10

* Multiplication	-	Multiplies	values
on	either	side	of	the	operator

`expr	$a	*
$b`	will	give
200

/ Division	-	Divides	left	hand
operand	by	right	hand	operand

`expr	$b	/
$a`	will	give	2

% Modulus	-	Divides	left	hand
operand	by	right	hand	operand
and	returns	remainder

`expr	$b	%
$a`	will	give	0

= Assignment	-	Assign	right
operand	in	left	operand

a=$b	would
assign	value
of	b	into	a

== Equality	-	Compares	two
numbers,	if	both	are	same	then
returns	true.

[$a	==	$b]
would	return
false.

!= Not	Equality	-	Compares	two
numbers,	if	both	are	different
then	returns	true.

[$a	!=	$b]
would	return
true.

It	 is	 very	 important	 to	 note	 that	 all	 the	 conditional	 expressions	 should	 be	 put

inside	square	braces	with	one	spaces	around	them,	 for	example	 [$a	==	$b]	 is

correct	whereas	[$a==$b]	is	incorrect.

All	the	arithmetical	calculations	are	done	using	long	integers.

Relational	Operators:

Bourne	 Shell	 supports	 the	 following	 relational	 operators,	 which	 are	 specific	 to
numeric	values.	These	operators	will	not	work	for	string	values	unless	their	value
is	numeric.	For	example,	the	following	operators	check	a	relation	between	10	and
20	as	well	 as	 in	between	 “10”	 and	 “20”	but	not	 in	between	 “ten”	 and	 “twenty”.
Assume	variable	a	holds	10	and	variable	b	holds	20	then	−

This	example	uses	all	the	relational	operators	−
#!/bin/sh

	

a=10

b=20

	

if	[$a	-eq	$b]

then

			echo	“$a	-eq	$b	:	a	is	equal	to	b”

else

			echo	“$a	-eq	$b:	a	is	not	equal	to	b”

fi

	

if	[$a	-ne	$b]

then

			echo	“$a	-ne	$b:	a	is	not	equal	to	b”

else

			echo	“$a	-ne	$b	:	a	is	equal	to	b”

fi

	

if	[$a	-gt	$b]

then

			echo	“$a	-gt	$b:	a	is	greater	than	b”

else

			echo	“$a	-gt	$b:	a	is	not	greater	than	b”

fi

	

if	[$a	-lt	$b]

then

			echo	“$a	-lt	$b:	a	is	less	than	b”

else

			echo	“$a	-lt	$b:	a	is	not	less	than	b”

fi

	

if	[$a	-ge	$b]

then

			echo	“$a	-ge	$b:	a	is	greater	or		equal	to	b”

else

			echo	“$a	-ge	$b:	a	is	not	greater	or	equal	to	b”

fi

	

if	[$a	-le	$b]

then

			echo	“$a	-le	$b:	a	is	less	or		equal	to	b”

else

			echo	“$a	-le	$b:	a	is	not	less	or	equal	to	b”

fi

This	produces	the	following	result	−
10	-eq	20:	a	is	not	equal	to	b

10	-ne	20:	a	is	not	equal	to	b

10	-gt	20:	a	is	not	greater	than	b

10	-lt	20:	a	is	less	than	b

10	-ge	20:	a	is	not	greater	or	equal	to	b

10	-le	20:	a	is	less	or		equal	to	b

Note:

There	must	be	spaces	between	operators	and	expressions	for	example

2+2	is	not	correct,	whereas	it	should	be	written	as	2	+	2.

if…then…else…fi	statement	is	a	decision	making	statement	which

will	be	explained	in	the	next	chapter.

Operator Description Example

-eq Checks	if	the	value	of	two	operands	are
equal,	if	yes	then	condition	becomes
true.

[$a	-eq	$b]
is	not	true.

-ne Checks	if	the	value	of	two	operands	are
equal,	if	values	are	not	equal	then
condition	becomes	true.

[$a	-ne	$b]
is	true.

-gt Checks	if	the	value	of	left	operand	is
greater	than	the	value	of	right	operand,
if	yes	then	condition	becomes	true.

[$a	-gt	$b]
is	not	true.

-lt Checks	if	the	value	of	left	operand	is
less	than	the	value	of	right	operand,	if
yes	then	condition	becomes	true.

[$a	-lt	$b]
is	true.

-ge Checks	if	the	value	of	left	operand	is
greater	than	or	equal	to	the	value	of
right	operand,	if	yes	then	condition
becomes	true.

[$a	-ge	$b]
is	not	true.

-le Checks	if	the	value	of	left	operand	is
less	than	or	equal	to	the	value	of	right
operand,	if	yes	then	condition	becomes

[$a	-le	$b]
is	true.

true.

	

It	 is	 very	 important	 to	 note	 that	 all	 the	 conditional	 expressions	 should	 be	 put

inside	square	braces	with	one	spaces	around	them,	 for	example	 [$a	<=	$b]	 is

correct	whereas	[$a	<=	$b]	is	incorrect.

Boolean	Operators

The	Bourne	Shell	supports	the	following	boolean	operators.

Assume	variable	‘a’	holds	10	and	variable	‘b’	holds	20	then	−

This	example	uses	all	the	boolean	operators	−
#!/bin/sh

	

a=10

b=20

	

if	[$a	!=	$b]

then

			echo	“$a	!=	$b	:	a	is	not	equal	to	b”

else

			echo	“$a	!=	$b:	a	is	equal	to	b”

fi

	

if	[$a	-lt	100	-a	$b	-gt	15]

then

			echo	“$a	-lt	100	-a	$b	-gt	15	:	returns	true”

else

			echo	“$a	-lt	100	-a	$b	-gt	15	:	returns	false”

fi

	

if	[$a	-lt	100	-o	$b	-gt	100]

then

			echo	“$a	-lt	100	-o	$b	-gt	100	:	returns	true”

else

			echo	“$a	-lt	100	-o	$b	-gt	100	:	returns	false”

fi

	

if	[$a	-lt	5	-o	$b	-gt	100]

then

			echo	“$a	-lt	100	-o	$b	-gt	100	:	returns	true”

else

			echo	“$a	-lt	100	-o	$b	-gt	100	:	returns	false”

fi

This	produces	the	following	result	−
10	!=	20	:	a	is	not	equal	to	b

10	-lt	100	-a	20	-gt	15	:	returns	true

10	-lt	100	-o	20	-gt	100	:	returns	true

10	-lt	5	-o	20	-gt	100	:	returns	false

Note:

There	must	be	spaces	between	operators	and	expressions	for	example

2+2	is	not	correct,	whereas	it	should	be	written	as	2	+	2.

Operator Description Example

! This	is	a	logical	negation.	This
inverts	a	true	condition	into	false
and	vice	versa.

[!	false]	is
true.

-o This	is	a	logical	OR.	If	one	of	the
operands	were	true	then	condition
would	be	true.

[$a	-lt	20	-
o	$b	-gt	100
]	is	true.

-a This	is	a	logical	AND.	If	both	the
operands	were	true	then	condition
would	be	true	otherwise,	it	would
be	false.

[$a	-lt	20	-
a	$b	-gt	100
]	is	false.

String	Operators

The	Bourne	Shell	supports	the	following	string	operators.

Assume	variable	‘a’	holds	“abc”	and	variable	‘b’	holds	“efg”	then	−

This	example	uses	all	the	string	operators	−
#!/bin/sh

	

a=“abc”

b=“efg”

	

if	[$a	=	$b]

then

			echo	“$a	=	$b	:	a	is	equal	to	b”

else

			echo	“$a	=	$b:	a	is	not	equal	to	b”

fi

	

if	[$a	!=	$b]

then

			echo	“$a	!=	$b	:	a	is	not	equal	to	b”

else

			echo	“$a	!=	$b:	a	is	equal	to	b”

fi

	

if	[-z	$a]

then

			echo	“-z	$a	:	string	length	is	zero”

else

			echo	“-z	$a	:	string	length	is	not	zero”

fi

	

if	[-n	$a]

then

			echo	“-n	$a	:	string	length	is	not	zero”

else

			echo	“-n	$a	:	string	length	is	zero”

fi

	

if	[$a]

then

			echo	“$a	:	string	is	not	empty”

else

			echo	“$a	:	string	is	empty”

fi

This	produces	the	following	result	−
abc	=	efg:	a	is	not	equal	to	b

abc	!=	efg	:	a	is	not	equal	to	b

-z	abc	:	string	length	is	not	zero

-n	abc	:	string	length	is	not	zero

abc	:	string	is	not	empty

Note:

There	must	be	spaces	between	operators	and	expressions	for	example

2+2	is	not	correct,	whereas	it	should	be	written	as	2	+	2.

Operator Description Example

= Checks	if	the	value	of
two	operands	is	equal,
if	yes	then	condition
becomes	true.

[$a	=	$b]
is	not	true.

!= Checks	if	the	value	of
two	operands	are
equal,	if	values	are	not
equal	then	condition
becomes	true.

[$a	!=	$b
]	is	true.

-z Checks	if	the	given
string	operand	size	is
zero.	If	it	is	zero	length
then	it	returns	true.

[-z	$a]	is
not	true.

-n Checks	if	the	given
string	operand	size
is	non-zero.	If	it	is
non-zero	length
then	it	returns
true.

[-z	$a]	is	not	false.

str Check	if	str	is	not
the	empty	string.	If
it	is	empty	then	it
returns	false.

[$a]	is	not	false.

File	Test	Operators

The	following	operators	test	various	properties	associated	with	a	Unix	file.

Assume	a	variable	file	holds	an	existing	file	name	“test”	whose	size	is	100	bytes
and	has	read,	write	and	execute	permissions	−

This	example	uses	all	the	file	test	operators	−
#!/bin/sh

	

file=“/var/www/tutorialspoint/unix/test.sh”

	

if	[-r	$file]

then

			echo	“File	has	read	access”

else

			echo	“File	does	not	have	read	access”

fi

	

if	[-w	$file]

then

			echo	“File	has	write	permission”

else

			echo	“File	does	not	have	write	permission”

fi

	

if	[-x	$file]

then

			echo	“File	has	execute	permission”

else

			echo	“File	does	not	have	execute	permission”

fi

	

if	[-f	$file]

then

			echo	“File	is	an	ordinary	file”

else

			echo	“This	is	special	file”

fi

	

if	[-d	$file]

then

			echo	“File	is	a	directory”

else

			echo	“This	is	not	a	directory”

fi

	

if	[-s	$file]

then

			echo	“File	size	is	zero”

else

			echo	“File	size	is	not	zero”

fi

	

if	[-e	$file]

then

			echo	“File	exists”

else

			echo	“File	does	not	exist”

fi

This	produces	the	following	result	−
File	has	read	access

File	has	write	permission

Operator Description Example

-b	file Checks	if	file	is	a	block	special	file	if	yes
then	condition	becomes	true.

[-b	$file]
is	false.

-c	file Checks	if	file	is	a	character	special	file	if
yes	then	condition	becomes	true.

[-c	$file]	is
false.

-d	file Check	if	file	is	a	directory	if	yes	then
condition	becomes	true.

[-d	$file]
is	not	true.

-f	file Check	if	file	is	an	ordinary	file	as
opposed	to	a	directory	or	special	file	if
yes	then	condition	becomes	true.

[-f	$file]	is
true.

-g	file Checks	if	file	has	its	set	group	ID
(SGID)	bit	set	if	yes	then	condition
becomes	true.

[-g	$file]	is
false.

-k	file Checks	if	file	has	its	sticky	bit	set	if	yes
then	condition	becomes	true.

[-k	$file]
is	false.

-p	file Checks	if	file	is	a	named	pipe	if	yes
then	condition	becomes	true.

[-p	$file]
is	false.

-t	file Checks	if	file	descriptor	is	open	and
associated	with	a	terminal	if	yes	then
condition	becomes	true.

[-t	$file]	is
false.

-u	file Checks	if	file	has	its	set	user	id	(SUID)
bit	set	if	yes	then	condition	becomes
true.

[-u	$file]
is	false.

-r	file Checks	if	file	is	readable	if	yes	then
condition	becomes	true.

[-r	$file]	is
true.

-w	file Checks	if	file	is	writable	if	yes	then
condition	becomes	true.

[-w	$file]
is	true.

-x	file Checks	if	file	is	execute	if	yes	then [-x	$file]	is

File	has	execute	permission

File	is	an	ordinary	file

This	is	not	a	directory

File	size	is	zero

File	exists

Note:

There	must	be	spaces	between	operators	and	expressions	for	example

2+2	is	not	correct,	whereas	it	should	be	written	as	2	+	2.

	

	

	

Run	The	.Sh	File	Shell

Script	In	Linux	/	Unix

After	 downloading

the	software,	the	.sh	file	is

nothing	 but	 the	 shell

script	 to	 install	 a	 given

application	 or	 to	 perform

other	 tasks	 under	 UNIX

like	 operating	 systems.

The	easiest	way	to	run	.sh

shell	 script	 in	 Linux	 or

UNIX	 is	 to	 type	 either	 of

the	 following	 commands.

Open	 the	 terminal	 (your

shell	prompt)	and	type	the

command:

sh	file.sh

OR
bash	file.sh

.sh	As	Root	User

Sometimes	 you	 will	 need

to	 install	 an	 application

that	 requires	 root	 level

condition	becomes	true. true.

-s	file Checks	if	file	has	size	greater	than	0	if
yes	then	condition	becomes	true.

[-s	$file]	is
true.

-e	file Checks	if	file	exists.	Is	true	even	if	file	is
a	directory	but	exists.

[-e	$file]	is
true.

privileges.

Root	access	 is	disabled	by

default	 on	 many	 Linux

and	 UNIX	 like	 systems.

Simply	 use	 sudo	 or	 su	 as

follows:

sudo	bash	filename.sh

Type	 your	 password.	 Another	 option	 is	 to	 use	 the	 su	 command	 as	 follows	 to
become	superuser:
su	-

Type	root	user	password	and	finally	run	your	script:
bash	filename.sh

chmod	Command:	Run	Shell	Script	In	Linux

Another	recommended	option	is	to	set	an	executable	permission	using	the	chmod
command	as	follows:
chmod	+x	file.sh

Now	you	can	run	the	.sh	file.
./file.sh

	

	

Chapter	Twelve:	SHELL	EMBEDDING	AND
OPTIONS

This	chapter	investigates	tyke	shells,	implanted	shells	and	shell	alternatives.

Shell	installing

Shells	can	be	 installed	to	work	on	a	command	line;	 the	command	line	can	bring

forth	new	procedures	containing	a	fork	of	the	present	shell.	You	can	use	variables

to	demonstrate	that	the	new	shells	are	made.	The	variable	$var1	just	exists	in	the

(interim)	sub	shell.

[paul@RHELv4u3	gen]$	reverberation	$var1

[paul@RHELv4u3	gen]$	reverberation	$(var1=5;echo	$var1)

5

[paul@RHELv4u3	gen]$	reverberation	$var1

[paul@RHELv4u3	gen]$

You	 can	 install	 a	 shell	 into	 an	 inserted	 shell;	 this	 is	 called	 settled	 implanting	of

shells.

paul@deb503:~$	A=shell

paul@deb503:~$	 reverberation	 CB$A	 $(B=sub;echo	 CB$A;	 reverberation
$(C=sub;echo	CB$A))

shell	subshell	subsubshell

Backticks

Single	 installation	 can	 change	 your	 present	 index	 and	 uses	 backticks	 instead	 of

dollar	section	to	implant.

[paul@RHELv4u3	~]$	reverberation	`cd/and	so	forth;	ls	-	d	*	|	grep	pass`

passwd-passwd.OLD

[paul@RHELv4u3	~]$

The	backticks	/()	and	the	$()	documentation		can	be	used	to	implant	a	shell.	

Backticks	or	single	quotes

Putting	 the	 installing	 between	 backticks	 utilizes	 one	 character	 not	 exactly	 the

dollar	and	bracket	combo.	Be	cautious	on	the	other	hand,	backticks	are	frequently

mistaken	for	single	quotes.

The	specialized	contrast	in	the	middle	of	”	and	`	is	critical!
[paul@RHELv4u3	gen]$	reverberation	`var1=5;echo	$var1`

[paul@RHELv4u3	gen]$	reverberation	‘var1=5;echo	$var1’

var1=5;echo	$var1

[paul@RHELv4u3	gen]$

Shell	Alternatives

Both	 set	 and	 unset	 are	 built-in	 shell	 commands,	 which	 are	 used	 to	 set
alternatives	to	the	bash	shell.	The	following	case	will	clear	up	this.	The	shell	will
treat	unset	variables	as	an	unimportant	variable.	By	setting	 the	-	u	alternative,
the	shell	will	treat	any	reference	to	unset	variables	as	an	error.
[paul@RHEL4b	~]$	reverberation	$var123

[paul@RHEL4b	~]$	set	-	u

[paul@RHEL4b	~]$	reverberation	$var123

-	bash:	var123:	unbound	variable

[paul@RHEL4b	~]$	set	+u

[paul@RHEL4b	~]$	reverberation	$var123

[paul@RHEL4b	~]$

To	rundown	all	the	set	choices	for	your	shell,	use	reverberation	$-.	The	noclobber

(or	-	C).

[paul@RHEL4b	~]$	reverberation	$-

himBH

[paul@RHEL4b	~]$	set	-	C	;	set	-	u

[paul@RHEL4b	~]$	reverberation	$-

himuBCH

[paul@RHEL4b	~]$	set	+C	;	set	+u

[paul@RHEL4b	~]$	reverberation	$-

himBH

[paul@RHEL4b	~]$

When	writing	a	set	without	alternatives,	you	get	a	rundown	of	all	variables	without

capacity,	when	the	shell	is	in	posix	mode,	you	can	set	bash	in	posix	mode	writing

set	-	o	posix.

Practice:	Shell	Installing

1.	 Discover	the	rundown	of	shell	choices	in	the	man	page	of	bash.	What	is

the	contrast	between	situated	-	u	and	set	-	o	nounset?

2.	 Actuate	nounset	in	your	shell.	Test	if	it	demonstrates	an	error	message

when	using	non-existing	variables.

3.	 Deactivate	nounset.

4.	 Execute	disc/var	and	ls	in	an	installed	shell.

The	reverberation	command	 is	expected	 to	demonstrate	 the	after	effects	of
the	 ls	 command.	 Precluding	 will	 cause	 the	 shell	 to	 execute	 the	 first
document	as	a	command.

5.	 Add	the	variable	embvar	into	an	inserted	shell	and	reverberation	it.
Does	the	variable	exist	in	your	present	shell	now?

6.	 Clarify	what	“set	-	x”	does.	Can	this	be	useful?

(Optional)

7.	 Given	the	accompanying	screenshot,	add	four	characters	to	the

command	so	that	the	aggregate	yield	is	FirstMiddleLast.

[paul@RHEL4b	~]$	reverberate	First;	resound	Middle;	reverberate

Last.

8.	 Display	a	long	listing	(ls	-	l)	of	the	passwd	command	utilizing	the
which	command	inside	an	installed	shell.

15.4.	Arrangement:	shell	inserting

1.	 Discover	the	rundown	of	shell	alternatives	in	the	man	page	of	bash.

What	is	the	distinction	between	situated

u	and	set	-	o	nounset?

Check	the	man	of	bash	and		look	for	nounset	-	both	mean	the	same	thing.

2.	 Add	nounset	to	your	shell.	Test	that	it	demonstrates	a	lapse	message

when	utilizing	nonexisting	variables.

set	-	u

Or

set	-	o	nounset

Both	lines	have	the	same	impact.

3.	 Deactivate	nounset.

set	+u

Or						

set	+o	nounset

4.	 Execute	album/var	and	ls	in	an	implanted	shell.

reverberation	$(cd/var	;	ls)

The	reverberation	command	is	used	to	demonstrate	the	consequence	of	the

ls	command.	Precluding	will	make	the	shell	to	execute	the	first	document	as

a	command.

5.	Make	the	variable	embvar	in	an	implanted	shell	and	reverberation	it.
Does	the	variable	exist	in	your	present	shell?

reverberation	$(embvar=emb;echo	$embvar)	 ;	reverberation	$embvar	#the

last	resound	fizzles

$embvar	does	not	exist	in	your	present	shell

6.	 Clarify	what	“set	-	x”	does.	Is	this	useful?

It	shows	shell	development	for	investigating	your	command.

(Optional)

7.	 Given	the	accompanying	screenshot,	add	four	characters	to	the

command	line	so	that	the	aggregate	yield	is	FirstMiddleLast.

[paul@RHEL4b	~]$	reverberate	First;	resound	Middle;	reverberate	Last

reverberation	-	n	First;	resound	-	n	Middle;	resound	Last

8.	 Show	a	long	posting	(ls	-	l)	of	the	passwd	command	using	the
“which	command”	inside	an	implanted	shell.

ls	-	l	$(which	passwd

Almost	all-modern	shell	allows	you	to	search	command	history	if	enabled	by	the

user.	History	command	can	display	the	history	list	with	line	numbers,	listed	with	a

*	have	been	modified	by	user.

	

Chapter	Thirteen:	SHELL	HISTORY	SEARCH
COMMAND
	

Type	history	at	a	shell	prompt:
$	history

Output:
	
		6		du	-c

				7		du	-ch

				8		ls	[01-15]*-2008

				9		ls	-ld	[01-15]*-2008

			10		ls	-ld	[1-15]*-2008

			11		ls	-ld	[0]*-2008

			12		ls	-ld	[01]*-2008

			13		rm	-vrf	[01]*-2008

			14		du	-ch

			15		ls

			16		cd

			17		umount	/mnt

			18		df	-H

			19		vnstat

			20		yum	update

			21		vnstat	-m

			22		vnstat	-m	-i	eth0

….

…

		996		ping	router.nixcraft.in

		997		ssh	vivek@p1.vpn.nixcraft.in

		998		alias

		999		~/scripts/clean.rss	—fetch

1000		vnstat

1001		~/scripts/clean.rss		—update

	

To	search	for	a	particular	command,	enter:
$	history	|	grep	command-name

$	history	|	egrep	-i	‘scp|ssh|ftp’

Emacs	Line-Edit	Mode	Command	History	Searching

To	find	the	command	containing	string,	hit	[CTRL]+[r]	followed	by	search	string:
(reverse-i-search):

To	show	the	previous	command,	hit	[CTRL]	+	[p].	You	can	also	use	up	arrow	key.
CTRL-p

To	show	the	next	command,	hit	[CTRL]	+[n].	You	can	also	use	down	arrow	key.
CTRL-n

fc	command

fc	stands	for	either	the	find	command	or	the	fix	command.	For	example	to	list
the	last	10	commands,	enter:
$	fc	-l	10

to	list	commands	130	through	150,	enter:
$	fc	-l	130	150

to	list	all	commands	since	the	last	command	beginning	with	ssh,	enter:
$	fc	-l	ssh

You	can	edit	commands	1	through	5	using	vi	text	editor,	enter:
$	fc	-e	vi	1	5

Delete	command	history

The	-c	option	causes	the	history	list	to	be	cleared	by	deleting	all	of	the	entries:	
$	history	-c

FILE	NAME	GLOBBING	WITH	*,	?,	[]

Sometimes	you	want	to	manipulate	a	group	of	files,	e.g.,	delete	all	of	them,

without	 having	 to	 perform	 the	 command	 on	 each	 file	 separately.	 For	 example,

suppose	we	want	to	delete	all	of	the	.c	files	in	a	directory.	A	wildcard	is	a	pattern,

which	matches	something	else.	Two	commonly	used	*nix	wildcards	are	*	(star)

and	?	(question	mark).

Star	(*)	means	zero	or	more	characters

Question	Mark	(?)	means	exactly	one	character

Brackets	([])	represent	a	set	of	characters

Commands	involving	filenames	specified	with	wildcards	are	expanded	by	the	shell

(this	 is	 called	globbing	after	 the	name	of	 a	 former	program	called	glob	which

used	to	do	this	outside	the	shell).

The	‘*’

‘	file*’	will	match	any	filename	which	starts	with	the	characters	“file”,	and	then	is

followed	by	zero	or	more	occurrences	of	any	character.

Examples

Suppose	Fred’s	home	directory	contains	the	files,

									file01.cpp

									file02.cpp

									file03.cpp

									file1.cpp

									file01.o

									file02.o

									file03.o

									file1.o

	

To	delete	all	of	the	.c	files,	type,

$	rm	*.c

To	delete	file01.cpp	and	file01.o,
$	rm	file01.*

The	‘?’

‘?’	Represents	a	single	character.

Examples

Consider	again	Fred’s	home	directory	from	the	previous	example.

Delete	file01.o,	file02.o	and	file03.o,	but	not	file1.o,

$	rm	file??.o

Delete	file01.o,	but	not	file01.cpp,
$	rm	file01.?

The	‘[]’	Glob

A	 set	 of	 characters	 can	 be	 specified	 with	 brackets	 [].	 ‘[ab]‘	 means
the	single	character	can	be	‘a	‘OR	‘b’.	Ranges	can	also	be	specified	(ex:	‘[1-57-9]‘
represents	1-5	OR	7-9).

Examples

Delete	file02.cpp	and	file03.cpp	from	Fred’s	directory,

$	rm	file0[23].cpp

This	will	delete	any	files	that	start	with	f	or	F	(remember	linux	is	case	sensitive),
$rm	[fF]*

To	delete	all	files	that	start	with	the	string	“file”	followed	by	a	single	letter	type,
$	rm	file[a-zA-Z]

The	a-z	and	A-Z	in	the	last	example	means	all	the	letters	in	the	range	lowercase	a-z

or	uppercase	A-Z.

There	is	much	more	to	wildcard	matching,	but	this	is	enough	to	get	you	started.

More	Examples

Remove	all	files	that	are	exactly	1	character,

$rm	?

Let’s	 say	 you	 have	 a	 directory	 named	 ‘9-15-2007-Backup-Really-Long-Name-
blah…’	Rather	 than	 typing	 the	whole	 name,	 you	 could	 just	 type	 a	 subset	 of	 the
string	and	use	it	with	the	cd	command.

$	cd	9-15-2007*

If	you	have	multiple	folders	that	start	with	9-15-2007,	your	directory	will	be

changed	to	the	first	one	alphabetically.

You	can	use	file	name	globbing	on	most	commands	that	accept	files	as	arguments.

	

	

	

	

	

Chapter	fourteen:	UNIX	-	SHELL	INPUT/OUTPUT
REDIRECTIONS
	

Time	is	precious.	It	does	not	make	sense	to	waste	time	typing	a	frequently	used
sequence	of	commands	at	a	command	prompt,	more	especially	if	they	are
abnormally	long	or	complex.	Scripting	is	a	way	by	which	one	can	alleviate	this
problem	by	automating	these	command	sequences	in	order	to	make	life	at	the
shell	easier	and	more	productive.	Scripting	is	all	about	making	the	computer,	the
tool,	do	the	work.	By	the	end	of	this	tutorial	you	will	have	a	good	understanding	of
the	kind	of	scripting	languages	available	for	Unix	and	how	to	apply	them	to	your
problems.	UNIX	contains	many	wonderful	and	strange	commands	that	can	be
very	useful	in	the	world	of	scripting,	the	more	tools	you	know	and	the	better	you
know	them,	the	more	use	you	will	find	for	them.	Most	of	the	Unix	commands	and
many	of	the	built-in	commands	have	man	pages;	man	pages	contain	the	usage
instructions	pertaining	to	the	parent	tool.	They	are	not	always	very	clear	and	may
require	reading	several	times.	In	order	to	access	a	man	page	in	Unix	the	following
command	sequence	is	applied

Chapter	Fifteen:	UNIX	SHELL	FUNCTION
	

Functions	enable	you	to	break	down	the	overall	functionality	of	a	script	into
smaller,	 logical	 subsections,	 which	 are	 then	 called	 upon	 to	 perform	 their
individual	 tasks	when	needed.	Using	 functions	 to	perform	repetitive	 tasks	 is	an
excellent	way	 to	 create	 code	 reuse.	Code	 reuse	 is	 an	 important	 part	 of	modern
object-oriented	 programming	 principles.	 Shell	 functions	 are	 similar	 to
subroutines,	procedures,	and	functions	in	other	programming	languages.

Creating	Functions

To	declare	a	function,	simply	use	the	following	syntax	−
function_name	()	{

			list	of	commands

}

The	name	of	your	function	is	function_name,	and	that	is	what	you	will	use	to	call

it	 from	 elsewhere	 in	 your	 scripts.	 The	 function	 name	 must	 be	 followed	 by

parentheses,	which	are	followed	by	a	list	of	commands	enclosed	within	braces.

Example

Example	using	function	−

#!/bin/sh

	

#	Define	your	function	here

Hello	()	{

			echo	“Hello	World”

}

	

#	Invoke	your	function

Hello

Output
$./test.sh

Hello	World

$

Pass	Parameters	to	a	Function

You	 can	 define	 a	 function,	 which	 would	 accept	 parameters	 while	 calling

those	functions.	These	parameters	would	be	represented	by	$1,	$2	and	so	on.	The

following	is	an	example	where	we	pass	two	parameters	Zara	and	Ali	and	then	we

capture	and	print	these	parameters	in	the	function.

#!/bin/sh

	

#	Define	your	function	here

Hello	()	{

			echo	“Hello	World	$1	$2”

}

	

#	Invoke	your	function

Hello	Zara	Ali

Output
$./test.sh

Hello	World	Zara	Ali

$

Returning	Values	from	Functions

If	you	execute	an	exit	command	from	inside	a	function,	its	effect	is	not	only
to	terminate	execution	of	the	function	but	also	of	the	shell	program	that	called	the
function.	 If	 you	 instead	want	 to	 just	 terminate	 execution	 of	 the	 function,	 then
there	is	a	way	to	come	out	of	a	defined	function.	Based	on	the	situation	you	can
return	any	value	from	your	function	using	the	return	command	whose	syntax	is
as	follows	−
return	code

Here	 code	 can	 be	 anything	 you	 choose,	 but	 obviously	 you	 should	 choose
something	that	is	meaningful	or	useful	in	the	context	of	your	script	as	a	whole.

Example

Following	function	returns	a	value	1	−
#!/bin/sh

	

#	Define	your	function	here

Hello	()	{

			echo	“Hello	World	$1	$2”

			return	10

}

	

#	Invoke	your	function

Hello	Zara	Ali

	

#	Capture	value	returned	by	last	command

ret=$?

	

echo	“Return	value	is	$ret”

Output
$./test.sh

Hello	World	Zara	Ali

Return	value	is	10

$

Nested	Functions

One	of	the	more	interesting	features	of	functions	is	that	they	can	call	themselves

as	well	as	call	other	functions.	A	function	that	calls	itself	is	known	as	a	recursive

function.

The	following	example	demonstrates	a	nesting	of	two	functions	−

#!/bin/sh

	

#	Calling	one	function	from	another

number_one	()	{

			echo	“This	is	the	first	function	speaking…”

			number_two

}

	

number_two	()	{

			echo	“This	is	now	the	second	function	speaking…”

}

	

#	Calling	function	one.

number_one

Output
This	is	the	first	function	speaking…

This	is	now	the	second	function	speaking…

Function	Call	from	Prompt

You	can	put	definitions	for	commonly	used	functions	inside	your	.profile	so	they

will	be	available	whenever	you	log	in.	Alternatively,	you	can	group	the	definitions

in	a	file,	say	test.sh,	and	then	execute	the	file	in	the	current	shell	by	typing	−

$.	test.sh

This	has	 the	effect	of	 causing	any	 functions	defined	 inside	 test.sh	 to	be	 read	 in

and	defined	to	the	current	shell	as	follows	−

$	number_one

Option Description

-v Print	all	lines	that	do	not	match	pattern.

-n Print	the	matched	line	and	its	line	number.

-l Print	only	the	names	of	files	with	matching	lines
(letter	“l”)

This	is	the	first	function	speaking…

This	is	now	the	second	function	speaking…

$

To	remove	the	definition	of	a	function	from	the	shell,	you	use	the	unset	command

with	the	.f	option.	This	is	the	same	command	you	use	to	remove	the	definition	of

a	variable	to	the	shell.

$unset	.f	function_name

Unix	-	Pipes	and	Filters

You	 can	 connect	 two	 commands	 together	 so	 that	 the	 output	 from	 one
program	 becomes	 the	 input	 of	 the	 next	 program.	 Two	 or	 more	 commands
connected	in	this	way	form	a	pipe.	To	make	a	pipe,	put	a	vertical	bar	(|)	on	the
command	 line	 between	 two	 commands.	When	 a	 program	 takes	 its	 input	 from
another	program,	performs	some	operation	on	that	input,	and	writes	the	result	to
the	standard	output,	it	is	referred	to	as	a	filter.

The	grep	Command

The	grep	program	searches	a	file	or	files	for	lines	that	have	a	certain	pattern.	The
syntax	is	−
$grep	pattern	file(s)

The	 name	 “grep”	 derives	 from	 the	 ed	 (a	 UNIX	 line	 editor)	 command
g/re/p,	which	means,	“globally	search	for	a	regular	expression	and	print	all	lines
containing	 it.”	 A	 regular	 expression	 is	 either	 plain	 text	 (a	 word,	 for	 example)
and/or	special	characters	used	for	pattern	matching.	The	simplest	use	of	grep	is
to	look	for	a	pattern	consisting	of	a	single	word.	It	can	be	used	in	a	pipe	so	that
only	 those	 lines	 of	 the	 input	 files	 containing	 a	 given	 string	 are	 sent	 to	 the
standard	output.	If	you	do	not	give	grep	a	filename	to	read,	it	reads	its	standard
input;	that	is	the	way	all	filter	programs	work	−
$ls	-l	|	grep	“Aug”

-rw-rw-rw-			1	john		doc					11008	Aug		6	14:10	ch02

-rw-rw-rw-			1	john		doc						8515	Aug		6	15:30	ch07

-rw-rw-r—			1	john		doc						2488	Aug	15	10:51	intro

-rw-rw-r—			1	carol	doc						1605	Aug	23	07:35	macros

$

There	 are	 various	 options,
which	you	can	use	along	with
grep	command	–

Next,	 let’s	 use	 a	 regular
expression	 that	 tells	grep	 to
find	 lines	 with	 “carol”,
followed	 by	 zero	 or	 more

-c Print	only	the	count	of	matching	lines.

-i Match	either	upper-	or	lowercase.

Option Description

-n Sort	numerically	(example:	10	will	sort	after
2),	ignore	blanks	and	tabs.

-r Reverse	the	order	of	sort.

-f Sort	upper-	and	lowercase	together.

+x Ignore	first	x	fields	when	sorting.

other	 characters	 abbreviated
in	 a	 regular	 expression	 as
“.*”),	 then	 followed	by	“Aug”.
Here	we	are	using	-i	option	to

have	case	insensitive	search	−
$ls	-l	|	grep	-i	“carol.*aug”

-rw-rw-r—			1	carol	doc						1605	Aug	23	07:35	macros

$

The	sort	Command

The	sort	 command	 arranges	 lines	 of	 text	 alphabetically	 or	 numerically.	 The
example	below	sorts	the	lines	in	the	food	file	−
$sort	food

Afghani	Cuisine

Bangkok	Wok

Big	Apple	Deli

Isle	of	Java

Mandalay

Sushi	and	Sashimi

Sweet	Tooth

Tio	Pepe‘s	Peppers

$

The	sort	 command	 arranges
lines	 of	 text	 alphabetically	 by
default.	 There	 are	 many
options	that	control	the	sorting
−

More	than	two	commands	may
be	 linked	 by	 a	 pipe.	 Taking	 a
previous	 pipe	 example
using	grep,	we	can	further	sort
the	files	modified	in	August	by

order	of	size.

The	following	pipe	consists	of	the	commands	ls,	grep,	and	sort	−
$ls	-l	|	grep	“Aug”	|	sort	+4n

-rw-rw-r—		1	carol	doc						1605	Aug	23	07:35	macros

-rw-rw-r—		1	john		doc						2488	Aug	15	10:51	intro

-rw-rw-rw-		1	john		doc						8515	Aug		6	15:30	ch07

-rw-rw-rw-		1	john		doc					11008	Aug		6	14:10	ch02

$

This	pipe	sorts	all	files	in	your	directory	modified	in	August	by	order	of	size,	and

prints	 them	to	the	terminal	screen.	The	sort	option	+4n	skips	 four	 fields	(fields

are	separated	by	blanks)	then	sort	the	lines	in	numeric	order.

The	pg	and	more	Commands

A	 long	 output	 would	 normally	 zip	 by	 you	 on	 the	 screen,	 but	 if	 you	 run	 text
through	more	or	pg	as	a	filter,	the	display	stops	after	each	screen	of	text.	Let	us
assume	that	you	have	a	long	directory	listing.	To	make	it	easier	to	read	the	sorted
listing,	pipe	the	output	through	more	as	follows	−
$ls	-l	|	grep	“Aug”	|	sort	+4n	|	more

-rw-rw-r—		1	carol	doc						1605	Aug	23	07:35	macros

-rw-rw-r—		1	john		doc						2488	Aug	15	10:51	intro

-rw-rw-rw-		1	john		doc						8515	Aug		6	15:30	ch07

-rw-rw-r—		1	john		doc					14827	Aug		9	12:40	ch03

.

.

.

-rw-rw-rw-		1	john		doc					16867	Aug		6	15:56	ch05

—More—(74%)

The	screen	will	fill	up	with	one	screen	of	text	consisting	of	lines	sorted	by	order	of
file	size.	At	the	bottom	of	the	screen	is	 the	more	prompt	where	you	can	type	a
command	to	move	through	the	sorted	text.	When	you	are	done	with	this	screen,
you	can	use	any	of	the	commands	listed	in	the	discussion	of	the	more	program.

	

Chapter	Sixteen:	UNIX	USEFUL	COMMAND
	

This	 quick	 guide	 lists	 commands,	 including	 a	 syntax	 and	brief	 description.	 For
more	detailed	information	check	out	commands	man	page.
$man	command

Files	and	Directories

These	commands	allow	you	to	create	directories	and	handle	files.

Command Description

cat Display	File	Contents

cd Changes	Directory	to	dirname

chgrp Change	file	group

chmod Changing	Permissions

cp Copy	source	file	into	destination

file Determine	file	type

find Find	files

grep Search	files	for	regular	expressions.

head Display	first	few	lines	of	a	file

ln Create	softlink	on	oldname

ls Display	information	about	file	type.

mkdir Create	a	new	directory	dirname

more Display	data	in	paginated	form.

mv Move	(Rename)	a	oldname	to

newname.

pwd Print	current	working	directory.

rm Remove	(Delete)	filename

Command Description

awk Pattern	scanning	and	processing	language

cmp Compare	the	contents	of	two	files

comm. Compare	sorted	data

cut Cut	out	selected	fields	of	each	line	of	a	file

diff Differential	file	comparator

expand Expand	tabs	to	spaces

join Join	files	on	some	common	field

Perl Data	manipulation	language

sed Stream	text	editor

sort Sort	file	data

split Split	file	into	smaller	files

tr Translate	characters

uniq Report	repeated	lines	in	a	file

wc Count	words,	lines,	and	characters

vi Opens	vi	text	editor

vim Opens	vim	text	editor

fmt Simple	text	formatter

spell Check	text	for	spelling	error

rmdir Delete	an	existing	directory	provided

it	is	empty.

tail Prints	last	few	lines	in	a	file.

touch Update	access	and	modification	time

of	a	file.

Manipulating	data

The	 contents	 of	 files	 can	 be

compared	 and	 altered	 with	 the

following	commands.

	

Compressed	Files

Files	may	be	compressed	to	save
space.	 Compressed	 files	 can	 be
created	and	examined	−

ispell Check	text	for	spelling	error

Emacs GNU	project	Emacs

ex,	edit Line	editor

Emacs GNU	project	Emacs

	 	

Command Description

gompress Compress	files

gunzip Uncompress	gzipped	files

gzip GNU	alternative	compression

method

uncompress Uncompress	files

unzip List,	test	and	extract	compressed

files	in	a	ZIP	archive

zcat Cat	a	compressed	file

zcmp Compare	compressed	files

zdiff Compare	compressed	files

zmore File	perusal	filter	for	crt	viewing	of

compressed	text

	

Getting	Information

Various	Unix	manuals	and	documentation	are	available	on-line.	The	following
Shell	commands	give	information	−

Command Description

apropos Locate	commands	by	keyword	lookup

info Displays	command	information	pages

online

Command Description

ftp File	transfer	program

rcp Remote	file	copy

rlogin Remote	login	to	a	UNIX	host

rsh Remote	shell

tftp Trivial	file	transfer	program

telnet Make	terminal	connection	to	another
host

ssh Secure	shell	terminal	or	command
connection

scp Secure	shell	remote	file	copy

sftp secure	shell	file	transfer	program

man Displays	manual	pages	online

whatis Search	the	whatis	database	for

complete	words.

yelp GNOME	help	viewer

	

Network	Communication

The	 following	 commands	 are	 used	 to	 send	 and	 receive	 files	 from	a	 local	UNIX

hosts	to	the	remote	hosts	around	the	world.

Some	 of	 these	 commands	may

be	restricted	on	your	computer

for	security	reasons.

Messages	between	Users

The	UNIX	system	supports	on-

screen	 messaging	 to	 other

users	and	worldwide	electronic

mail	−

Command Description

Evolution GUI	mail	handling	tool	on	Linux

mail Simple	send	or	read	mail	program

nesg Permit	or	deny	messages

parcel Send	files	to	another	user

Pine Vdu-based	mail	utility

Talk Talk	to	another	user

write Write	message	to	another	user

	

Programming	Utilities

The	 following	 programming	 tools	 and	 languages	 are	 available	 based	 on	 which

version	of	Unix	you	are	using

Command Description

dbx Sun	debugger

gdb GNU	debugger

make Maintain	program	groups	and

compile	programs.

nm Print	program’s	name	list

size Print	program’s	sizes

strip Remove	symbol	table	and	relocation

bits

cb C	program	beautifier

cc ANSI	C	compiler	for	Suns	SPARC

systems

Ctrace C	program	debugger

Gcc GNU	ANSI	C	Compiler

Indent Indent	and	format	C	program	source

Bc Interactive	arithmetic	language

processor

Gcl GNU	Common	Lisp

Perl General	purpose	language

Php Web	page	embedded	language

Command Description

chfn Change	your	finger	information

chgrp Change	the	group	ownership	of	a	file

chown Change	owner

date Print	the	date

determin Automatically	find	terminal	type

du Print	amount	of	disk	usage

echo Echo	arguments	to	the	standard

options

exit Quit	the	system

Py Python	language	interpreter

Asp Web	page	embedded	language

CC C++	compiler	for	Suns	SPARC

systems

g++ GNU	C++	Compiler

Javac JAVA	compiler

appletvieweir JAVA	applet	viewer

Netbeans Java	integrated	development

environment	on	Linux

Sqlplus Run	the	Oracle	SQL	interpreter

Sqlldr Run	the	Oracle	SQL	data	loader

MySql Run	the	mysql	SQL	interpreter

	

Misc	Commands

These	commands	list	or	alter	system	information	−

td>groups

	

	

	

	

	

	

	

finger Print	information	about	logged-in

users

groupadd Create	a	user	group

Show	group

memberships

	

homequota Show	quota	and	file	usage

iostat Report	I/O	statistics

kill Send	a	signal	to	a	process

last Show	last	logins	of	users

logout log	off	UNIX

lun List	user	names	or	login	ID

netstat Show	network	status

passwd Change	user	password

passwd Change	your	login	password

printenv Display	value	of	a	shell	variable

ps Display	the	status	of	current	processes

ps Print	process	status	statistics

quota	–v Display	disk	usage	and	limits

reset Reset	terminal	mode

script Keep	script	of	terminal	session

script Save	the	output	of	a	command	or

process

setenv Set	environment	variables

sty Set	terminal	options

time Time	a	command

top Display	all	system	processes

tset Set	terminal	mode

tty Print	current	terminal	name

umask Show	the	permissions	that	are	given	to

view	files	by	default

uname Display	name	of	the	current	system

uptime Get	the	system	up	time

useradd Create	a	user	account

users Print	names	of	logged	in	users

vmstat Report	virtual	memory	statistics

w Show	what	logged	in	users	are	doing

who List	logged	in	users

Chapter	Seventeen:	REGULAR	EXPRESSION
	

A	 regular	 expression	 is	 a	 string	 that	 can	 be	 used	 to	 describe	 several
sequences	of	characters.	Regular	expressions	are	used	by	several	different	Unix
commands,	 including	ed,	sed,	awk,	grep,	and,	 to	 a	more	 limited	 extent,	vi.
Here	sed	stands	for	stream	editor	a	stream	oriented	editor,	which	was	created
exclusively	 for	 executing	 scripts.	 Thus,	 all	 the	 input	 you	 feed	 into	 it	 passes
through	and	goes	to	STDOUT	and	it	does	not	change	the	input	file.

Invoking	sed

Before	we	start,	 let	us	take	make	sure	you	have	a	local	copy	of	/etc/passwd	text
file	to	work	with	sed.	As	mentioned	previously,	sed	can	be	 invoked	by	sending
data	through	a	pipe	to	it	as	follows	−
$	cat	/etc/passwd	|	sed

Usage:	sed	[OPTION]…	{script-other-script}	[input-file]…

	

		-n,	—quiet,	—silent

																	suppress	automatic	printing	of	pattern	space

		-e	script,	—expression=script

………………………….

The	cat	command	dumps	the	contents	of	/etc/passwd	to	sed	 through	the	pipe
into	sed’s	pattern	space.	The	pattern	space	 is	 the	 internal	work	buffer	 that	sed
uses	to	do	its	work.

The	sed	General	Syntax

General	syntax	for	sed

/pattern/action

Here,	pattern	is	a	regular	expression,	and	action	is	one	of	the	commands

given	in	the	following	table.	If	pattern	is	omitted,	action	is	performed	for	every

line	as	we	have	seen	above.

The	slash	characters	(/)	that	surround	the	pattern	are	required	because	they	are

used	as	delimiters.

Range Description

P Prints	the	line

D Deletes	the	line

s/pattern1/pattern2/ Substitutes	the	first	occurrence	of

pattern1	with	pattern2.

Deleting	All	Lines	with	sed

Invoke	sed	again,	but	this	time	tell	sed	to	use	the	editing	command	delete	line,
denoted	by	the	single	letter	d	−
$	cat	/etc/passwd	|	sed	‘d’

$

Instead	of	 invoking	sed	by	sending	a	 file	 to	 it	 through	a	pipe,	you	can	 instruct
sed	 to	 read	 the	 data	 from	 a	 file,	 as	 in	 the	 following	 example.	 The	 following
command	does	exactly	 the	same	thing	as	 the	previous	example,	without	 the	cat
command	−
$	sed	-e	‘d’	/etc/passwd

$

The	sed	Addresses

sed	also	understands	something	called	addresses.	Addresses	are	either	particular
locations	 in	 a	 file	 or	 a	 range	 where	 a	 particular	 editing	 command	 should	 be
applied.	When	sed	encounters	no	addresses,	it	performs	its	operations	on	every
line	in	the	file.

The	following	command	adds	a	basic	address	to	the	sed	command	you	have	been
using	–

	

	

$	cat	/etc/passwd	|	sed	‘1d’	|more

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

$

Notice	that	the	number	1	is	added	before	the	delete	edit	command.	This	tells	sed
to	perform	the	editing	command	on	the	first	line	of	the	file.	In	this	example,	sed
will	delete	the	first	line	of	/etc/password	and	print	the	rest	of	the	file.

The	sed	Address	Ranges

So,	what	if	you	want	to	remove	more	than	one	line	from	a	file?	You	can	specify	an

address	range	with	sed	as	follows	−
$	cat	/etc/passwd	|	sed	‘1,	5d’	|more

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

$

The	 above	 command	will	 be	 applied	 on	 all	 the	 lines	 starting	 from	 1	 through	 5.
Therefore,	it	deletes	the	first	five	lines.

Try	out	the	following	address	ranges	–

	

	

Range Description

‘4,10d’ Lines	starting	from	4th	till	10th	are	deleted

‘10,4d’ Only	10th	line	is	deleted,	because	sed	does	not
work	in	reverse	direction.

‘4,+5d’ This	will	match	line	4	in	the	file,	delete	that	line,
continue	to	delete	the	next	five	lines,	and	then
cease	its	deletion	and	print	the	rest

‘2,5!d’ This	will	deleted	everything	except	starting	from
2nd	till	5th	line.

‘1~3d’ This	deletes	the	first	line,	steps	over	the	next	three
lines,	and	then	deletes	the	fourth	line.	Sed
continues	applying	this	pattern	until	the	end	of	the
file.

‘2~2d’ This	tells	sed	to	delete	the	second	line,	step	over
the	next	line,	delete	the	next	line,	and	repeat	until
the	end	of	the	file	is	reached.

‘4,10p’ Lines	starting	from	4th	till	10th	are	printed

‘4,d’ This	would	generate	syntax	error.

‘,10d’ This	would	also	generate	syntax	error.

Note:	While	using	p	action,	you	should	use	-n	option	to	avoid	repetition	of	line
printing.	Check	the	difference	between	these	two	commands	−
$	cat	/etc/passwd	|	sed	-n	‘1,3p’

Check	the	above	command	without	-n	as	follows	−

Flag Description

g Replace	all	matches,	not	just	the

first	match.

NUMBER Replace	only	NUMBERth	match.

p If	substitution	was	made,	print

pattern	space.

w

FILENAME

If	substitution	was	made,	write

result	to	FILENAME.

$	cat	/etc/passwd	|	sed	‘1,3p’

The	Substitution	Command

The	substitution	command,	denoted	by	s,	will	substitute	any	string	that	you
specify	 with	 any	 other	 string	 that	 you	 specify.	 To	 substitute	 one	 string	 with
another,	you	need	to	have	a	way	of	telling	sed	where	your	first	string	ends	and
the	substitution	string	begins.	This	 is	 traditionally	done	by	bookending	 the	 two
strings	with	the	forward	slash	(/)	character.	The	following	command	substitutes
the	first	occurrence	on	a	line	of	the	string	root	with	the	string	amrood.
$	cat	/etc/passwd	|	sed	‘s/root/amrood/’

amrood:x:0:0:root	user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

……………………..

It	 is	 very	 important	 to	note	 that	sed	 substitutes	 only	 the	 first	 occurrence	 on	 a
line.	If	the	string	root	occurs	more	than	once	on	a	line,	only	the	first	match	will	be
replaced.	To	tell	sed	to	do	a	global	substitution,	add	the	letter	g	to	the	end	of	the
command	as	follows	−
$	cat	/etc/passwd	|	sed	‘s/root/amrood/g’

amrood:x:0:0:amrood	user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

………………………

Substitution	Flags

There	 are	 a	 number	 of
other	 useful	 flags	 that	 can
be	 passed	 in	 addition	 to
the	 g	 flag,	 and	 you	 can
specify	more	than	one	at	a
time.

Using	an	Alternative

String	Separator

You	 may	 find	 yourself
having	to	do	a	substitution
on	 a	 string	 that	 includes
the	 forward	 slash
character.	In	this	case,	you
can	 specify	 a	 different
separator	by	providing	 the
designated	 character	 after

I	or	i Match	in	a	case-insensitive

manner.

M	or	m In	addition	to	the	normal	behavior

of	the	special	regular	expression

characters	^	and	$,	this	flag	causes

^	to	match	the	empty	string	after	a

newline	and	$	to	match	the	empty

string	before	a	newline.

the	s.
$	cat	/etc/passwd	|	sed

‘s:/root:/amrood:g’

amrood:x:0:0:amrood

user:/amrood:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

In	 the	above	example	we	used:	as	delimiter	 instead	of	 slash	/	because	we	were

trying	to	search	/root	instead	of	simple	root.

Replacing	with	Empty	Space

Use	an	empty	substitution	string	to	delete	 the	root	string	 from	the	/etc/passwd

file	entirely	−

$	cat	/etc/passwd	|	sed	‘s/root//g’

:x:0:0::/:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Address	Substitution

If	you	want	to	substitute	the	string	‘sh’	with	the	string	‘quiet’	on	line	10,	you	can

specify	it	as	follows	−

$	cat	/etc/passwd	|	sed	’10s/sh/quiet/g’

root:x:0:0:root	user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/quiet

Similarly,	to	do	an	address	range	substitution,	you	could	do	something	like	this	−
$	cat	/etc/passwd	|	sed	‘1,5s/sh/quiet/g’

root:x:0:0:root	user:/root:/bin/quiet

daemon:x:1:1:daemon:/usr/sbin:/bin/quiet

bin:x:2:2:bin:/bin:/bin/quiet

sys:x:3:3:sys:/dev:/bin/quiet

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

As	you	can	see	from	the	output,	the	first	five	lines	had	the	string	‘sh’	changed	to
‘quiet,’	but	the	rest	of	the	lines	were	left	untouched.

The	Matching	Command

You	would	use	p	option	along	with	-n	option	to	print	all	 the	matching	 lines	as
follows	−
$	cat	testing	|	sed	-n	‘/root/p’

root:x:0:0:root	user:/root:/bin/sh

[root@ip-72-167-112-17	amrood]#	vi	testing

root:x:0:0:root	user:/root:/bin/sh

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

Using	Regular	Expression

While	matching	patterns,	you	can	use	regular	expressions,	which	provide	greater
flexibility.	 Check	 the	 following	 example,	 which	 matches	 all	 the	 lines	 starting
with	daemon	and	then	deletes	them	−

$	cat	testing	|	sed	‘/^daemon/d’

root:x:0:0:root	user:/root:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

Expression Description

/a.c/ Matches	lines	that	contain	strings	such	as

a+c,	a-c,	abc,	match,	and	a3c,	whereas	the

pattern

/a*c/ Matches	the	same	strings	along	with

strings	such	as	ace,	yacc,	and	arctic.

/[tT]he/ Matches	the	string	The	and	the:

/^$/ Matches	Blank	lines

/^.*$/ Matches	an	entire	line	whatever	it	is.

/	*/ Matches	one	or	more	spaces

/^$/ Matches	Blank	lines

backup:x:34:34:backup:/var/backups:/bin/sh

Example	that	deletes	all	lines	ending	with	sh	−
$	cat	testing	|	sed	‘/sh$/d’

sync:x:4:65534:sync:/bin:/bin/sync

The	 following	 table	 lists	 four	 special	 characters	 that	 are	 very	 useful	 in	 regular
expressions.

Character Description

^ Matches	the	beginning	of	lines.

$ Matches	the	end	of	lines.

. Matches	any	single	character.

* Matches	zero	or	more	occurrences	of	the

previous	character

[chars] Matches	any	one	of	the	characters	given	in

chars,	where	chars	is	a	sequence	of	characters.

You	can	use	the	-	character	to	indicate	a	range

of	characters.

	

Matching	Characters

Expressions	to	demonstrate	the

use	of	metacharacters.

	

The	 following	 table	 shows
some	 frequently	 used	 sets	 of
characters	−

	

Character	Class	Keywords

Some	 special	 keywords	 are
commonly	available	to	regexps,
especially	 GNU	 utilities	 that
employ	regexps.	These	are	very
useful	 for	 sed	 regular
expressions	 as	 they	 simplify
things	and	enhance	readability.

For	 example,	 the	 characters	 a

Set Description

[a-z] Matches	a	single	lowercase	letter

[A-Z] Matches	a	single	uppercase	letter

[a-zA-Z] Matches	a	single	letter

[0-9] Matches	a	single	number

[a-zA-
Z0-9]

Matches	a	single	letter	or	number

Character

Class

Description

[[:alnum:]] Alphanumeric	[a-z	A-Z	0-9]

[[:alpha:]] Alphabetic	[a-z	A-Z]

[[:blank:]] Blank	characters	(spaces	or	tabs)

[[:cntrl:]] Control	characters

[[:digit:]] Numbers	[0-9]

[[:graph:]] Any	visible	characters	(excludes

whitespace)

[[:lower:]] Lowercase	letters	[a-z]

[[:print:]] Printable	characters	(noncontrol

characters)

[[:punct:]] Punctuation	characters

[[:space:]] Whitespace

[[:upper:]] Uppercase	letters	[A-Z]

through	z	as	well	as	the	characters

A	 through	 Z	 constitute	 one	 such

class	 of	 characters	 that	 has	 the

keyword	 [[:alpha:]]	 Using	 the

alphabet	character	class	keyword,

this	 command	 prints	 only	 those

lines	 in	 the	 /etc/syslog.conf	 file

that	 start	 with	 a	 letter	 of	 the

alphabet	−

$	cat	/etc/syslog.conf	|	sed	-n	‘/^[[:alpha:]]/p’

authpriv.*																									/var/log/secure

mail.*																													-/var/log/maillog

cron.*																													/var/log/cron

uucp,news.crit																					/var/log/spooler

local7.*																											/var/log/boot.log

C	 omplete	 list	 of	 available
character	 class	 keywords	 in
GNU	sed.

	

Ampersand	Referencing

The	 sed	 metacharacter	 &
represents	 the	 contents	 of	 the
pattern	 that	 was	matched.	 For
instance,	you	have	a	 file	 called
phone.txt	 full	 of	 phone
numbers	−
5555551212

5555551213

5555551214

6665551215

6665551216

7775551217

You	 want	 to	 make	 the	 area

code	 (the	 first	 three	 digits)

surrounded	by	parentheses	 for

easier	 reading.	To	do	 this,	 you

can	 use	 the	 ampersand

replacement	 character,	 like	 so

[[:xdigit:]] Hex	digits	[0-9	a-f	A-F] −

$	sed	-e	‘s/^[[:digit:]][[:digit:]][[:digit:]]/(&)/g’	phone.txt

(555)5551212

(555)5551213

(555)5551214

(666)5551215

(666)5551216

(777)5551217

Here	you	are	matching	the	first	3	digits	and	then	using	&	replacing	those	3	digits

with	surrounding	parentheses.

Using	Multiple	sed	Commands

You	can	use	multiple	sed	commands	in	a	single	sed	command	as	follows	−
$	sed	-e	‘command1’	-e	‘command2’	…	-e	‘commandN’	files

Here	 command1	 through	 commandN	are	sed	 commands	 of	 the	 type	discussed
previously.	These	commands	are	applied	to	each	line	in	the	list	of	files	given	by
files.	Using	the	same	mechanism,	we	can	write	above	phone	number	example	as
follows	–
	

$	sed	-e	‘s/^[[:digit:]]\{3\}/(&)/g’		\

																						-e	‘s/)[[:digit:]]\{3\}/&-/g’	phone.txt

(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

(777)555-1217

Note	−	 In	 the	above	example,	 instead	of	 repeating	 the	character	class	keyword
[[:digit:]]	 three	 times,	 you	 replaced	 it	 with	 \{3\},	 which	 means	 to	 match	 the
preceding	 regular	 expression	 three	 times.	Here	 I	 used	 \	 to	 give	 line	 break	 you
should	remove	this	before	running	this	command.

Back	References

The	 ampersand	metacharacter	 is	 useful,	 but	 even	more	 useful	 is	 the	 ability	 to
define	specific	regions	in	a	regular	expression	so	you	can	reference	them	in	your
replacement	 strings.	By	defining	 specific	 parts	 of	 a	 regular	 expression,	 you	 can
then	 refer	 back	 to	 those	 parts	 with	 a	 special	 reference	 character.	 To	 do	 back
references,	you	have	to	first	define	a	region	and	then	refer	back	to	that	region.	To
define	a	region	you	insert	backslash	parentheses	around	each	region	of	interest.
The	first	region	that	you	surround	with	backslashes	is	then	referenced	by	\1,	the
second	region	by	\2,	and	so	on.

Assuming	phone.txt	has	the	following	text	−
(555)555-1212

(555)555-1213

(555)555-1214

(666)555-1215

(666)555-1216

(777)555-1217

	

Now	try	the	following	command	−
$	cat	phone.txt	|	sed	‘s/\(.*)\)\(.*-\)\(.*$\)/Area	\

																							code:	\1	Second:	\2	Third:	\3/’

Area	code:	(555)	Second:	555-	Third:	1212

Area	code:	(555)	Second:	555-	Third:	1213

Area	code:	(555)	Second:	555-	Third:	1214

Area	code:	(666)	Second:	555-	Third:	1215

Area	code:	(666)	Second:	555-	Third:	1216

Area	code:	(777)	Second:	555-	Third:	1217

Note:	In	the	above	example	each	regular	expression	inside	the	parenthesis	would
be	back	referenced	by	\1,	\2	and	so	on.	Here	I	used	\	to	give	line	break	you	should
remove	this	before	running	this	command.

	

Chapter	Eighteen:	FILE	SYSTEM	BASICS
	

A	file	system	is	a	logical	collection	of	files	on	a	partition	or	disk.	A	partition
is	a	container	for	information	and	can	span	an	entire	hard	drive	if	desired.	Your
hard	drive	can	have	various	partitions	which	usually	contain	only	one	file	system,
such	as	one	file	system	housing	the	/	file	system	or	another	containing	the	/home
file	system.	One	file	system	per	partition	allows	for	the	logical	maintenance	and
management	 of	 differing	 file	 systems.	Everything	 in	Unix	 is	 considered	 to	 be	 a
file,	 including	physical	devices	such	as	DVD-ROMs,	USB	devices,	 floppy	drives,
and	so	forth.

Directory	Structure

Unix	 uses	 a	 hierarchical	 file	 system	 structure,	much	 like	 an	 upside-down	 tree,
with	root	(/)	at	the	base	of	the	file	system	and	all	other	directories	spreading	from
there.	 A	 UNIX	 file	 system	 is	 a	 collection	 of	 files	 and	 directories	 that	 have	 the
following	properties	−

It	has	a	root	directory	(/)	that	contains	other	files	and	directories.

Each	file	or	directory	is	uniquely	identified	by	its	name,	the	directory	in
which	it	resides,	and	a	unique	identifier,	typically	called	an	inode.

By	convention,	the	root	directory	has	an	inode	number	of	2	and	the
lost+found	directory	has	an	inode	number	of	3.	Inode	numbers	0	and	1
are	not	used.	File	inode	numbers	can	be	seen	by	specifying	the	-i
option	to	ls	command.

It	is	self-contained.	There	are	no	dependencies	between	one	file	system
and	any	other.

The	 directories	 have	 specific	 purposes	 and	 generally	 hold	 the	 same	 types	 of
information	for	easily	locating	files.	The	following	are	the	directories	that	exist	on
the	major	versions	of	Unix	−

Directory Description

/ This	is	the	root	directory,	which	should

contain	only	the	directories	needed	at	the

top	level	of	the	file	structure.

/bin This	is	where	the	executable	files	are

located.	They	are	available	to	all	users.

/dev These	are	device	drivers.

/etc Supervisor	directory	commands,

configuration	files,	disk	configuration

files,	valid	user	lists,	groups,	ethernet,

hosts,	where	to	send	critical	messages.

/lib Contains	shared	library	files	and

sometimes	other	kernel-related	files.

/boot Contains	files	for	booting	the	system.

/home Contains	the	home	directory	for	users	and

other	accounts.

/mnt Used	to	mount	other	temporary	file

systems,	such	as	cdrom	and	floppy	for	the

CD-ROM	drive	and	floppy	diskette	drive,

respectively.

/proc Contains	all	processes	marked	as	a	file	by

process	number	or	other	information	that

is	dynamic	to	the	system.

/tmp Holds	temporary	files	used	between

system	boots.

/usr Used	for	miscellaneous	purposes,	can	be

used	by	many	users.	Includes

administrative	commands,	shared	files,

library	files,	and	others.

/var Typically	contains	variable-length	files

such	as	log	and	print	files	and	other	file

types	that	may	contain	a	variable	amount

of	data.

/sbin Contains	binary	(executable)	files,	usually

for	system	administration.	For

example	fdisk	and	ifconfig	utlities.

/kernel Contains	kernel	files

	

Navigating	the	File	System

Now	that	you	understand	the	basics	of	the	file	system,	you	can	begin	navigating

to	 the	 files	 you	need.	The	 following	are	 commands	you	will	use	 to	navigate	 the

system	−

Command Description

cat

filename

Displays	a	filename.

cd	dirname Moves	you	to	the	directory	identified.

cp	file1	file2 Copies	one	file/directory	to	specified

location.

file

filename

Identifies	the	file	type	(binary,	text,

etc).

find

filename

dir

Finds	a	file/directory.

head

filename

Shows	the	beginning	of	a	file.

less

filename

Browses	through	a	file	from	end	or

beginning.

ls	dirname Shows	the	contents	of	the	directory

specified.

mkdir

dirname

Creates	the	specified	directory.

more

filename

Browses	through	a	file	from	beginning

to	end.

mv	file1

file2

Moves	the	location	of	or	renames	a

file/directory.

pwd Shows	the	current	directory	the	user	is

in.

rm

filename

Removes	a	file.

rmdir

dirname

Removes	a	directory.

tail

filename

Shows	the	end	of	a	file.

touch

filename

Creates	a	blank	file	or	modifies	an

existing	file.s	attributes.

whereis

filename

Shows	the	location	of	a	file.

which

filename

Shows	the	location	of	a	file	if	it	is	in

your	PATH.

	

You	 can	 use	 Manpage	 Help	 to	 check	 complete	 syntax	 for	 each	 of	 these

commands.

The	df	Command

The	first	way	to	manage	your	partition	space	is	with	the	df	(disk	free)	command.
The	command	df	-k	 (disk	 free)	 displays	 the	 disk	 space	 usage	 in	 kilobytes,	 as
shown	below	–
	

	

$df	-k

Filesystem						1K-blocks						Used			Available	Use%	Mounted	on

/dev/vzfs								10485760			7836644					2649116		75%	/

/devices																0									0											0			0%	/devices

$

Some	of	the	directories,	such	as	/devices,	shows	0	in	the	kbytes,	used,	and	avail

columns	as	well	as	0%	for	capacity.	These	are	special	(or	virtual)	file	systems,	and

although	they	reside	on	the	disk	under	/,	by	themselves	they	do	not	take	up	disk

space.

The	 df	 -k	 output	 is	 generally	 the	 same	 on	 all	 Unix	 systems.	 Here’s	 what	 it
usually	includes	−

Column Description

Filesystem The	physical	file	system	name.

Kbytes Total	kilobytes	of	space	available

on	the	storage	medium.

http://www.tutorialspoint.com/unix/unix-manpage-help.htm

Used Total	kilobytes	of	space	used	(by

files).

Avail Total	kilobytes	available	for	use.

Capacity Percentage	of	total	space	used	by

files.

Mounted	on What	the	file	system	is	mounted

on.

You	can	use	 the	-h	 (human	 readable)	 option	 to	 display	 the	 output	 in	 a	 format
that	shows	the	size	in	easier-to-understand	notation.

The	du	Command

The	du	 (disk	 usage)	 command	 enables	 you	 to	 specify	 directories	 to	 show	 disk
space	 usage	 on	 a	 particular	 directory.	 This	 command	 is	 helpful	 if	 you	 want	 to
determine	 how	 much	 space	 a	 particular	 directory	 is	 using.	 The	 following
command	will	display	the	number	of	blocks	used	by	each	directory.	A	single	block
may	take	either	512	Bytes	or	1	Kilo	Byte	depending	on	your	system.
$du	/etc

10					/etc/cron.d

126				/etc/default

6						/etc/dfs

…

$

The	-h	option	makes	the	output	easier	to	comprehend	−
$du	-h	/etc

5k				/etc/cron.d

63k			/etc/default

3k				/etc/dfs

…

$

Mounting	the	File	System

A	file	system	must	be	mounted	in	order	to	be	usable	by	the	system.	To	see	what	is

currently	mounted	(available	for	use)	on	your	system,	use	this	command	−

$	mount

/dev/vzfs	on	/	type	reiserfs	(rw,usrquota,grpquota)

proc	on	/proc	type	proc	(rw,nodiratime)

devpts	on	/dev/pts	type	devpts	(rw)

$

The	 /mnt	 directory,	 by	 Unix	 convention,	 is	 where	 temporary	mounts	 (such	 as

CD-ROM	drives,	 remote	 network	 drives,	 and	 floppy	 drives)	 are	 located.	 If	 you

need	to	mount	a	file	system,	you	can	use	the	mount	command	with	the	following

syntax	−

mount	-t	file_system_type	device_to_mount	directory_to_mount_to

For	example,	if	you	want	to	mount	a	CD-ROM	to	the	directory	/mnt/cdrom,	for

example,	you	can	type	−

$	mount	-t	iso9660	/dev/cdrom	/mnt/cdrom

This	assumes	that	your	CD-ROM	device	is	called	/dev/cdrom	and	that	you	want
to	 mount	 it	 to	 /mnt/cdrom.	 Refer	 to	 the	 mount	 man	 page	 for	 more	 specific
information	or	type	mount	-h	at	the	command	line	for	help	information.	After
mounting,	 you	 can	 use	 the	 cd	 command	 to	 navigate	 the	 newly	 available	 file
system	through	the	mountpoint	you	just	created.

Unmounting	the	File	System

To	 unmount	 (remove)	 the	 file	 system	 from	 your	 system,	 use
the	umount	command	by	identifying	the	mountpoint	or	device.	For	example,	to
unmount	cdrom,	use	the	following	command	−
$	umount	/dev/cdrom

The	 mount	 command	 enables	 you	 to	 access	 your	 file	 systems,	 but	 on	 most
modern	Unix	systems,	the	automount	function	makes	this	process	invisible	to	the
user	and	requires	no	intervention.

User	and	Group	Quotas

User	 and	 group	quotas	provide	 the	mechanisms	by	which	 the	 amount	 of	 space
used	by	a	single	user	or	all	users	within	a	specific	group	can	be	limited	to	a	value
defined	 by	 the	 administrator.	 Quotas	 operate	 around	 two	 limits	 that	 allow	 the
user	to	take	some	action	if	the	amount	of	space,	or	number	of	disk	blocks	start	to
reach	the	administrator	defined	limits	−

Soft	Limit	−	If	the	user	exceeds	the	limit	defined,	there	is	a	grace
period	that	allows	the	user	to	free	up	some	space.

Hard	Limit	−	When	the	hard	limit	is	reached,	regardless	of	the	grace
period,	no	further	files	or	blocks	can	be	allocated.

There	are	a	number	of	commands	to	administer	quotas	−

Command Description

quota Displays	disk	usage	and	limits	for	a	user	of
group.

edquota This	is	a	quota	editor.	Users	or	Groups	quota
can	be	edited	using	this	command.

quotacheck Scan	a	file	system	for	disk	usage,	create,
check	and	repair	quota	files

setquota This	is	also	a	command	line	quota	editor.

quotaon This	announces	to	the	system	that	disk
quotas	should	be	enabled	on	one	or	more	file
systems.

quotaoff This	announces	to	the	system	that	disk
quotas	should	be	disabled	off	one	or	more	file
systems.

repquota This	prints	a	summary	of	the	disc	usage	and
quotas	for	the	specified	file	systems

	

	

Chapter	Nineteen:	UNIX-USER
ADMINISTRATION
	

There	are	three	types	of	accounts	on	Unix	system	−

Root	account	−	also	called	superuser	and	has	complete	and

unfettered	control	of	the	system.	A	superuser	can	run	any	commands

without	any	restriction.	This	user	should	be	assumed	as	a	system

administrator.

System	accounts	−	System	accounts	are	those	needed	for	the

operation	of	system-specific	components	for	example	mail	accounts

and	the	sshd	accounts.	These	accounts	are	usually	needed	for	some

specific	function	on	your	system,	and	any	modifications	to	them	could

adversely	affect	the	system.

User	accounts	−	User	accounts	provide	interactive	access	to	the

system	for	users	and	groups	of	users.	General	users	are	typically

assigned	to	these	accounts	and	usually	have	limited	access	to	critical

system	files	and	directories.

UNIX	supports	a	concept	of	Group	Account	,	which	logically	groups	a	number	of

accounts.	Every	account	would	be	a	part	of	any	group	account.	Unix	groups	plays

important	role	in	handling	file	permissions	and	process	management.

Managing	Users	and	Groups

There	are	three	main	user	administration	files	−

/etc/passwd:	−	Keeps	user	account	and	password	information.	This

file	holds	the	majority	of	information	about	accounts	on	the	Unix

system.

/etc/shadow:	−	Holds	the	encrypted	password	of	the	corresponding

account.	Not	all	systems	support	this	file.

/etc/group:	−	Contains	group	information	for	each	account.

/etc/gshadow:	−	Contains	secure	group	account	information.

Check	all	the	above	files	using	cat	command.

Commands	 available	 on	 the	 majority	 of	 Unix	 systems	 to	 create	 and	 manage

accounts	and	groups	–

	

Command Description

useradd Adds	accounts	to	the	system.

usermod Modifies	account	attributes.

userdel Deletes	accounts	from	the	system.

groupadd Adds	groups	to	the	system.

groupmod Modifies	group	attributes.

groupdel Removes	groups	from	the	system.

Create	a	Group

You	need	to	create	groups	before	creating	any	account	otherwise	you	would	have
to	 use	 existing	 groups	 on	 your	 system.	 You	 have	 all	 the	 groups	 listed
in	 /etc/groups	 file.	 All	 the	 default	 groups	 would	 be	 system	 account	 specific
groups	 and	 it	 is	 not	 recommended	 to	 use	 them	 for	 ordinary	 accounts.	Use	 the
following	syntax	to	create	a	new	group	account	−
groupadd	[-g	gid	[-o]]	[-r]	[-f]	groupname

Here	are	the	details	of	the	parameters:

Option Description

-g	GID The	numerical	value	of	the	group’s	ID.

-o This	option	permits	to	add	group	with

non-unique	GID

-r This	flag	instructs	groupadd	to	add	a

system	account

-f This	option	causes	to	just	exit	with

success	status	if	the	specified	group

already	exists.	With	-g,	if	specified	GID

already	exists,	other	(unique)	GID	is

chosen

groupname Actual	group	name	to	be	created.

	

If	you	do	not	specify	any	parameters	then	the	system	will	use	the	default	values.

The	following	example	will	create	a	developers	group	with	default	values,	which

is	acceptable	for	most	administrators.

$	groupadd	developers

Modify	a	Group

To	modify	a	group,	use	the	groupmod	syntax	−
$	groupmod	-n	new_modified_group_name	old_group_name

To	change	the	developers_2	group	name	to	developer,	type	−
$	groupmod	-n	developer	developer_2

Here	is	how	you	would	change	the	financial	GID	to	545	−
$	groupmod	-g	545	developer

Delete	a	Group:

To	delete	 an	 existing	group,	 all	 you	need	are	 the	groupdel	 command	and	 the
group	name.	To	delete	the	developer	group,	the	command	is	−

$	groupdel	developer

This	removes	only	 the	group,	not	any	 files	associated	with	 that	group.	The	 files

are	still	accessible	by	their	owners.

Create	an	Account

Let	us	see	how	to	create	a	new	account	on	your	Unix	system.	Use	the	syntax	to

create	a	user’s	account	−

useradd	-d	homedir	-g	groupname	-m	-s	shell	-u	userid	accountname

	

Available	Parameters	−

Option Description

-d	homedir Specifies	home	directory	for	the

account.

-g

groupname

Specifies	a	group	account	for	this

account.

-m Creates	the	home	directory	if	it

doesn’t	exist.

-s	shell Specifies	the	default	shell	for	this

account.

-u	userid You	can	specify	a	user	id	for	this

account.

accountname Actual	account	name	to	be

created

	

If	 you	do	not	 specify	 a	 parameter	 then	 system	will	 use	 the	 default	 values.
The	useradd	command	modifies	the	/etc/passwd,	/etc/shadow,	and	/etc/group
files	and	creates	a	home	directory.	The	following	is	an	example	which	will	create
an	 account	mcmohd	 setting	 its	 home	 directory	 to	 /home/mcmohd	 and	 group
as	developers.	This	user	would	have	Korn	Shell	assigned	to	it.
$	useradd	-d	/home/mcmohd	-g	developers	-s	/bin/ksh	mcmohd

Before	 issuing	 the	 above	 command,	 make	 sure	 you	 already	 have

a	 developers	 group	 created	 using	 groupadd	 command.	 Once	 an	 account	 is

created	you	can	set	its	password	using	the	passwd	command	as	follows	−

$	passwd	mcmohd20

Changing	password	for	user	mcmohd20.

New	UNIX	password:

Retype	new	UNIX	password:

passwd:	all	authentication	tokens	updated	successfully.

When	you	type	passwd	accountname,	it	gives	you	option	to	change	the	password

provided	 you	 are	 superuser	 otherwise	 you	 would	 be	 able	 to	 change	 just	 your

password	using	the	same	command	but	without	specifying	your	account	name.

Modify	an	Account

The	usermod	 command	 enables	 you	 to	 make	 changes	 to	 an	 existing	 account

from	the	command	line.	It	uses	the	same	arguments	as	the	useradd	command,
plus	 the	 -l	 argument,	 which	 allows	 you	 to	 change	 the	 account	 name.	 For
example,	 to	 change	 the	 account	 name	mcmohd	 to	mcmohd20	 and	 to	 change
home	directory	accordingly,	you	would	need	to	issue	following	command	−
$	usermod	-d	/home/mcmohd20	-m	-l	mcmohd	mcmohd20

Delete	an	Account

The	userdel	command	 can	 be	 used	 to	 delete	 an	 existing	 user.	 This	 is	 a	 very
dangerous	 command	 if	 not	 used	 with	 caution.	 There	 is	 only	 one	 argument	 or
option	available	for	the	command:	-r,	for	removing	the	account’s	home	directory
and	mail	 file.	 For	 example,	 to	 remove	 account	mcmohd20,	 you	 would	 need	 to
issue	following	command	−
$	userdel	-r	mcmohd20

If	you	want	to	keep	the	home	directory	for	backup	purposes,	omit	the	-r	option.
You	can	remove	the	home	directory	as	needed	at	a	later	time.

Chapter	Twenty:	SYSTEM	PERFORMANCE
	

The	purpose	of	this	tutorial	is	to	introduce	the	performance	analyst	to	some	of

the	 free	 tools	 available	 to	monitor	 and	manage	performance	on	UNIX	systems,

and	to	provide	a	guideline	on	how	to	diagnose	and	fix	performance	problems	in	a

Unix	 environment.	 UNIX	 has	 following	 major	 resource	 types	 that	 need	 to	 be

monitored	and	tuned	−

CPU

Memory

Disk	space

Communications	lines

I/O	Time

Network	Time

Applications	programs

Performance	Components

There	are	five	major	components	where	total	system	time	goes	–

	

Component Description

User	state	CPU The	actual	amount	of	time	the
CPU	spends	running	the	users
program	in	the	user	state.	It
includes	time	spent	executing
library	calls,	but	does	not
include	time	spent	in	the
kernel	on	its	behalf.

System	state	CPU This	is	the	amount	of	time	the
CPU	spends	in	the	system	state
on	behalf	of	this	program.	All
I/O	routines	require	kernel
services.	The	programmer	can
affect	this	value	by	the	use	of
blocking	for	I/O	transfers.

I/O	Time	and	Network
Time

These	are	the	amount	of	time
spent	moving	data	and
servicing	I/O	requests

Command Description

nice/renice Run	a	program	with	modified	scheduling

priority

netstat Print	network	connections,	routing

tables,	interface	statistics,	masquerade

connections,	and	multicast	memberships

time Time	a	simple	command	or	give	resource

usage

uptime System	Load	Average

ps Report	a	snapshot	of	the	current

processes.

vmstat Report	virtual	memory	statistics

gprof Display	call	graph	profile	data

prof Process	Profiling

top Display	system	tasks

Term Description

Virtual	Memory
Performance

This	includes	context	switching
and	swapping.

Application	Program Time	spent	running	other
programs	-	when	the	system	is
not	servicing	this	application
because	another	application
currently	has	the	CPU.

Performance	Tools

Unix	 provides	 the	 following
important	tools	to	measure	and
fine-tune	 Unix	 system
performance	−

	

Unix	-	System	Logging

UNIX	systems	have	a	very

flexible	 and	 powerful	 logging

system,	 which	 enables	 you	 to

record	 almost	 anything	 and

then	 manipulate	 the	 logs	 to

retrieve	 the	 information	 you

require.	 Many	 versions	 of

UNIX	 provide	 a	 general-

purpose	 logging	 facility

called	 syslog.	 Individual

programs	 that	 need	 to	 have

information	 logged	 send	 the

information	to	syslog.

Unix	 syslog	 is	 a	 host-configurable,	 uniform	 system	 logging	 facility.	 The

system	 uses	 a	 centralized	 system	 logging	 process	 that	 runs	 the

program	/etc/syslogd	or	/etc/syslog.

The	operation	of	the	system	logger	is	quite	straightforward.	Programs	send

their	log	entries	to	syslogd,	which	consults	the	configuration	file	/etc/syslogd.conf

or	/etc/syslog	and,	when	a	match	is	found,	writes	the	log	message	to	the	desired

log	file.

There	 are	 four	 basic	 syslog

Facility The	identifier	used	to	describe	the	application	or

process	that	submitted	the	log	message.	Examples

are	mail,	kernel,	and	ftp.

Priority An	indicator	of	the	importance	of	the	message.

Levels	are	defined	within	syslog	as	guidelines,	from

debugging	information	to	critical	events.

Selector A	combination	of	one	or	more	facilities	and	levels.

When	an	incoming	event	matches	a	selector,	an

action	is	performed.

Action What	happens	to	an	incoming	message	that	matches

a	selector.	Actions	can	write	the	message	to	a	log

file,	echo	the	message	to	a	console	or	other	device,

write	the	message	to	a	logged	in	user,	or	send	the

message	along	to	another	syslog	server.

Facility Description

auth Activity	related	to	requesting	name	and

password	(getty,	su,	login).

authpriv Same	as	auth	but	logged	to	a	file	that	can

only	be	read	by	selected	users.

console Used	to	capture	messages	that	would

generally	be	directed	to	the	system

console.

cron Messages	from	the	cron	system	scheduler.

daemon System	daemon	catchall.

ftp Messages	relating	to	the	ftp	daemon.

kern Kernel	messages.

local0.local7 Local	facilities	defined	per	site.

lpr Messages	from	the	line	printing	system.

mail Messages	relating	to	the	mail	system.

mark Pseudo-event	used	to	generate	timestamps

terms	 that	 you	 should

understand	−

	

Syslog	Facilities

Here	 are	 the	 available

facilities	 for	 the	 selector.

Not	all	facilities	are	present

on	all	versions	of	UNIX.

	

Syslog	Priorities

The	 syslog	 priorities	 are
summarized	 in	 the
following	table	−

	

The	 combination	 of	 facilities

and	 levels	 enables	 you	 to	 be

discerning	 about	 what	 is

logged	 and	 where	 that

information	 goes.	 As	 each

program	 sends	 its	 messages

dutifully	to	the	system	logger,

the	logger	makes	decisions	on

what	 to	 keep	 track	 of	 and

what	 to	 discard	based	 on	 the

levels	 defined	 in	 the	 selector.

When	you	specify	a	 level,	 the

system	 will	 keep	 track	 of

everything	 at	 that	 level	 and

higher.

The	/etc/syslog.conf	file

The	 /etc/syslog.conf	 file

controls	 where	 messages	 are

logged.	 A	 typical	 syslog.conf

file	might	look	like	this	−

in	log	files.

news Messages	relating	to	network	news

protocol	(nntp).

ntp Messages	relating	to	network	time

protocol.

user Regular	user	processes.

uucp UUCP	subsystem.

Priority Description

emerg Emergency	condition,	such	as	an	imminent

system	crash,	usually	broadcast	to	all	users.

alert Condition	that	should	be	corrected

immediately,	such	as	a	corrupted	system

database.

crit Critical	condition,	such	as	a	hardware	error.

err Ordinary	error.

warning Warning.

notice Condition	that	is	not	an	error,	but	possibly

should	be	handled	in	a	special	way.

info Informational	message.

debug Messages	that	are	used	when	debugging

programs.

none Pseudo	level	used	to	specify	not	to	log

messages.

*.err;kern.debug;auth.notice

/dev/console

daemon,auth.notice										

	/var/log/messages

lpr.info																				

	/var/log/lpr.log

mail.*																						

	/var/log/mail.log

ftp.*																							

	/var/log/ftp.log

auth.*																						

	@prep.ai.mit.edu

auth.*																							

root,amrood

netinfo.err																		

/var/log/netinfo.log

install.*																				

/var/log/install.log

*.emerg																						

*

*.alert																						

|program_name

mark.*																							

/dev/console

Each	line	of	the	file	contains
two	parts	−

A	message	selector	that
specifies	which	kind	of
messages	to	log.	For
example,	all	error	messages
or	all	debugging	messages
from	the	kernel.

An	action	field	that	says
what	should	be	done	with
the	message.	For	example,
put	it	in	a	file	or	send	the
message	to	a	user’s	terminal.

Following	are	the	notable	points	for	the	above	configuration	−

Message	selectors	have	two	parts:	a	facility	and	a	priority.	For
example,kern.debug	selects	all	debug	messages	(the	priority)	generated
by	the	kernel	(the	facility).

Message	selector	kern.debug	selects	all	priorities	that	are	greater	than
debug.

An	asterisk	in	place	of	either	the	facility	or	the	priority	indicates	“all.”
For	example,	*.debug	means	all	debug	messages,	while	kern.*	means	all
messages	generated	by	the	kernel.

You	can	also	use	commas	to	specify	multiple	facilities.	Two	or	more
selectors	can	be	grouped	together	by	using	a	semicolon.

Logging	Actions

The	action	field	specifies	one	of	five	actions	−

Log	messages	to	a	file	or	a	device.	For	example,	/var/log/lpr.log	or
/dev/console.

Send	a	message	to	a	user.	You	can	specify	multiple	usernames	by
separating	them	with	commas	(e.g.,	root,	amrood).

Send	a	message	to	all	users.	In	this	case,	the	action	field	consists	of	an
asterisk	(e.g.,	*).

Pipe	the	message	to	a	program.	In	this	case,	the	program	is	specified
after	the	UNIX	pipe	symbol	(|).

Send	the	message	to	the	syslog	on	another	host.	In	this	case,	the	action
field	consists	of	a	hostname,	preceded	by	an	at	sign	(e.g.,
@tutorialspoint.com)

	

The	logger	Command

UNIX	 provides	 the	 logger	 command,	 which	 is	 extremely	 useful	 for	 system
logging.	The	logger	command	sends	logging	messages	to	the	syslogd	daemon,
and	 consequently	 provokes	 system	 logging.	 This	means	we	 can	 check	 from	 the
command	line	at	any	time	using	the	syslogd	daemon	and	its	configuration.	The
logger	 command	provides	a	method	 for	adding	one-line	entries	 to	 the	system
log	file	from	the	command	line.

The	format	of	the	command	is	−

logger	[-i]	[-f	file]	[-p	priority]	[-t	tag]	[message]…

Here	is	the	detail	of	the	parameters	–

	

Option Description

-f

filename

Use	the	contents	of	file	filename	as	the	message	to

log.

-i Log	the	process	ID	of	the	logger	process	with	each

Application Directory

httpd /var/log/httpd

samba /var/log/samba

cron /var/log/

mail /var/log/

mysql /var/log/

line.

-p

priority

Enter	the	message	with	the	specified	priority

(specified	selector	entry);	the	message	priority	can

be	specified	numerically,	or	as	a	facility.priority

pair.	The	default	priority	is	user.notice.

-t	tag Mark	each	line	added	to	the	log	with	the	specified

tag.

message The	string	arguments	whose	contents	are

concatenated	together	in	the	specified	order,

separated	by	the	space

You	can	use	Manpage	Help	to	check	complete	syntax	for	this	command.

Log	Rotation

Log	files	have	the	propensity	to	grow	very	fast	and	consume	large	amounts	of	disk
space.	 To	 enable	 log	 rotations,	 most	 distributions	 use	 tools	 such
as	 newsyslog	 or	 logrotate.	 These	 tools	 should	 be	 called	 at	 frequent	 intervals
using	the	cron	daemon.	Check	the	man	pages	for	newsyslog	or	logrotate	for	more
details.

Important	Log	Locations

All	 the	 system	 applications
create	 their	 log	 files
in	 /var/log	 and	 its	 sub-
directories.	 Here	 are	 few
important	 applications	 and
their	 corresponding	 log
directories	−

Chapter
Twenty-one:
UNIX	 SIGNALS

AND	TRAPS
	

Signals	 are	 software	 interrupts	 sent	 to	 a	 program	 to	 indicate	 that	 an

important	event	has	occurred.	The	events	can	vary	 from	user	requests	 to	 illegal

memory	access	errors.	Some	signals,	such	as	the	interrupt	signal,	indicate	that	a

user	 has	 asked	 the	 program	 to	 do	 something	 that	 is	 not	 in	 the	 usual	 flow	 of

http://www.tutorialspoint.com/unix/unix-manpage-help.htm

control.

The	 following	 are	 some	of	 the	more	 common	 signals	 you	might	 encounter	 and

want	to	use	in	your	programs	−

Signal
Name

Signal
Number

Description

SIGHUP 1 Hang	up	detected	on	controlling
terminal	or	death	of	controlling
process

SIGINT 2 Issued	if	the	user	sends	an	interrupt
signal	(Ctrl	+	C).

SIGQUIT 3 Issued	if	the	user	sends	a	quit	signal
(Ctrl	+	D).

SIGFPE 8 Issued	if	an	illegal	mathematical
operation	is	attempted

SIGKILL 9 If	a	process	gets	this	signal	it	must
quit	immediately	and	will	not
perform	any	cleanup	operations

SIGALRM 14 Alarm	Clock	signal	(used	for	timers)

SIGTERM 15 Software	termination	signal	(sent	by
kill	by	default).

LIST	of	Signals

There	 is	an	easy	way	to	 list	all	 the	signals	supported	by	your	system.	Just	 issue
the	kill	–l	command	and	it	will	display	all	the	supported	signals	−
$	kill	-l

	1)	SIGHUP							2)	SIGINT							3)	SIGQUIT						4)	SIGILL

	5)	SIGTRAP						6)	SIGABRT						7)	SIGBUS							8)	SIGFPE

	9)	SIGKILL					10)	SIGUSR1					11)	SIGSEGV					12)	SIGUSR2

13)	SIGPIPE					14)	SIGALRM					15)	SIGTERM					16)	SIGSTKFLT

17)	SIGCHLD					18)	SIGCONT					19)	SIGSTOP					20)	SIGTSTP

21)	SIGTTIN					22)	SIGTTOU					23)	SIGURG						24)	SIGXCPU

25)	SIGXFSZ					26)	SIGVTALRM			27)	SIGPROF					28)	SIGWINCH

29)	SIGIO							30)	SIGPWR						31)	SIGSYS						34)	SIGRTMIN

35)	SIGRTMIN+1		36)	SIGRTMIN+2		37)	SIGRTMIN+3		38)	SIGRTMIN+4

39)	SIGRTMIN+5		40)	SIGRTMIN+6		41)	SIGRTMIN+7		42)	SIGRTMIN+8

43)	SIGRTMIN+9		44)	SIGRTMIN+10	45)	SIGRTMIN+11	46)	SIGRTMIN+12

47)	SIGRTMIN+13	48)	SIGRTMIN+14	49)	SIGRTMIN+15	50)	SIGRTMAX-14

51)	SIGRTMAX-13	52)	SIGRTMAX-12	53)	SIGRTMAX-11	54)	SIGRTMAX-10

55)	SIGRTMAX-9		56)	SIGRTMAX-8		57)	SIGRTMAX-7		58)	SIGRTMAX-6

59)	SIGRTMAX-5		60)	SIGRTMAX-4		61)	SIGRTMAX-3		62)	SIGRTMAX-2

63)	SIGRTMAX-1		64)	SIGRTMAX

The	actual	list	of	signals	varies	between	Solaris,	HP-UX,	and	Linux.

Default	Actions

Every	signal	has	a	default	action	associated	with	it.	The	default	action	for	a	signal
is	the	action	that	a	script	or	program	performs	when	it	receives	a	signal.

Some	of	the	possible	default	actions	are	−

Terminate	the	process.

Ignore	the	signal.

Dump	core.	This	creates	a	file	called	core	containing	the	memory	image
of	the	process	when	it	received	the	signal.

Stop	the	process.

Continue	a	stopped	process.

Sending	Signals

There	are	several	methods	for	delivering	signals	to	a	program	or	script.	One	of	the
most	common	is	for	a	user	to	type	CONTROL-C	or	the	INTERRUPT	key	while	a
script	is	executing.

When	 you	 press	 the	Ctrl+C	 key	 a	 SIGINT	 is	 sent	 to	 the	 script	 and	 as	 per	 the
defined	default	action	script	terminates.

The	 other	 common	 method	 for	 delivering	 signals	 is	 to	 use	 the	 kill	 command
whose	syntax	is	as	follows	−
$	kill	-signal	pid

Here	signal	is	either	the	number	or	name	of	the	signal	to	deliver	and	pid	is	the
process	ID	that	the	signal	should	be	sent	to.	For	Example	−
$	kill	-1	1001

Sends	the	HUP	or	hang-up	signal	to	the	program	that	is	running	with	process	ID

1001.	To	send	a	kill	signal	to	the	same	process	use	the	following	command	−

$	kill	-9	1001

This	would	kill	the	process	running	with	process	ID	1001.

Trapping	Signals

When	you	press	the	Ctrl+C	or	Break	key	at	your	terminal	during	execution	of	a

shell	 program,	 normally	 that	 program	 is	 immediately	 terminated,	 and	 your

command	prompt	returned.	This	may	not	always	be	desirable.	For	instance,	you

may	end	up	leaving	a	bunch	of	temporary	files	that	will	not	get	cleaned	up.

Trapping	these	signals	is	quite	easy,	the	trap	command	has	the	following	syntax
−

$	trap	commands	signals

Here	command	can	be	any	valid	Unix	command,	or	even	a	user-defined	function,

and	signal	can	be	a	list	of	any	number	of	signals	you	want	to	trap.

There	are	three	common	uses	for	trap	in	shell	scripts	−

Clean	up	temporary	files

Ignore	signals

Cleaning	Up	Temporary	Files

As	an	example	of	 the	 trap	command,	 the	 following	 shows	how	you	can	 remove

files	and	then	exit	if	someone	tries	to	abort	the	program	from	the	terminal	−

$	trap	“rm	-f	$WORKDIR/work1$$	$WORKDIR/dataout$$;	exit”	2

From	 the	 point	 in	 the	 shell	 program	 that	 this	 trap	 is	 executed,	 the	 two
files	work1$$	anddataout$$	will	be	automatically	removed	if	signal	number	2	is
received	 by	 the	 program.	 Therefore,	 if	 the	 user	 interrupts	 execution	 of	 the
program	after	this	trap	is	executed,	you	can	be	assured	that	these	two	files	will	be
cleaned	up.	The	exit	command	that	follows	the	rm	is	necessary	because	without
it	execution	would	continue	in	the	program	at	the	point	that	it	 left	off	when	the
signal	was	received.

Signal	number	1	is	generated	for	hangup:	Either	someone	intentionally	hangs	up

the	line	or	the	line	gets	accidentally	disconnected.	You	can	modify	the	preceding

trap	to	also	remove	the	two	specified	files	in	this	case	by	adding	signal	number	1

to	the	list	of	signals	−$	trap	“rm	$WORKDIR/work1$$	$WORKDIR/dataout$$;

exit”	 1	 2.	 Now	 these	 files	 will	 be	 removed	 if	 the	 line	 gets	 hung	 up	 or	 if

the	Ctrl+C	key	gets	pressed.	The	commands	specified	to	trap	must	be	enclosed	in

quotes	if	they	contain	more	than	one	command.	Also,	note	that	the	shell	scans	the

command	 line	at	 the	 time	 that	 the	 trap	command	gets	 executed	and	also	when

one	of	the	listed	signals	is	received.

So	in	the	preceding	example,	the	value	of	WORKDIR	and	$$	will	be	substituted	at

the	 time	 that	 the	 trap	 command	 is	 executed.	 If	 you	wanted	 this	 substitution	 to

occur	at	the	time	that	either	signal	1	or	2	was	received	you	can	put	the	commands

inside	single	quotes	−

$	trap	‘rm	$WORKDIR/work1$$	$WORKDIR/dataout$$;	exit’	1	2

Ignoring	Signals

If	 the	command	listed	for	 trap	 is	null,	 the	specified	signal	will	be	 ignored	when
received.	For	example,	the	command	−
$	trap	”	2

Specifies	 that	 the	 interrupt	signal	be	 ignored.	You	might	want	 to	 ignore	certain
signals	when	performing	some	operations	that	you	do	not	want	interrupted.	You
can	specify	multiple	signals	to	be	ignored	as	follows	−
$	trap	”	1	2	3	15

Note	that	the	first	argument	must	be	specified	for	a	signal	to	be	ignored	and	is	not
equivalent	to	writing	the	following,	which	has	a	separate	meaning	of	its	own	−
$	trap		2

If	you	ignore	a	signal,	all	subshells	also	ignore	that	signal.	However,	if	you	specify
an	action	to	be	taken	on	receipt	of	a	signal,	all	subshells	will	still	take	the	default
action	on	receipt	of	that	signal.

Resetting	Traps

After	you	have	changed	the	default	action	to	be	taken	on	receipt	of	a	signal,	you
can	change	it	back	again	with	trap	if	you	simply	omit	the	first	argument;	so.
$	trap	1	2

Resets	the	action	to	be	taken	on	receipt	of	signals	1	or	2	back	to	the	default.

	

	

	

	

DEDICATION

	

This	book	is	dedicated	to……My	Wife	and	Son
	

	

	

	

	

	

	

	

SPECIAL	THANKS
To	my	Wife		Katherine	and	my	son	Adam

	Chapter One: LINUX HISTORY
	Chapter Two: LINUX DISTRIBUTION (DISTRO)
	Introduction
	GUIDE TO CHOOSING DISTRIBUTION
	Linux Mint
	Ubuntu
	Debian GNU/Linux
	Mageia
	Fedora
	openSUSE
	Arch Linux
	CentOS
	PCLinuxOS
	Slackware Linux
	FreeBSD

	Chapter Three: LICENSING
	COMMUNITY
	DEVELOPMENT

	Chapter Four: INSTALLING DEBIAN 8
	What is Debian
	Customizing your System
	Terminal

	Install sudo
	Set up the network
	Setup your hosts file
	Log in via SSH!
	Installing the basics
	Installing MySQL
	Setting up MySQL

	Chapter Five: INSTALLING CENTOS 7
	Installation of CenOS7
	Step 1: Download the ISO Image
	Step 2: Make a bootable Drive
	Step 3: Begin Installation
	Step 4: Select Language and Keyboard
	Step 5: Change the Installation Destination
	Step 6: Select the Partitioning Scheme
	Step 7: Create a Swap Space
	Step 8: Create a Mountpoint
	Step 9: Accept Changes
	Step 10: Set Date and Time
	Step 11: Begin Installation
	Step 12: Set Up Root Password
	Step 13: Create a User Account
	Step 14: Complete Installation
	Change and Set Hostname Command
	Method #1: hostnamectl
	How do I see the host names?
	How do I delete a particular host name?
	How do I change host name remotely?

	Method #2: nmtui
	Method #3: nmcli
	To view the host name using nmcli:
	To set the host name using nmcli:

	Chapter Six: LINUX AND UNIXMAN COMMAND
	Syntax
	Description
	General Options
	Main Modes of Operation
	Finding Manual Pages
	Controlling Formatted Output
	Section Numbers
	Exit Status
	Environment
	Files
	Examples

	Chapter Seven: LINUX DIRECTORY COMMAND
	sample outputs
	List only files in Unix
	Task: Create aliases to save time

	Chapter Eight: WORKING WITH FILES
	UNIX File Names
	Looking at the Contents of Files
	Cat Command
	More Command
	Head Command
	Tail Command

	Copying, Erasing, Renaming
	Copying Files
	Erasing Files
	Renaming a File

	Using the Command Line
	Standard Input and Standard Output
	Redirection
	Using Pipes and Filters

	Some Additional File Handling Commands
	Word Count
	Comparing the Contents of Two Files: the cmp and diff Commands

	Chapter Nine: NAVIGATION AND FILE MANAGEMENT
	Prerequisites and Goals
	Navigation and Exploration
	Finding where you are with the "pwd" command
	Looking at the Contents of Directories with "ls"
	Moving Around the Filesystem with "cd"

	Viewing Files
	File and Directory Manipulation
	Create a File with "touch"
	Create a Directory with "mkdir"
	Moving and Renaming Files and Directories with "mv"
	Copying Files and Directories with "cp"
	Removing Files and Directories with "rm" and "rmdir"

	Editing Files

	Chapter Ten: UNIX SHELL SCRIPTING
	Shell Scripting Introduction

	Chapter Eleven: SHELL BASIC OPERATOR
	Arithmetic Operators
	Relational Operators:
	Boolean Operators
	String Operators
	File Test Operators

	Run The .Sh File Shell Script In Linux / Unix
	.sh As Root User
	chmod Command: Run Shell Script In Linux

	Chapter Twelve: SHELL EMBEDDING AND OPTIONS
	Shell installing

	Backticks
	Backticks or single quotes
	Shell Alternatives
	Practice: Shell Installing

	Chapter Thirteen: SHELL HISTORY SEARCH COMMAND
	Emacs Line-Edit Mode Command History Searching
	fc command
	Delete command history
	FILE NAME GLOBBING WITH *, ?, []

	Chapter fourteen: UNIX - SHELL INPUT/OUTPUT REDIRECTIONS
	Chapter Fifteen: UNIX SHELL FUNCTION
	Creating Functions
	Example
	Pass Parameters to a Function
	Returning Values from Functions
	Example
	Nested Functions
	Function Call from Prompt

	Unix - Pipes and Filters
	The grep Command
	The sort Command
	The pg and more Commands

	Chapter Sixteen: UNIX USEFUL COMMAND
	Files and Directories
	Manipulating data
	Messages between Users

	Chapter Seventeen: REGULAR EXPRESSION
	Invoking sed
	The sed General Syntax
	Deleting All Lines with sed
	The sed Addresses
	The sed Address Ranges
	The Substitution Command
	Substitution Flags
	Using an Alternative String Separator
	Replacing with Empty Space
	Address Substitution
	The Matching Command
	Using Regular Expression
	Using Multiple sed Commands
	Back References

	Chapter Eighteen: FILE SYSTEM BASICS
	Directory Structure
	The df Command
	The du Command
	Mounting the File System
	Unmounting the File System
	User and Group Quotas

	Chapter Nineteen: UNIX-USER ADMINISTRATION
	Managing Users and Groups
	Modify a Group
	Delete a Group:
	Create an Account
	Modify an Account
	Delete an Account

	Chapter Twenty: SYSTEM PERFORMANCE
	Performance Components

	Unix - System Logging
	The /etc/syslog.conf file
	Logging Actions
	Log Rotation
	Important Log Locations

	Chapter Twenty-one: UNIX SIGNALS AND TRAPS
	LIST of Signals
	Default Actions
	Sending Signals
	Trapping Signals
	Cleaning Up Temporary Files
	Ignoring Signals
	Resetting Traps

	dedication
	Special Thanks

